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Abstract 
We investigate the concurrent solution of low-index 
differential-algebraic equations (DAE’s) b y  the wave- 
form relaxation (WR) method, an iterative method for 
system integration. We present our new simulation 
code, DAWRS (Differential - Algebraic - Waveform 
Relaxation Solver), to solve DAE’s on parallel ma- 
chines using the W R  methods, and describe new tech- 
niques t o  improve the convergence of such methods. 
As experimental results, we demonstrate the achiev- 
able concurrent performance t o  solve DAE’s for a class 
of applications in chemical engineering. 

1 Introduction 
There are two basic concurrent simulation paradigms 
for solving DAE’s: first, “direct methods” exploit the 
parallelism across the existing sequential algorithms. 
Such methods maintain all numerical characteristics 
of the original algorithms, and their performance de- 
pends on how well the parallelism is exploited, see 
[lJ f;r more detail. Second, “dynamic iterative meth- 
o s, or WR methods, exploit the parallelism across 
the system, iterating independent solutions of differ- 
ent parts of the overall system. The performance for 
WR methods depends, mainly, on their convergence 
and scheduling characteristics. 
Here, we investigate the solution of DAE’s by the 
WR method implemented in our DAWRS package, 
an application-independent C-based concurrent DAE 
solver. We utilize distillation column networks to 
demonstrate the achievable performance of DAWRS 
on multicomputers such as Symult s2010 and Intel 
iPSC860. Such problems are modeled by large-scale, 
sparse, and nonsymmetric DAE’s, with a natural im- 
balance and unequal activity (latency) in their residu- 
als, which can be well exploited by the WR methods. 
We present new techniques to  improve both the local 
and global convergence of the WR methods. We show 
significant gains in performance as a result of our new 
approaches to  manipulation of the waveforms. Finally, 
we discuss the system partitioning steps in which the 
DAE’s to be solved must be partitioned into several 
lower-order subsystems. 
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2 Integration Layer 
As the WR method exploits the parallelism across the 
system, each subsystem may use its own integrator 
according to its needs (explicit, implicit, . . .). Here, 
we consider only the case where all subsystems use 
the same integrator. We use DASSL [2] to  carry out 
the subsystem integration, because of its efficiency to  
solve low-index systems of DAE’s of the form 

F ( t ,  Y ,  Y, U >  = 0 
Y(t0) = Yo ’ Y(t0) = Yo 

(1) 

where F :  R x RN x RN x R’ -+ RN is a nonlinear 
function, y( t )  E RN is the vector of state variables, 
and u ( t )  E R“ is the input vector. ODE’S are included 
in this formulation as a special case of DAE’s. 
DASSL uses a variable stepsize and order, implicit 
BDF scheme. The variable stepsize is an essential 
property to exploit the latency of the subsystems. In 
its stepsize and order selection, the order is lowered or 
raised depending on if the leading error term in the 
remainder of the Taylor series expansion form an in- 
creasing or decreasing sequence. The new stepsize is 
chosen so that the error at  the new order satisfies 

(2) (0) 
J l l l Y n t l  - Yn+J 5 1.0 

where A4 bounds the error estimate taking into ac- 
count the interpolation and local truncation error, and 
Ilyn+l - y $ ) l l l  is the norm of the predictor-corrector 
difference’. To control the local error the stepsize is 
rejected whenever the condition (2) is not satisfied. 

3 Algorithm Description 
To formulate the decoupled system for the WR 
method, we rewrite (l), without loss of generality, as 

Fi(t, Yi, yi, 4, U) = 0 
yi(to) = Y ~ O  , 

(3) 
&(to) = Yio 

where, for i = 1 , 2 , .  . . , p ,  Fi: R x Rpt x Rpi x R2N-2pa x 
R“ -+ R P ’ ,  and di is the decoupling vector which con- 
tains the variables from y which are not in yi and 
derivatives from y not in yi. Now, if we consider di 

* 1 1 ~ 1 1 ~  = & (-$)2, where wt is the weight vector re- 
flecting the relative and absolute error tolerances. 
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in (3) as an input vector, we can solve (1)  by solving 
iteratively p independent subsystems. 
In the following, we represent waveforms by the or- 
dered set of timepoints 

with z ( r )  = ( z ~ ,  z2 , .  . . , zp)T a vector of waveforms, 
where [ to ,  t j ]  is the time interval of interest, and 

%(.) { Y i ( t )  / t E 7 = [ t a , t b ]  rf = [ t o  tf]} (4) 

V i ( . )  = { d i ( t )  / t E r .,} (5) 
as neighbor waveforms, with U(.) == (VI, v2,. . . , u p )  T 

held fixed during the integration process for a specific 
iteration. Thus, the basic structure of a WR algo- 
rithm can be abstractly described for a given subin- 
terval r, = [tq, t,+l] as shown in Figure 1.  The con- 
vergence is achieved when I l f  - zJ-'Ilm is sufficiently 
small. 

set J' = 0 and V ' ( T ~ )  = vo (an inital guess) I 
f o r i =  1 ,2 ,  . . . , p  

4 ( 7 , , Z i , t f , V ~ ~ , U )  = 0 
d(t,) := Y d h )  7 i{(t,) = Yi(t,) 

set j = j + 1 and d(r,)  = t&:iated(~q) 
until convergence 

Figure 1: Basic waveform relaxartion algorithm 
- --.----I 

It is clear that the 7". algorithm consists of three 
parts: the system partition phase, the integration 
phase (Section 2), and the relaxation phase. In the 
system partition phase, DAWRS executes six multi- 
option well-defined siteps (assignment, grouping, or- 
dering, placement, process generatilon, and neighbor- 
hood), each of which can be either totallly or par- 
tially user-defined. Also, DAWRS allows arbitrary 
sets of equations to be addressed (named) by implicit 
mapping, whereas in [3., 41 the approach is device- or 
template-oriented. 
In the assignment process, each unknown .variable is 
associated with an equation of the system olf DAE's in  
which it is involved, bsut each equation has to hold the 
correct state variable to maintain the probllem consis- 
tency [5] (consistent tmrignrnent). However, a system 
of DAE's can have several consistent assigniments giv- 
ing different convergence characteristics to  the parti- 
tioned system. Thus, a combinatorial optimization 151 
allied with the information in the ii!eration matri2 is 
carried out to  find an optimal assignment. 
After the system assignment, we can group tightly 
coupled states, ideally yielding more loosely coupled 
subsystems. The main reason for this grouping step is 
to get higher convergence rates, [6]. In other words, we 
want to reduce the contraction constant y of the con- 
tractive map llzj -z*ll, < yllzo-z*ll, to the solution 
z* in the waveform spate. We utilize the fdepth-first 
search 71 and the iterattion matrix to give us neces- 

to improve the convergence rate is by exploiting the 
sary in I ormation about state coupling. Another way 

directionality of information flow within the system by 
means of iterations like Gauss-Seidel. These methods 
require some ordering of the system (e.g., coloring) to  
get reasonable contraction constants. 
Usually, the subsystems have different residual eval- 
uation time and different stiffness in the integration 
process. Thus we need to  place them optimally among 
the processors in order to  obtain good load balancing. 
Also, we may estimate the communication cost to ex- 
change waveforms as another parameter to  proceed 
with the placement step. At this stage we have all 
information about disconnected subsystems of DAE's; 
in the next process generation step, we actually cre- 
ate the processes with all clustered subsystems to 
be loaded into the available processors. Finally, the 
neighborhood step finds all interconnected subsystems 
either by means of user information or by perturbation 
over the state variables, and establishes the pattern of 
waveform communications during the simulation. 
In the relaxation phase DAWRS iterates the wave- 
forms until convergence, according to the selected it- 
erative scheme (Jacobi, asynchronous iterations, etc.). 
An efficient scheduler process, with a low sequential 
fraction, controls the system convergence. Also, as 
successfully implemented in the CONCISE simulator 
[3], we incorporate a dynamic waveform splitting strat- 
egy where we form subintervals of waveforms (win- 
dows). That is, after a certain number of iterations the 
current window is split in two new windows, so that 
the first part will converge in a few more iterations and 
the second part will be less expensive than the original 
window. In [3] the windowing may force truncation 
of the last timestep in the window since integration 
steps are not allowed to pass a window frame except 
when a new window is started. We restart DAWRS in 
the next window with the non-truncated stepsize from 
previous window. 

4 Convergence: Criteria and Techniques 
If we define a map W :  z H 2, with W ( Z ( T ) )  the solu- 
tion of the decomposed system 3) in 7, then the WR 
iteration can be rewritten as a x xed point problem 

2(7) = w ( ~ j - l ( ~ ) )  , j = 1 , 2 , .  . . ( 6 )  
with z*(T)  = W(Z*(T))  the solution of the given sys- 
tem (1) in T .  The condition (2) controls the local error 
to generate an approximate sequence of W .  Now, to 
check if this sequence is a converging sequence, the fol- 
lowing criteria have to be satisfied in DAWRS. First 
we verify the timepoint convergence by the condition 

for the current j t h  WR iteration. Whenever the con- 
dition (7) is satisfied for all timepoints in r we check 
for the convergence of the waveform by condition 

- yz-'11 5 E 1  , i = 1 , 2 , .  . . , p  (7) 

Allz! P'  ' - zl-l I I I . . < E z < E I ,  i = l l 2 , . . . , p  (8) 
l - &  ' 

where I I z ( ~ ) l l ~  = maxtET /y(t)ll, ~1 and ~2 scale the 
weight vect,or, wt, to the a lowed waveform tolerance, 
and p is an estimate of the convergence rate. 
Allied to the splitting strategy we can drive the wave- 
form sequence either by use of a relaxation parameter 'See [2] for its definition. 
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case Wlndows example 

I 10 
I1 I O  
Il l 10 
I V  10 
V 10 

V I  19 
VI  I IO 

V l l l  IO 
I X  10 
X 10 

WR 
lteratlons 

155 
I37 
I37 
94 
94 
40 8 
115 
98 
93 
95 

10685 
I0685 
89935 
21 171 
1220 1 
I1749 
12102 

I I O  
I I  10 
I l l  10 
I V  10 
V IO 

VI  10 
VI1 10 
V l l l  10 

I X  10 
X I O  

954 
954 
9666 
1739 
1144 
1155 
1213 

1252 
1103 
908 
44 I 
41 9 
1126 
519 
48 5 
46 I 
52 I 

159777 
140422 
127702 
31019 
30349 

140 
116 
I16 
53 
53 

108 
71 
68 
47 
54 

14525 
13618 
I086 1 
3385 
3075 

rlrnepolnts 

1225 I 
9186 
9186 
5353 
5353 
4488 I 
10582 
6123 
5850 
6059 

80 126 
70490 
64105 
15584 
15290 
42724 
2251 1 
24905 
I7540 
24394 

6860 
5843 
5843 
I748 
I748 
I2097 
3159 
2399 
I600 
I956 

ReSldUal JaCOblan ReJected lnformatlon and 
Evaluatlons I Evaluatlons I Tlmepnts I 

24379 2708 
18338 
18338 

85084 
447 I8 
49568 
34780 
48506 

9574 
4894 
5145 
3426 
5108 

13519 
I1243 
11243 
3089 
3089 

23684 
5875 
4374 
2773 
3504 

2294 
1753 
I753 
692 
692 
337 I 
999 
888 
688 
758 

I: basic WR algorrtnm 
11: noidlng wave t a l l  
III: merglng waveforrnrr 
IV :  predictton horlzon 
v: tlrnepolnt lnsertion 

4965 VI: r lxed Order 2 
VI I :  r lxed order 3 

338 VIII: f ixed order 4 
IX: r lxed order 5 

341 X: maxtmum order 

t o  I V  (tney use 
same conditions). 

Example 2 and case V I  

489 
57 
57 

I637 
I78 
96 
39 
74 

The global t tme lntervi  
for  a l l  slrnulatlons Is 
LO. 1 I. and the accuracy 
IS given by: 

Rei. Tolcnnce = l=lVa 
Ab.. Tolennce = 0 ~ . ~ ~ r ~ ~  ~ ~ i .  = 1.107 

Figure 2: DAWRS convergence characterist ics.  Modifications an the basic WR algorithm. 

w E (0,2), z j  = (1 - w)zj-’ + w W ( z j - l ) ,  where w 
changes as the simulation proceeds, or introducing a 
variable local error criterion replacing the condition 

(9) ( 0 )  MllYntl - Y n t l l l  5 E (2) by 

where ( E 1,w) goes along with ( / z j  - Z ~ - ’ I ( ~  from 

rameter attempts to  give more stability to the WR 
iteration when w < 1 and to  accelerate the conver- 
gence when w > 1, the variable local error criterion 
prevents the integrator from using shorter timesteps. 
A successful modification in the basic WR algorithm 
is that DAWRS retains useful information of past 
waveforms which makes the convergence faster than 
conventional approaches. First, DAWRS follows the 
neighbor integration history holding the tail  of the 
neighbor waveform from the previous window and uses 
higher-order polynomials to  interpolate the neighbor 
waveform at the beginning of the current window. 
Second, instead of discarding the timepoints beyond 
the splitting point, we incorporate a merging strat- 
egy. When the first part of a split window converges 
DAWRS merges it into the second part, generating in 
this manner a more reliable initial guess to the next 
window. Because a window is only split after a rea- 
sonable number of iterations, the second part of a split 
window already has a good approximation of W ( z ) .  
The third modification is the inclusion of a prediction 
horizon for the neighbor waveforms. When not avail- 
able, DAWRS predicts the initial guess of the neighbor 
waveforms, 210 T), by polynomial extrapolation while 

grator form a decreasing sequence (see Section a) ,  and 

a pre-speci B ed value to  one. While the relaxation pa- 

the estimates I or the leading error terms in the inte- 

from the point that does not match this condition to  
the end of the window VO(T) is kept constant. 
Finally, DAWRS has a timepoint insertion into those 
neighbor waveforms that have less timepoints than 
necessary for the interpolation order. This insertion 
is done by polynomial interpolation using their own 
BDF data (before sharing the waveforms). This last 
modification is optional because the algebraic equa- 
tions in the DAE’s are not automatically satisfied at 
interpolated points. The Figure 2 shows three simple 
and representative examples of these modifications. 
Since the waveforms have timesteps independent of 
each other, DAWRS has a neighbor interpolation for- 
mula to provide timepoints of the neighbor waveforms 
to the integration steps3. In Figure 2 we compare fixed 
order, maximum window order, and BDF4 average or- 
der interpolation polynomials. Although the example 
3 shows a better performance when the order is fixed 
to 5, a performance degradation will likely occur in 
less active regions. Also, when the coefficients in the 
example 1, (0.1, -1, 100, l), are replaced by (0.01, - 
100, 0, 100 a fixed order of 3 turns out to be better 

problem dependencies, a variable order given by the 
BDF average order seems to be a good choice. 

than 5 .  T k us, to monitor the activity changes and 

5 Applicatioii Problems 
We consider here two examples of distillation col- 
umn networks, separating eight alcohols: methanol, 

31n DAWRS the neighbor waveform, (5) ,  does not include 

4The maximum BDF order was fixed to 5 in all simulations. 
the derivatives, except for the first and last timepoints. 
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Figure 3:  Three-Cohrnn Network.  The real speedup, 
Sp, i s  represented by the solid line, and i ts  lower and 
upper est imates  are represented by the dashed lines. 

ethanol, propan-1-01, propan-2-01, butan-1-01, 2- 
methyl propan-1-01, butan-2-01, and 2-methyl propan- 
2-01. The first network, Figure 3, has 1,536 state vari- 
ables, and the second one, Figure 4, has 8,008. Each 
tray is initialized to al non-steady condition, and the 
system is relaxed to the steady state. 
According to the distillation model utilized each tray 
has eight tightly coupled equations. The best group- 
ing for this formulation was found to be one tray 
per subsystem. Subsystems bigger t,han thatt lose be- 
cause of expensive calculation, and subsystems smaller 
than that lose by exce,ssive WR iterahion (around 7-10 
against 4-5) and massive waveform exchange. Also, we 
can distinguish four types of “trays” with significantly 
different activities (re’boiler, condenser, feed tray, and 
other trays). Therefore, we can expect a load balanc- 
ing problem. The ma:u/:min node CPU-time ratio was 
found to be between I .5-3 when the work load is even 
in terms of number of equations per node. We have re- 
duced this ratio to 1.1-1.3 by evening the work load for 
the residual and Jacolbian evaluation, and also taking 
into account the size of each subsytem. The Figures 
3 and 4 show the obtatined speedup Ion a 19f!-node Sy- 
mult s2010 multicomputer5. The tolerances indicated 
in Figure 2 were used in these simulations. The dashed 
lines in the Speedup graphics are lower and upper es- 
timates for the relative speedups given by 

where CPU = H o s t ( P : ) + z L ,  N o d e ; ( P ) ,  H o s t ( P )  is the 

5Qualitatively the  same iresults were obtained o:n a 64-node 
Intel iPSC860  multicomputer, with all t ime reduced by a factor 
4.5-5. Thus the  behavior seems independent of architecture. 

d 
- 1  d r T  ........ ......... 

loo 

Figure 4: Seven-Column Network.  The  dashed lines 
represent the lower and upper est imates  for the relative 
speedup, Sp(P) ,  and efficiency, q(P).  

host time, N o d e ( P )  is the maximum node CPU-time, 
and P is the number of processors. Due to memory 
limitation, the real relative speedup and efficiency, 

where T ( P )  = N o d e ( P )  4 H o s t ( P ) ,  could only be cal- 
culated for the three-distillation-column network, rep- 
resented by the solid line in Figure 3. 

6 Conclusion and Future Work 
We have showed significant gains in performance as a 
result of our new approaches to manipulation of the 
waveforms. In future work we intend to provide new 
partitioning strategies, such as new ordering schemes, 
and a more detailed grouping analysis, in order to 
achieve higher convergence rates. Experimental re- 
sults with DAWRS, applied to distillation columns, 
already show that the WR method is a strong candi- 
date as a concurrent flowsheeting simulation method- 
ology. We expect to apply the technique to many other 
interesting applications in chemical engineering, and 
to make time comparisons with sequential algorithms 
and other concurrent methods (e.g., direct methods). 
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