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Abstract

We investigate the concurrent solution of low-indez
differential-algebraic equations (DAE’s) by the wave-
form relazation (WR) method, an iterative method for
system integration. We present our new simulation
code, DAWRS (Differential — Algebraic - Waveform
Relazation Solver), to solve DAE’s on parallel ma-
chines using the WR methods, and describe new tech-
niques to improve the convergence of such methods.
As experimental results, we demonsirate the achiev-
able concurrent performance to solve DAE’s for a class
of applications in chemical engineering.

1 Introduction

There are two basic concurrent simulation paradigms
for solving DAE’s: first, “direct methods” exploit the
parallelism across the existing sequential algorithms.
Such methods maintain all numerical characteristics
of the original algorithms, and their performance de-
pends on how well the parallelism is exploited, see
[1] for more detail. Second, “dynamic iterative meth-
ods,” or WR methods, exploit the parallelism across
the system, iterating independent solutions of differ-
ent parts of the overall system. The performance for
WR methods depends, mainly, on their convergence
and scheduling characteristics.

Here, we investigate the solution of DAE’s by the
WR, method implemented in our DAWRS package,
an application-independent C-based concurrent DAE
solver. We utilize distillation column networks to
demonstrate the achievable performance of DAWRS
on multicomputers such as Symult s2010 and Intel
iPSC860. Such problems are modeled by large-scale,
sparse, and nonsymmetric DAE’s, with a natural im-
balance and unequal activity (latency) in their residu-
als, which can be well exploited by the WR methods.

We present new techniques to improve both the local
and global convergence of the WR methods. We show
significant gains in performance as a result of our new
approaches to manipulation of the waveforms. Finally,
we discuss the system partitioning steps in which the
DAE’s to be solved must be partitioned into several
lower-order subsystems.
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2 Integration Layer

As the WR method exploits the parallelism across the
system, each subsystem may use its own integrator
according to its needs (explicit, implicit, ...). Here,
we consider only the case where all subsystems use
the same integrator. We use DASSL [2] to carry out
the subsystem integration, because of 1ts efficiency to
solve low-index systems of DAE’s of the form

F(t,y,5,u)=0

y(to) = yo , Y(to) = %o
where F: R x R x R¥ x R — R is a nonlinear
function, y(t) € RN is the vector of state variables,

and u(t) € R" is the input vector. ODE’s are included
in this formulation as a special case of DAE’s.

(1)

DASSL uses a variable stepsize and order, implicit
BDF scheme. The variable stepsize is an essential
property to exploit the latency of the subsystems. In
its stepsize and order selection, the order is lowered or
raised depending on if the leading error term in the
remainder of the Taylor series expansion form an in-
creasing or decreasing sequence. The new stepsize is
chosen so that the error at the new order satisfies

(2)

0
Mlyn41 = vl < 1.0
where M bounds the error estimate taking into ac-
count the interpolation and local truncation error, and
NYnt1 — yfﬂl][ is the norm of the predictor-corrector

difference!. To control the local error the stepsize is
rejected whenever the condition (2) is not satisfied.

3 Algorithm Description

To formulate the decoupled system for the WR

method, we rewrite (1), without loss of generality, as
Fi(t,yi, 9i,di,u) = 0 (3)
yi(to) = yio , %i(to) = Yio

where, fori = 1,2,...,p, Fi: Rx RP' x RPi x RN ~2Pi x

R™ — RPi and d; is the decoupling vector which con-

tains the variables from y which are not in y; and
derivatives from y not in ;. Now, if we consider d;

il = &

flecting the relative and absolute error tolerances.

;’N=1 (—u-‘JLti-_)?, where wt is the weight vector re-
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in (3) as an input vector, we can solve (1) by solving
iteratively p independent subsystems.

In the following, we represent waveforms by the or-
dered set of timepoints
(4)

zi(r) ={yi(t) / t € 7 = [ta, 8] C 7y = [to, ts]}

with 2(7) = (21,22,...,2p)7 a vector of waveforms,
where [tg,2] is the time interval of interest, and

vi(r) ={di(t) /t €T C 74} (5)

as neighbor waveforms, with v(r) = (v, va, .. .,vp)T
held fixed during the integration process for a specific
iteration. Thus, the basic structure of a WR algo-
rithm can be abstractly described for a given subin-
terval 7, = [t;,t,41] as shown in Figure 1. The con-

vergence is achieved when ||z7 — 27 71||, is sufficiently
small.

set j = 0 and v°(7;) = v (an inital guess)
do
fori=1,2,...,p .
vl,u)=0

solve { . Ei(Tq’zzj";’g’ .
y';?(tq) =yilty) , 9’1 (tg) = I‘]i(tq)
set j = j +1 and v/ (1) = v} darea(7y)
until convergence

Figure 1: Basic waveform relazation algorithm

It is clear that the WR algorithm consists of three
parts: the system partition phase, the integration
phase (Section 2), and the relaxation phase. In the
system partition phase, DAWRS executes six multi-
option well-defined steps (assignment, grouping, or-
dering, placement, process generation, and neighbor-
hood), each of which can be either totally or par-
tially user-defined. Also, DAWRS allows arbitrary
sets of equations to be addressed (named) by implicit
mapping, whereas in [3, 4] the approach is device- or
template-oriented.

In the assignment process, each unknown variable is
associated with an equation of the system of DAE’s in
which it is involved, but each equation has to hold the
correct state variable to maintain the problem consis-
tency [5] (consistent assignment). However, a system
of DAE’s can have several consistent assignments giv-
ing different convergence characteristics to the parti-
tioned system. Thus, a combinatorial optimization {5]
allied with the information in the iteration matriz? is
carried out to find an optimal assignment.

After the system assignment, we can group tightly
coupled states, ideally yielding more loosely coupled
subsystems. The main reason for this grouping step is
to get higher convergence rates, [6]. In other words, we
want to reduce the contraction constant v of the con-
tractive map |27 —z*|Jco < 7||2°~2*||oo to the solution
z* in the waveform space. We utilize the depth-first
search l17] and the iteration matrix to give us neces-
sary information about state coupling. Another way
to improve the convergence rate is by exploiting the

2See [2] for its definition.
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directionality of information flow within the system by
means of iterations like Gauss-Seidel. These methods
require some ordering of the system (e.g., coloring) to
get reasonable contraction constants.

Usually, the subsystems have different residual eval-
uation time and different stiffness in the integration
process. Thus we need to place them optimally among
the processors in order to obtain good load balancing.
Also, we may estimate the communication cost to ex-
change waveforms as another parameter to proceed
with the placement step. At this stage we have all
information about disconnected subsystems of DAE’s;
in the next process generation step, we actually cre-
ate the processes with all clustered subsystems to
be loaded into the available processors. Finally, the
neighborhood step finds all interconnected subsystems
either by means of user information or by perturbation
over the state variables, and establishes the pattern of
waveform communications during the simulation.

In the relaxation phase DAWRS iterates the wave-
forms until convergence, according to the selected it-
erative scheme (Jacobi, asynchronous iterations, etc.).
An efficient scheduler process, with a low sequential
fraction, controls the system convergence. Also, as
successfully implemented in the CONCISE simulator
{3], we incorporate a dynamic waveform splitting strat-
egy where we form subintervals of waveforms (win-
dows). That is, after a certain number of iterations the
current window is split in two new windows, so that
the first part will converge in a few more iterations and
the second part will be less expensive than the original
window. In [3] the windowing may force truncation
of the last timestep in the window since integration
steps are not allowed to pass a window frame except
when a new window is started. We restart DAWRS in
the next window with the non-truncated stepsize from
previous window.

4 Convergence: Criteria and Techniques

If we define a map W: z — 2, with W(z(7}) the solu-
tion of the decomposed system (3) in 7, then the WR
iteration can be rewritten as a fixed point problem

()= W(Z~Y(r)) (6)

with 2*(r) = W(2*(7)) the solution of the given sys-
tem (1) in 7. The condition (2) controls the local error
to generate an approximate sequence of W. Now, to
check if this sequence is a converging sequence, the fol-
lowing criteria have to be satisfied in DAWRS. First
we verify the timepoint convergence by the condition

Il -l < e (7)

for the current jth WR iteration. Whenever the con-
dition (7) is satisfied for all timepoints in 7 we check

for the convergence of the waveform by condition
' j j—1 .
%Hzf ~d Mo Se2<er, i=1,2,...,p (8)
—pi
where ||2(T)llec = max;er &Iy(t)[l, €1 and €3 scale the
weight vector, wt, to the allowed waveform tolerance,
and p is an estimate of the convergence rate.

L i=12...

) i:1)2)"'7p

Allied to the splitting strategy we can drive the wave-
form sequence either by use of a relazation parameter



WR Residual Jacoblan Rejected
Case Timepoints mation and Notes
example Windows iterations P Evaluations | Evaluatfons Ttmepnts fnfor
1 [ 10 155 12251 24379 2708 720 .
b 10 137 9186 18338 2050 630 [!:basic WR algorithm
$14 01y, - y2=0 Ii: hoiding wave tail
It 10 137 9186 18338 2050 630
Y2+ 100y, +y; =0 111; merging waveforms
1) = 50 = 1 v 10 94 5353 10685 954 207 Ve e Ton e Lzon
v 10 94 5353 10685 954 207 s
V: timepotint tnsertion
Vi 19 408 44881 89935 9666 4965
s Vi: fixed order
jﬁx G vii 10 115 10582 21171 1739 771 V:l,":‘xe:ofd"zs
4;;3’3,?\?“" Vil 10 98 6123 12201 1144 329 ViiL: T1xed order 4
1X 10 93 5850 11749 1155 338 (X: [1xed order 5
PR MM R X 10 95 6059 12102 1213 341 :
X: maxtmum order
2 I 60 1252 80126 159777 14525 6677 .
$r47,+ Kecos(® X =0 n 53 1103 70490 140422 13618 eesz |'7Y o denyerage BDF
Ja+ya+Kain() X =0 1 a9 908 64105 127702 10861 5606 '
X = y; cos(1) + ya sin(t) v 24 44) 15584 31019 3385 1427
VIi-X must be compared
= =1, K =999
y‘,(O) yA0) v 22 419 15290 30349 3075 1348 to 1V (they uge
vi 46 1126 42724 85084 9574 3289 same conditions).
o5 Vil 31 519 22511 44718 4894 1824
. Vil 29 485 24905 49568 5149 2110 Number of windows
N1 i 26 461 17540 34780 3426 984 |was rixed to ten.
e X 31 521 24394 48506 5108 2048
Example 2 and case VI
3 i 10 140 6860 13519 2294 624 tn the example 1 use
1 10 116 5843 11243 1753 489 the splitting strategy.
¥+ 1002y, - 100053 =0 | ) 10 116 5843 11243 1753 489
¥2-y1+(1+y¥)ya=0 The global time interva
© =y 21 v 10 53 1748 3089 692 57 g
¥10) =y v 10 53 1748 3089 6972 57 for all stmulations is
[0,1], and the accurac
vi 10 108 12097 23684 3371 1637 1s given by: 4
Vil 10 71 3159 5875 999 178
[ X3 -
\\ Vit 10 68 2339 4374 888 96 Rel. Tolerance = 1x10*
v 1X 10 a7 1600 2773 688 39 Waveform Tol. = 1x107
T X 10 54 1956 3504 758 74

Figure 2: DAWRS convergence characteristics. Modifications in the basic WR algorithm.

w e (0,2), 27 = (1 —w)z?~! 4+ wW(2~1), where w
changes as the simulation proceeds, or introducing a
variable local error criterion replacing the condition

2) by
@ Milynes — 3, < € ©)

where ¢ € [1,00) goes along with ||/ — 27 7}|| from
a pre-specified value to one. While the relaxation pa-
rameter attempts to give more stability to the WR
iteration when w < 1 and to accelerate the conver-
gence when w > 1, the variable local error criterion
prevents the integrator from using shorter timesteps.

A successful modification in the basic WR algorithm
is that DAWRS retains useful information of past
waveforms which makes the convergence faster than
conventional approaches. First, DAWRS follows the
neighbor integration history holding the tail of the
neighbor waveform from the previous window and uses
higher-order polynomials to interpolate the neighbor
waveform at the beginning of the current window.

Second, instead of discarding the timepoints beyond
the splitting point, we incorporate a merging strat-
egy. When the first part of a split window converges
DAWRS merges it into the second part, generating in
this manner a more reliable initial guess to the next
window. Because a window is only split after a rea-
sonable number of iterations, the second part of a split
window already has a good approximation of W(z).

The third modification is the inclusion of a prediction
horizon for the neighbor waveforms. When not avail-
able, DAWRS predicts the initial guess of the neighbor
waveforms, vogr), by polynomial extrapolation while
the estimates for the leading error terms in the inte-
grator form a decreasing sequence (see Section 2), and

from the point that does not match this condition to
the end of the window vo{7) is kept constant.

Finally, DAWRS has a timepoint insertion into those
neighbor waveforms that have less timepoints than
necessary for the interpolation order. This insertion
is done by polynomial interpolation using their own
BDF data (before sharing the waveforms). This last
modification is optional because the algebraic equa-
tions in the DAE’s are not automatically satisfied at
interpolated points. The Figure 2 shows three simple
and representative examples of these modifications.

Since the waveforms have timesteps independent of
each other, DAWRS has a neighbor interpolation for-
mula to provide timepoints of the neighbor waveforms
to the integration steps®. In Figure 2 we compare fixed
order, maximum window order, and BDF* average or-
der interpolation polynomials. Although the example
3 shows a better performance when the order is fixed
to 5, a performance degradation will likely occur in
less active regions. Also, when the coefficients in the
example 1, (0.1, -1, 100, 1), are replaced by {0.01, -
100, 0, 100), a fixed order of 3 turns out to be better
than 5. Thus, to monitor the activity changes and
problem dependencies, a variable order given by the
BDF average order seems to be a good choice.

5 Application Problems

We consider here two examples of distillation col-
umn networks, separating eight alcohols: methanol,

3In DAWRS the neighbor waveform, (5), does not include
the derivatives, except for the first and last timepoints.
4The maximum BDF order was fixed to 5 in all simulations.
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Figure 3: Three-Column Network. The real speedup,
Sp, is represented by the solid line, and its lower and
upper estimates are represented by the dashed lines.

ethanol, propan-1-ol, propan-2-ol, butan-1-ol, 2-
methyl propan-1-ol, butan-2-ol, and 2-methyl propan-
2-ol. The first network, Figure 3, has 1,536 state vari-
ables, and the second one, Figure 4, has 8,008. Each
tray is initialized to a non-steady condition, and the
system 1s relaxed to the steady state.

According to the distillation model utilized each tray
has eight tightly coupled equations. The best group-
ing for this formulation was found to be one tray
per subsystemn. Subsystems bigger than that lose be-
cause of expensive calculation, and subsysterns smaller
than that lose by excessive WR iteration (around 7-10
against 4-5) and massive waveform exchange. Also, we
can distinguish four types of “trays” with significantly
different activities (reboiler, condenser, feed tray, and
other trays). Therefore, we can expect a load balanc-
ing problem. The max/min node CPU-time ratio was
found to be between 1.5-3 when the work load is even
in terms of number of equations per node. We have re-
duced this ratio to 1.1-1.3 by evening the work load for
the residual and Jacobian evaluation, and also taking
into account the size of each subsytem. The Figures
3 and 4 show the obtained speedup on a 192-node Sy-
mult 52010 multicomputer®. The tolerances indicated
in Figure 2 were used in these simulations. The dashed
lines in the Speedup graphics are lower and upper es-
timates for the relative speedups given by

Sp¥(P) = SEZEE) 5pl(P) =

CcPU
Node( P)+ Host( P)

where CPU = Host(P)+3 1., Node:(P), Host(P) is the

5Qualitatively the same results were obtained on a 64-node
Intel iPSC860 multicomputer, with all time reduced by a factor
4.5-5. Thus the behavior seems independent of architecture.
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Figure 4: Seven-Column Network. The dashed lines
represent the lower and upper estimatles for the relative
speedup, Sp(P), and efficiency, n(P

host time, Node(P) is the maximum node CPU-time,
and P is the number of processors. Due to memory
limitation, the real relative speedup and efficiency,

sp(p) = LA o py = 52P) (10)

AN P
where T(P) = Node(P) + Host(P), could only be cal-
culated for the three-distillation-column network, rep-
resented by the solid line in Figure 3.

6 Conclusion and Future Work

We have showed significant gains in performance as a
result of our new approaches to manipulation of the
waveforms. In future work we intend to provide new
partitioning strategies, such as new ordering schemes,
and a more detailed grouping analysis, in order to
achieve higher convergence rates. Experimental re-
sults with DAWRS, applied to distillation columns,
already show that the WR method is a strong candi-
date as a concurrent flowsheeting simulation method-
ology. We expect to apply the technique to many other
interesting applications in chemical engineering, and
to make time comparisons with sequential algorithms
and other concurrent methods (e.g., direct methods).
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