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ABSTRACT

Low radio frequency solar observations using the Murchison Widefield Array have recently revealed

the presence of numerous weak, short-lived and narrow-band emission features, even during moder-

ately quiet solar conditions. These non-thermal features occur at rates of many thousands per hour
in the 30.72 MHz observing bandwidth, and hence, necessarily require an automated approach for

their detection and characterization. Here, we employ continuous wavelet transform using a mother

Ricker wavelet for feature detection from the dynamic spectrum. We establish the efficacy of this

approach and present the first statistically robust characterization of the properties of these features.

In particular, we examine distributions of their peak flux densities, spectral spans, temporal spans and
peak frequencies. We can reliably detect features weaker than 1 SFU, making them, to the best of our

knowledge, the weakest bursts reported in literature. The distribution of their peak flux densities fol-

lows a power law with an index of -2.23 in the 12− 155 SFU range, implying that they can provide an

energetically significant contribution to coronal and chromospheric heating. These features typically
last for 1 − 2 seconds and possess bandwidths of about 4 − 5 MHz. Their occurrence rate remains

fairly flat in the 140-210 MHz frequency range. At the time resolution of the data, they appear as

stationary bursts, exhibiting no perceptible frequency drift. These features also appear to ride on a

broadband background continuum, hinting at the likelihood of them being weak type-I bursts.

Keywords: Sun: corona — Sun: radio radiation

1. INTRODUCTION

The new generation radio arrays are revealing the
presence of previously unappreciated variety and com-

plexity in non-thermal solar emission features at low
radio frequencies (Oberoi et al. 2011; Morosan et al.

2015; Tun Beltran et al. 2015). The observations from
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the Murchison Widefield Array (MWA) reveal the

presence of numerous short-lived, narrow-band emission

features, even during what are conventionally regarded

as moderate and quiet solar conditions. In terms of
morphology in the MWA dynamic spectra (DS), these

non-thermal features appear like miniature versions of

solar type-III bursts, with spectral and temporal spans

of about a few MHz and a second, respectively. Earlier

radio imaging studies (Oberoi et al. 2011) of such
features have found their brightness temperatures to be

similar to those expected for type-III bursts, implying a

coherent emission mechanism behind their production.

The seemingly ubiquitous presence of these features
raises the possibility that they might correspond to

observational signatures of nanoflares. Characterized by

energies in the range of 1024–1027 ergs, nanoflares were

hypothesized by Parker (1988) as a plausible solution to

the coronal heating problem. At high frequencies (EUV
and X-ray), the observable electromagnetic signature

arises from thermal emission due to local heating of the

plasma to very high temperatures by nanoflares. At low

radio frequencies, the emission associated with these
energetic electrons arises from coherent plasma emission

mechanisms, thus, allowing even a low energy event

to give rise to a much larger observational signature.

This advantage makes low radio frequencies the band

of choice for investigating signatures of weak coronal
energy release events. In order to contribute effectively

to coronal and chromospheric heating, the power law

(dN/dW ∝ Wα) index, α, of flare energies (W) must

satisfy the condition that α ≤ −2 (Hudson 1991).

Some of the known classes of solar bursts do satisfy

the α ≤ −2 requirement. Mercier & Trottet (1997)

report an α ≈ −3 over a peak flux density range of

20 − 3000 SFU (1 SFU = 104 Jy) for type-I bursts.
Type-I bursts, also referred to as radio noise storms,

generally consist of short-lived (. 1 s), narrow-band

(. 10 MHz) bursts that usually last for extended peri-

ods and are accompanied by an enhanced broadband
continuum emission. Spectral and imaging observations

of radio noise storms, performed by Gergely & Kundu

(1975) and Duncan (1981), reveal strong similarities

between Type-I and decametric type-III sources. On

the basis of a survey of 10,000 type-III bursts observed
using the Nançay Radioheliograph, Saint-Hilaire et al.

(2013) report a power law with α ≈ −1.7 for the distri-

bution of peak flux densities (in range 102 − 104 SFU)

of type-III bursts. However, unlike these type-III bursts
and the type-I bursts investigated by Mercier & Trottet

(1997), the small-scale features observed in the MWA

DS are weaker with typical fluxes of about 1-100 SFU.

As the presence of such weak features in the MWA

solar data has been established (Oberoi et al. 2011)

only comparatively recently, their detailed obser-

vational characteristics in terms of distributions of

their spectral and temporal widths, energy content,
and slopes in the frequency-time plane are yet to be

determined. Such a statistical characterization of the

properties of these features would be the first step

towards understanding them and evaluating their

contribution towards solar coronal heating. However,
their high occurrence rate of thousands of features

per hour in the 30.72 MHz bandwidth MWA DS

necessitates an automated approach for their detection

and subsequent parameter extraction from the DS.
Here we present a wavelet-based automated technique

for robust detection and characterization of these

weak features under conditions of quiet to moderate

solar activity. Though the current implementation

is tuned for the MWA DS, the technique itself is
more general and can be applied to DS from other

instruments. As new state-of-the-art observational

facilities flood the community with unprecedented

large volumes of high-quality data, the need for au-
tomated data mining and analysis techniques of the

sort presented here is only expected to grow more acute.

Section 2 of this paper describes the observational ca-

pabilities of the MWA and the data selected for sub-
sequent analysis. Section 3 details the wavelet-based

approach for automated feature detection. A statistical

analysis of the properties of these features is presented

in section 4. The physical significance of the results ob-
tained is discussed in section 5. Finally, a summary of

the results obtained and the conclusions from our study

are presented in section 6 of this article.

2. OBSERVATIONS AND PRE-PROCESSING

The MWA is a low frequency radio interferometer

operational in the frequency range from 80-300 MHz.

It is a precursor to SKA-Low and is located in the
radio-quiet environment of the Murchison Radio Ob-

servatory in Western Australia. The MWA consists

of 2048 dual-polarization dipoles arranged as 128

tiles, wherein each tile is a 4×4 array of dipoles. For
details of the technical design of the MWA, we refer

readers to Lonsdale et al. (2009) and Tingay et al.

(2013). The science goals of the MWA are described in

Bowman et al. (2013).

The data analyzed in this work were collected using

the MWA on August 31, 2014 between 00:32:00 UT

and 06:56:00 UT as part of the solar observing pro-

posal G0002. According to the SWPC event list
and the NOAA/USAF Active Region Summary

(http://www.solarmonitor.org) for this day, this

http://www.solarmonitor.org
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observing period was marked by medium levels of

solar activity with occurrence of one B-class flare

(B8.9 at 03:51:00 UT) and two C-class flares (C1.3

at 01:51:00 UT and C3.4 at 05:37:00 UT, both from
the active region with NOAA number 12149). A

type-III solar radio burst was also reported to occur at

01:25:00 UT on this day.

The data were taken in a loop cycling from 79.36 MHz
to 232.96 MHz in 5 steps of 30.72 MHz, spending 4 min-

utes at each frequency band. The entire 30.72 MHz

bandwidth in each data set is comprised of 24 coarse

spectral channels, each 1.28 MHz wide. Each coarse
spectral channel is further composed of 32 fine spectral

channels with a resolution of 40 kHz each. The time res-

olution of the data collected is 0.5 seconds. The MWA

interferometric data above 100 MHz is flux-calibrated

according to the prescription developed by Oberoi et al.
(2016) and Sharma et al. (2017). This flux calibration

technique provides estimates of the solar flux densities

and brightness temperatures by accounting for known

contributions from the sky, the receiver, and ground
pickup noise to the system temperature. The receiver

temperatures and ground pickup temperatures are ob-

tained from a mix of laboratory and field measurements.

Estimates of the sky temperature are obtained using the

Haslam et al. (1982) 408 MHz all-sky map, scaled with
a spectral index of 2.55 (Guzmán et al. 2011), as a sky

model. The need to keep the Sun unresolved for ap-

plication of this flux calibration technique constrains

us to using only short baselines. This non-imaging
study uses data from one such short baseline of phys-

ical length 23.7 m between tiles labeled “Tile011MWA”

and “Tile021MWA”. The outputs from the flux calibra-

tion technique described in Oberoi et al. (2016) form the

inputs for our study. Here, we present the analysis for
data collected in the XX polarization alone, that for the

YY polarization is analogous.

3. METHODOLOGY

Figure 1 depicts a sample raw MWA DS of normal-

ized cross-correlations on the left and its flux-calibration
version on the right. The features of interest in this

work appear as short-lived, narrow-band vertical streaks

against a broadband background continuum.

3.1. Removal of instrumental artifacts

The horizontal features are instrumental artifacts
arising due to the poor instrumental response at the

edges of coarse spectral channels and need to be re-

moved. These artifacts are corrected for by performing

linear interpolation across the systematics-affected
channels. As the coarse channel edges at the very start

and end of the observing band cannot be corrected by

interpolation, these are simply discarded. Recording

glitches sometimes affect the beginning and end of data

recording. To avoid contamination from such issues,

we routinely discard the first six and the last nine time
slices of data as well.

Though the MWA is located in a region with very

little radio frequency interference (RFI), radio waves re-

flected from aircraft can occasionally interfere with the
radio signals picked up by a tile and thereby, corrupt the

data collected. Manual RFI-flagging followed by linear

interpolation across RFI-affected segments of the DS is

carried out to ensure a RFI-free DS for efficient feature
detection. The left panel of Fig. 2 displays an instru-

mental artifact-free version of the DS shown in Fig. 1.

3.2. Background continuum subtraction

The solar radiation can be thought of as a superposi-

tion of sporadic non-thermal radio features with a spec-

trally varying, broadband background continuum. Spec-

tral variations in the background flux density can often
distort the spectral profiles of features in the DS. For im-

proving our efficiency at picking up small-scale features

from the DS, it is, therefore, necessary to disentangle

spectral flux density variations arising from these fea-
tures from that associated with the background.

As the day of our observations was characterized by

medium levels of solar activity, it seems reasonable to

expect that the thermal quiet Sun emission forms the
dominant component of the background continuum

emission in our data. We find the temporal variation

of the background flux density to be negligible over the

duration of individual observing scans of four minutes
each. This allows us to then ignore the time dependence

of the background flux density and treat it as as a

function of frequency alone. As the flux densities of

the weakest radio bursts detected in our data sets are

only a few percent of the background flux, an accurate
and robust means of determining and subtracting out

the spectral variation of the background component is

required.

In this work, the Gaussian Mixtures Model (GMM)

routine provided by Scikit-Learn (Pedregosa et al.

2011) is applied for estimation of the background

flux density (S⊙,B) as a function of frequency. As

the background is expected to vary smoothly, the DS
is divided into contiguous groups of 4 fine spectral

channels each. The data in each of these groups is then

decomposed as a sum of Gaussians using the GMM

routine. As there exists no unique way of representing
a given function as a sum of Gaussians, the Bayesian

Information Criterion (Burnham & Anderson 2002) has
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Figure 1. Left: A sample MWA DS of normalized cross-correlations. Right: Flux-calibrated version of the same DS.
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Figure 2. Left: A version of the flux calibrated DS free of instrumental artifacts. Right: Background-subtracted version of the
same DS. Features of interest can be easily identified in this processed DS. We note that these features also overlap in many
instances. One feature that appears to be relatively isolated from the others is marked by a red circle in the right panel.

been employed to determine the optimum number of

Gaussians required to fit the data. Since the thermal

quiet Sun component forms the baseline emission
level on top of which non-thermal radio emission is

detected, it is reasonable to assume that the Gaussian

corresponding to this background continuum must be

the one with the lowest mean and the highest weight.

For every group of fine spectral channels, the value of
the mean of this Gaussian is noted as the background

flux density (SGMM (ν)) at the respective frequency and

is shown by the red circles in top sub-panels in Fig. 3.

Presence of strong, frequent radio bursts that outshine
the background component in a DS degrade the ability

of GMM to determine a value of the background flux at

each observing frequency. Our observations were taken

on a day with moderate solar activity, allowing for the

use of GMM to determine the background flux density

at several frequencies in most data sets.

A degree-4 polynomial is then used to fit the large-
scale smooth spectral trend in the background flux den-

sity and is subtracted from the DS. The right panel in

Fig. 2 depicts the DS obtained after background re-

moval from the DS depicted in the left panel. The suit-

ability of a degree-4 polynomial fit to the background
can be quantified by estimating the residual percent-

age between SGMM (ν) and the flux densities (Sfit(ν))

predicted from the best fit polynomial at the same fre-

quency. The residual percentage is given by:

Residual %(ν) =
SGMM (ν)− Sfit(ν)

SGMM (ν)
× 100% (1)

Figure 3 depicts the degree-4 polynomial fits to the esti-

mated background fluxes for a few of the DS used in our
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Figure 3. Degree-4 polynomial fits to the spectral trend in the background continuum and the residuals to the fits. The 4 panels
corresponds to 4 different data sets with frequency ranges: (a) 110.34 − 140.54 MHz, (b) 141.06 − 171.26 MHz, (c) 171.78 −

201.98 MHz, and (d) 202.5 − 232.7 MHz. The top sub-panel shows the polynomial fit and the bottom sub-panel shows the
departure of the best fit from the data in percentage units.

study. A degree-4 polynomial is adequate to describe

the spectral variation observed in the background flux

to within a mean absolute error of 3-4%.

3.3. Wavelet-Based Feature Detection

Continuous wavelet transform (CWT) provides a nat-

ural way of obtaining a time-frequency representation of

a non-stationary signal through the use of a wavepacket
with finite oscillation, i.e, a wavelet. In this work, our

signal is the 2D MWA DS containing the features of in-

terest. The efficiency of CWT at reliable detection of

features from the DS depends upon our choice of the 2D
mother wavelet and is maximized for a mother wavelet

which closely matches the shape of the spectral and tem-

poral profiles of these features.

3.3.1. Choice of mother wavelet

From the right panel in Fig. 2, it can be seen that
while there do exist features that appear isolated in the

DS, several features in the DS appear to bunch together.

Figure 4 depicts the spectral and temporal profiles of one

seemingly isolated feature indicated by a red circle in the

background-subtracted DS depicted in Fig. 2. A close
look at such isolated features in the DS reveals a charac-

teristic smooth, unimodal nature to their temporal and

spectral profiles. Assuming that each atomic feature

in a DS possesses unimodal spectral and temporal pro-
files, any multi-modal spectral or temporal distribution

of flux densities observed can be interpreted as a su-
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perposition of contributions from constituent unimodal

distributions. This allows for a 2D Ricker wavelet to be

employed as a suitable mother wavelet for CWT. Mea-

sured in pixel units, the features of interest usually have
axial ratios of about 10 - 50. To best match features

of this nature, we use a variable separable version of a

2D Ricker (also called the Mexican Hat) wavelet with

analytical form :

R(t, ν) =
4

3
√
π

(

(1− t2)e−
t2

2

)(

(1− ν2)e−
ν2

2

)

(2)

as the mother wavelet. From this mother wavelet,

scaled wavelets are constructed according to the defi-
nition given by Antoine et al. (2004) as follows:

Rst,sν ,τt,τν (t, ν) =
1

√
stsν

R

(

t− τt
st

,
ν − τν
sν

)

(3)

The peak of a 2D scaled Ricker wavelet is located at

(t, ν) = (τt, τν). The scales sν and st correspond to
half the support of its positive lobe along the frequency

and time directions respectively. Using the scaled 2D

Ricker wavelets, wavelet coefficients of the DS are then

computed according to the following definition:

γ(st, sν , τt, τν) =

¨

ν,t

DS(t, ν)Rst,sν ,τt,τν (t, ν)dt dν (4)

For ease of notation, let us denote the wavelet coef-

ficients γ(st, sν , τt, τν) by the symbol γ(st, sν , t, ν). For
a given feature peaked at (t, ν) in the DS, γ(st, sν , t, ν)

shall be maximized when sν and st match with the spec-

tral and temporal extents of the feature respectively.

Thus, the 2D Ricker wavelet acts as a peak and support

detection filter. This then enables us to determine the
peak flux densities as well as the temporal and spectral

extents of features in the DS.

3.3.2. Construction of a composite matrix

Owing to the fact that the 2D CWT introduces two

additional degrees of freedom through transformation

from a 2D DS space to a 4D wavelet-coefficient space, a

large number of wavelet coefficients computed for a given
DS carry redundant information. The non-orthogonality

of a set of scaled Ricker wavelets further preserves this

redundancy. This aspect can then be exploited to re-

construct the DS using a basis different from the set of
scaled wavelets. Torrence & Compo (1998) give an ex-

plicit expression for 1D signal reconstruction from the

wavelet coefficients using a basis of δ−functions. Ex-

tending this formula to the 2D CWT used here, a com-

posite matrix, A(t, ν), of wavelet coefficients that ex-
actly reconstructs the DS, barring a constant normal-

ization factor, is given by:

A(t, ν) =
∑

sν>0

∑

st>0

γ(st, sν , t, ν)√
stsν

(5)

As the wavelet coefficients are nothing but a convolution

of the DS with the scaled wavelets, it is expected that

A(t, ν) should be a smooth reconstruction of the DS.

Local maxima in A(t, ν) then correspond to peaks of
features in the actual DS. However, there are two issues

with using A(t, ν) for feature identification. At small

scales, our measurements are dominated by noise. As

Eq. 5 involves a sum over all values of sν and st, it also

tries to incorporate the measurement noise in A(t, ν).
Further, bunching of features leading to overlapping of

spectral and temporal profiles of adjacent features in

the DS can hinder the ability of CWT to resolve two

closely spaced features from one another at large values
of sν and st. Hence, it is necessary to work with an in-

termediate range of scales for constructing a composite

matrix, M(t, ν), that captures details of the features of

interest while avoiding being influenced by the inherent

measurement noise at small scales and bunching of fea-
tures at large scales. M(t, ν) is therefore, constructed

using the following expression:

M(t, ν) =

sν,upper
∑

sν=sν,lower

st,upper
∑

st=st,lower

γ(st, sν , t, ν)√
stsν

(6)

In the time domain, the features of interest are al-
ready present at the resolution of the data, forcing us

to set st,lower to 0.5 seconds. Careful visual inspec-

tion of a large number of DS revealed that there ex-

ist few features with bandwidths less than 0.5 MHz,

leading us to a choice of 0.5 MHz for sν,lower. Again,
guided by careful visual inspection of several DS, we

set st,upper = 3 seconds and sν,upper = 5 MHz in or-

der to provide both the ability to detect atomic features

present within a bunch of features and the capability to
identify relatively long-lived or broadband features. The

values chosen for st,upper and sν,upper in fact enable us to

reliably reconstruct features with spectral and temporal

extents as large as 26.04 MHz and 15 seconds respec-

tively. M(t, ν) is then computed using the choices of
scales mentioned above. Local maxima picked up from

M(t, ν) correspond to locations of the peak flux den-

sities of different features contained in the DS. Figure

5 illustrates the ability of CWT to distinguish between
closely spaced features despite overlaps in their flux den-

sity profiles along the frequency and time axes.

Panel (a) in Fig. 5 depicts a comparison between a

spectral slice taken from both the DS and M(t, ν) at
the same time. The location of peaks of features in the

M(t, ν) spectral profile closely agree with their corre-

sponding peaks in the DS. For a given feature, we find

that its spectral extent is matched well by the distance
between the two local minima in the M(t, ν) spectral

slice that straddle its peak. We use the distance between
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Figure 4. Left: Spectral profile of the feature marked by a red circle in the background-subtracted DS depicted in Fig. 2. Note
that two other weaker features are present at the upper and lower frequency ends in the time slice corresponding to the peak
of this feature. Right: Temporal profile of the same feature. The red circles in the left and the right panels of this figure mark
the location of the feature peak, as shown in the right panel of Fig. 2, along the frequency and time axes respectively.
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Figure 5. (a) A spectral profile taken from both the DS (blue) and M(t, ν) (green) at the same time. The presence of three
local maxima in the M(t, ν) profile indicates the ability of CWT to successfully detect the three features seen in the DS profile.
The locations of the local minima of M(t, ν) enable us to distinguish individual features from one another despite overlaps in
their spectral profiles in the DS. (b) Panel illustrating ability of M(t, ν) to reproduce temporal widths of features reliably, while
providing the resolution to distinguish between features located close together. The presence of multiple peaks in M(t, ν), one
corresponding to each local maximum in the DS, clearly demonstrates the ability of M(t, ν) to detect these features.

these local extrema as the spectral extent of the feature.

The lower extremum is then taken to be start frequency
(νstart) of the feature. The temporal extent and start

time (tstart) of a feature are similarly estimated. In or-

der to obtain estimates of a quantity similar to the half

power width of a feature, we define the spectral and

temporal widths of a feature respectively as:

∆ν = 0.5× Spectral extent of feature

∆t = 0.5× Temporal extent of feature.

For the purpose of quantifying any symmetry present in

the spectral profile of a feature with peak at frequency
ν, we define its spectral symmetry parameter as follows:

χν =
ν − νstart

2∆ν
(7)

The value of this parameter lies in the range from 0 to

1. A spectral symmetry parameter value of 0.5 for a fea-

ture represents a perfectly symmetric frequency profile
while departures from 0.5 indicate skewness present in

the spectral profile. The temporal symmetry parameter
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Figure 6. Peaks of features detected from the background-subtracted DS depicted in Fig. 2 are depicted as green circles. The
left and the right panels differ only in the color bar range. While the left panel illustrates the ability of the CWT algorithm to
pick up bright features, the right panel shows the ability of the CWT code to pick up relatively weaker features as well.

(χt) of a feature is similarly defined.

3.4. Correction of peaks detected

As seen from panel (a) in Fig. 5, peaks of features

picked up fromM(t, ν) do not always coincide with their

counterparts in the DS. However, since M(t, ν) peaks lie

close to their corresponding DS peaks, this discrepancy

is easily corrected by first growing a region around a
M(t, ν) peak and then, identifying the DS peak within

this region. The admissibility criterion used to grow a

region S starting from a M(t, ν) peak is that the wavelet

coefficient of the neighboring pixel under consideration
is within a minimum threshold (T) percentage of the

peak wavelet coefficient. The region growing algorithm

terminates when no more pixels on the boundary of S

satisfy this criterion. Since M(t, ν) is only an approxi-
mation to the actual DS, the temporal and spectral pro-

files of a feature in the DS are reproduced exactly only

within a small neighborhood around its M(t, ν) peak.

Hence, a value of T as high as 95% has been chosen to

ensure that all pixels contained in the region S around
the peak of a feature actually belong to this feature.

For the features detected from all DS used in this work,

M(t, ν) peaks show average offsets of 0.16 seconds and

0.57 MHz from their corresponding DS peaks. After
peak correction, the peak flux density of a feature is ob-

tained from the flux density at the location of its peak

in the background-subtracted DS.

3.5. Elimination of false detections

Since M(t, ν) only approximates the DS, it is possible

for it to contain some spurious peaks which do not

correspond to real features in the DS. Only a peak
in M(t, ν) having a corresponding peak in the DS is

regarded to be a real feature. In order to weed out

false peaks, the root mean square flux density (σ) is

estimated across quiet patches in the DS as a function

of frequency. A Signal-to-Noise Ratio (SNR) for every

peak is then defined as the ratio of the peak flux
density to the root mean square background noise at

the frequency corresponding to the location of the peak.

The spectral and temporal profiles of all peaks detected

in M(t, ν) were visually examined using figures similar

to Fig. 5 to check for a corresponding peak in the DS.
We find false detections to constitute about 24% of the

total number of peaks detected in M(t, ν), all of which

have peak flux densities, S⊙,F < 5σ. In all, about 26%

of our detections lie below the 5σ threshold. In order
to eliminate all false positives, we reject all peaks with

S⊙,F < 5σ.

Figure 6 depicts the locations of the peaks of all fea-

tures detected using this automated wavelet-based ap-
proach. In order to estimate the efficiency of this ap-

proach at picking up features reliably from the DS,

8 laypersons were presented with plots of different

background-subtracted DS similar to Fig. 6 and re-
quested to estimate the false positive and false negative

rates. According to their estimates, the CWT pipeline

successfully picks up features from the DS with a zero

false positive rate but with a false negative rate of about

4–6%. A total of 14,177 features were detected from 67
background-subtracted DS used for this work.

4. RESULTS

The wavelet-based analysis, yielding a large number

of features, allows us to build statistically stable dis-

tributions of their properties - their peak flux densities
and morphology in the DS. The following sub-sections

present the distributions of various quantities of physical
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Figure 7. Histogram of peak flux densities on a log-log scale.

interest for these features.

4.1. Peak flux densities of features

Figure 7 shows the histogram of peak flux densities
(S⊙,F ) of features. While this histogram extends upto

nearly 307 SFU at its upper end, it touches peak flux

densities as low as 0.6 SFU at its lower end. This

makes the detected small-scale features about 1.6 times
weaker than the type-I bursts studied by Ramesh et al.

(2013) and hence, places them among the weakest re-

ported bursts in literature. A least-squares power law

(dN/dS⊙,F ∝ S⊙,F
α) fit to this histogram yields a

power law index α = −2.23 over the 12−155 SFU range.
The flux range for this power law fit overlaps with that

of the power law fits to the flux density profile done in

Mercier & Trottet (1997). The upper end of this flux

range approaches the lower end of the flux range for the
power law fits by Saint-Hilaire et al. (2013). The value

of α obtained here is intermediate between the corre-

sponding values obtained by Saint-Hilaire et al. (2013)

(α ≈ −1.66 to − 1.8) and Mercier & Trottet (1997)

(α ≈ −2.9 to − 3.6). Iwai et al. (2014), in their ob-
servational studies of type-I bursts, also report a power

law index of −2.9 to−3.3. The value of α obtained here

is also much lower than the power law index of −3.5

predicted for the low energy part of the statistical flare
spectrum by Vlahos et al. (1995). However, it agrees

well with the the power law indices, α ≈ −2.5 obtained

by Mugundhan et al. (2016) and α ≈ −2.2 to − 2.7 ob-

tained by Ramesh et al. (2013) in separate studies of

type-I bursts observed using the Gauribidanur Radio
Observatory.

We note that the residuals to the power law fit in

Fig. 7 are non-Gaussian, implying the inadequacy of
the power law model to fit these data. The uncertainty

in the best fit power law slope is, however, only about
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Figure 8. Two-dimensional histogram depicting distribu-
tions of peak flux densities and peak frequencies. The color
axis is in log10 units.

1%, implying that it still provides a reasonable, if
sub-optimal, description of the distribution. While a

higher order polynomial in log-log space would provide

a better fit, we have chosen to use a power law model as

it renders itself to an interesting physical interpretation

from a coronal heating perspective (Sec. 5.1) and
provides a point of comparison with earlier literature

in the field. We note that the distribution of peak flux

densities depicted in Fig. 7 suffers from incompleteness

at low flux densities and limited statistics at high flux
densities. We have, hence, chosen to fit the power law

to an intermediate range of flux densities where the

obtained histogram is expected to resemble the true

distribution. Though the numerical value of the power

law index depends on the exact choice of endpoints
chosen for the power law fit, the index is found to be

less than -2 irrespective of this choice in the flux density

range ∼ 10−160 SFU, where we expect the distribution

to be complete.

Figure 8 shows a two-dimensional histogram of the

distributions of the peak flux densities and the peak

frequencies(ν) of the features. While the peak flux den-

sities of a majority of features appear to be indepen-
dent of ν, a sub-population of them seem to show a

frequency-dependent variation in the peak flux density.

For this sub-population, the peak flux density appears

to increase with ν from 100 MHz to 150 MHz, remain
nearly constant with ν between 150 MHz and 200 MHz,

and then decline for ν ≥ 200 MHz.

4.2. Spectral and temporal widths

Figure 9 depicts histograms of the spectral and tempo-

ral widths of features. Both ∆ν and ∆t follow smooth,
unimodal distributions. The ∆ν distribution peaks at

about 4-5 MHz, well above the 40 kHz frequency reso-
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Figure 9. (a) Histogram of spectral widths, ∆ν. (b) Histogram of temporal widths, ∆t. (c) Two-dimensional histogram showing
the distributions of ∆ν and ∆t. The color axis is in log10 units.

lution of our data. On the other hand, the peak in the

∆t distribution lies at 1-2 s, quite close to the 0.5 s tem-

poral resolution of these data. Fig. 9(c) further shows
that the distributions of ∆ν and ∆t arrange themselves

in a single well-formed cluster peaking at about 4-5 MHz

and 1-2 seconds. While the bandwidths of these features

are two orders of magnitude smaller than that for type-

III bursts, they are comparable to the typical frequency
span, ∆ν . 10 MHz (Mercier & Trottet 1997), reported

for type-I bursts.

The left panel of Fig. 10 shows a two-dimensional
histogram of the distributions of ∆ν and the peak fre-

quency (ν). The prominent peak and valley-like struc-

tures are artifacts arising from the limited bandwidth

of observations. While valleys occur at the edges of the

observing bandwidth, peaks occur at its centre. There

seems to be a hint of a trend for a small increase in ∆ν

with increase in ν (≈ 0.02 MHz increase in ∆ν per unit
increase in ν). The original data set has an equal num-

ber of observations at each of the observing bands. The

algorithm used to determine the background continuum

is designed for periods of medium or low levels of solar

activity and hence, worked effectively for most of the
data. However, it was not suitable for about 24.3% of

the data which were characterized by high solar activ-

ity (typically periods immediately following occurrences

of B and C class flares) and hence, discarded from this
analysis. This effectively leads to different observing du-

rations for different observing bands and is reflected in

the left panel of Fig. 10. In order to arrive at the true

spectral distribution of features, the feature occurrence
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Figure 10. Left: Two-dimensional histogram showing the distribution of peak frequencies, ν, and spectral spans, ∆ν. The color
axis is in log10 units. Right: Histogram of feature occurrence rate per unit bandwidth.
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Figure 11. Left: Histogram of spectral symmetry parameter. Right: Histogram of temporal symmetry parameter on a semi-log
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rate per unit bandwidth is computed as a function of fre-

quency. As shown in the right panel of Fig. 10, the spec-

tral distribution of features appears to remain flat in the

frequency range from 140-210 MHz and declines at lower
frequencies. Below 140 MHz, the galactic background

temperature rises sharply while the intrinsic solar emis-

sion becomes weaker (Oberoi et al. 2016). This leads to

a drop in the SNR of our detections at these frequencies
and consequently, their being under-represented in the

spectral distribution. The true spectral distribution of

feature occurrences is expected to be flatter than that

shown in the right panel of Fig. 10.

4.3. Spectral and temporal profiles

An interesting finding about the nature of the spec-
tral and temporal profiles of the features of interest is

obtained through the histograms of χν and χt (defined

in section 3.3.2) shown in Fig. 11. While features largely

appear to possess symmetric frequency profiles, their

temporal profiles display no inherent symmetry. The

peaks at the extremes of the χν and χt histogram range
arise due to the presence of features with peaks located

close to the edges of the DS.

4.4. Background flux densities at peak frequencies

Figure 12 shows a two-dimensional histogram of the

background flux density as a function of frequency. The

background continuum emission shows the expected
monotonic increase with frequency due to the broadband

thermal radiation from the 106 K coronal plasma. RSTN

(http://www.sws.bom.gov.au/World_Data_Centre)

solar flux measurements estimate the median flux
density on the day of our observations to be 20 SFU at

245 MHz. We also note that over the course of these

http://www.sws.bom.gov.au/World_Data_Centre
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Figure 12. Two-dimensional histogram showing distribu-
tions of the background flux densities at the locations of
peaks in the DS and the corresponding peak frequencies.
The color axis is in log10 units.

observations, the spectrally smooth background flux
density is observed to vary by a rather large amount.

5. DISCUSSION

5.1. Feature energies

Having estimated the peak flux, bandwidth and du-
ration of each feature detected in the DS, estimates of

their energy can be obtained if the solid angle into which

emission is radiated is known. Assuming isotropic emis-

sion for these features, W = 4πD2∆ν∆tS⊙,F gives the

total energy radiated for a feature when observed from a
distanceD = 1 AU. As this definition ofW uses only the

peak flux density of a feature without accounting for any

reduction in flux density within its shape and assumes

isotropic emission, it overestimates the actual energy of
a feature. We note that while most earlier works use

constant bandwidths and durations to estimate the en-

ergy radiated, we use the spectral and temporal spans

corresponding to individual features for this purpose.

The histogram of total feature energies is shown in Fig.
14. The typical energies of these features lie in the range

of 1015 − 1018 ergs. These features are, hence, weaker

than both the type-III bursts (W ≈ 1018 − 1023 ergs)

investigated by Saint-Hilaire et al. (2013) and type-I
bursts (W ≈ 1021 ergs) studied by Mercier & Trottet

(1997).The best fit power law to the tail of the histogram

in Fig. 13 yields a power law index of −1.98. Hudson

(1991) has shown that for weak flare emissions to play

a significant in coronal and chromospheric heating, the
power law distribution describing their occurrence must

have index α ≤ −2. Within the uncertainty of the fit,

the features studied here meet this criterion, and hence

can be expected to play an interesting role in coronal
heating. Subramanian & Becker (2004) had estimated

the ratio of the radiative power output from noise storm
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Figure 13. Histogram of total energies.

continua to the total power input provided to the ac-
celerated non-thermal electrons producing these bursts

to be about 10−10 − 10−6. Using this efficiency esti-

mate, the typical energies of the non-thermal electrons

producing the features of interest lie in the range from
1021 − 1028 ergs. This agrees well with the estimate

of 1023 − 1026 ergs obtained by Subramanian & Becker

(2004) for the energy transferred to the non-thermal

electron population that cause noise storm continua.

This hints at a possible correlation between the proper-
ties of these features with that of type-I bursts. On the

basis of observational studies, Ramesh et al. (2013) also

report non-thermal electron energies of about 1020 ergs

for radio noise storm bursts.

5.2. Comparison with type-I bursts

Our statistical analysis shows that the features of in-
terest appear to ride on a broadband background con-

tinuum. These findings closely agree with observations

of type-I bursts present against a continuum emission,

giving rise to the speculation that these features might

be weak type-I bursts. These results would then sup-
port the theory proposed by Benz & Wentzel (1981)

and Spicer et al. (1982) that describes type-I bursts

as observational signatures of scattered small-scale en-

ergy release events in the solar corona. The very elec-
trons accelerated in such small magnetic reconnection

events might give rise to the broadband background

continuum (Benz & Wentzel 1981). Investigations of

type-I bursts in the 160-320 MHz frequency band by

De Groot et al. (1976) suggest an average frequency
drift rate of -10 MHz/s for type-I bursts. The small-

scale features detected in the MWA DS appear as verti-

cal streaks with no perceptible frequency drift. However,

they might possess small frequency drifts which cannot
be measured at the time resolution of the MWA data.
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Figure 14. Two-dimensional histogram of the peak flux den-
sities of features against the background flux density at their
peak frequency. The color axis is in log10 units. The dashed
and solid black lines represent respectively the first and the
third quartile in the distribution of peak flux densities within
a background flux density bin.

Figure 14 shows a two-dimensional histogram of their

peak flux densities and the background flux density at

their peak frequency. The dashed and solid black lines

in Fig. 14 respectively depict trends in the first quartile
and the third quartile in the distribution of peak flux

densities as a function of the background flux density.

The 25th percentile of the distribution of peak fluxes

increases from 0.76 SFU at a background flux of 2 SFU
to 10.18 SFU at 38 SFU background flux. Similarly the

75th percentile increases from 1.59 SFU to 44.39 SFU

over the same range of background flux densities. This

demonstrates a tendency for an increase in feature peak
flux density with an increase in background flux density.

Note that we are limited by statistics at background

flux estimates greater than 38 SFU.

As shown in Fig. 12, the background flux density at
any frequency varies by a factor of ∼2. Such large vari-

ations are seen over time scales as short as 30 minutes

and are not likely to reflect changes in thermal emis-

sion from the 106 K coronal plasma. The observed in-
crease in the peak flux of the features with increase in

background flux density suggests a possibility that this

enhanced background continuum could arise due to a su-

perposition of a large number of features which remain

unresolved at the time resolution of these data. Ob-
servations of such small-scale features with finer time

resolution are required to understand them better.

5.3. Comparison with type-III bursts

Gergely & Kundu (1975) and Duncan (1981) find
close similarities between sources of type-I bursts and

that of decametric type-III bursts. Benz & Wentzel

(1981) claim that electrons accelerated at magnetic

reconnection sites, if trapped along closed field lines,

produce type-I bursts and their associated continuum.

If untrapped, these electrons propagate along open field
lines and produce type-III storm bursts. Assuming a

type-III-like emission mechanism for the small-scale

features observed in the MWA data, we arrive at a one-

to-one correspondence between their peak frequencies

and the electron densities at their heights of production
in the solar corona. We assume a 4 × Newkirk (1961)

density profile in the solar corona in order to translate

from electron densities (Li et al. 2009) to heights (h)

in the solar corona. Having computed νstart, ∆ν and
∆t for every feature, we can also determine a height

band (∆h) and a propagation speed (v = ∆h/∆t)for

every feature. Assuming emission at the local plasma

frequency, we find that the features of interest mostly

possess propagation speeds of about (0.01− 0.04)c and
arise in the solar corona from within a narrow band

∆h ≈ (0.01 - 0.03)R⊙ centered at h ≈ (0.20 - 0.50)R⊙

above the photosphere. The typical electron speeds drop

steadily with frequency, decreasing from (0.02 − 0.07)c
at 120 MHz to (0.01 − 0.03)c at 220 MHz. These

values, are however, much lower than the speed of 0.33c

reported for type-III bursts in the lower corona. As we

are unable to discern any spectral drift in these features

from the data, the speeds determined here are lower
limits to their true speeds.

The growth and decay time scales of type-III bursts

provide interesting diagnostics for the physical processes
involved in their production (Reid & Ratcliffe 2014).

For the small-scale features observed in the MWA DS,

the mean and median values of the growth and decay

time scales (∼ 1.5 s) are not found to be significantly

different, though we note that they are likely temporally
under-sampled by the time resolution of these data.

6. SUMMARY, CONCLUSION AND FUTURE

WORK

We have carried out the first detailed statistical

characterization of the small-scale features observed in

the MWA solar DS. Owing to their large event rates,
it is very hard or impractical to manually attempt to

analyze their properties. A robust, automated tech-

nique is, hence, necessarily required for our purpose.

We have developed a suitable wavelet-based approach

to identify, extract and characterize these features.
Individual features in the DS possess unimodal spectral

and temporal profiles, and a 2D Ricker wavelet is very

effective in locating and characterizing them. A total of

14,177 features have been picked up from all DS used
in this work. Though our current implementation is

adapted for the MWA data, it is quite general and can
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be applied to DS from other telescopes as well.

The CWT algorithm enables us to reliably detect

and characterize features with peak flux densities as
low as 0.6 SFU, which form the weakest solar radio

bursts reported to date in literature. The distribution

of their peak flux densities is well-fitted by a power

law with index -2.23 over the 12− 155 SFU flux range.

We estimate the total radiated energy of these features
to be in the range of 1015 - 1018 ergs. Hence, they

are much weaker than the widely studied solar type-I

and type-III bursts. Their energy distribution is fitted

well by a power law with index −1.98. Within the
uncertainty of this fit, this suggests that they could

contribute in an energetically significant manner to

coronal heating.

We find these features to be quite short-lived and
narrow-band with typical durations of 1-2 seconds and

bandwidths of 4-5 MHz respectively. Interestingly,

while their temporal profiles display no structural

symmetry, their spectral profiles are largely symmetric
about the peak frequency. The distribution of their

occurrence rate remains nearly flat in the 140 - 210 MHz

frequency range. Quite analogous to type-I bursts, they

are also found to reside on an enhanced background

continuum. We speculate that these features might
correspond to weak type-I bursts. Since type-I bursts

and decametric type-III bursts show close associations

(Gergely & Kundu 1975; Duncan 1981), it is possible

that some of these features could be weak type-III
bursts as well.

Sensitive high-time resolution observations aimed at

searching for a frequency drift and a harmonic coun-

terpart for these features would hopefully provide us

with crucial information for understanding them bet-

ter. Imaging studies to determine their distribution on

the solar surface and investigate any correlations with

other solar features will further help explore their con-
tributions to coronal heating. We also hope that this

detailed and statistically robust characterization of non-

thermal emission features will engender interest in the

theory and simulation community to understand them

better.
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