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A The Lac Repressor: Two Independent Allosteric Dimers vs505

An Allosteric Tetramer506

In this work, we have been concerned with the allosteric nature of the Lac repressor. As stated in the507

main text, the Lac repressor is comprised of two identical dimers, with each dimer containing one DNA508

binding domain and two inducer binding sites. Although the Lac repressor is known to be allosteric,509

to our knowledge the exact nature of the allostery between the two Lac dimers has not been fully510

characterized. In this section, we consider two different mechanisms of allostery for the Lac repressor.511

The first model assumes that each dimer is allosterically independent, so that the two dimers within512

a single Lac repressor can be in the active/active, active/inactive, inactive/active, or inactive/inactive513

states (this is the model that we used in the main text). The second model assumes that the allostery of514

the Lac repressor is shared between both dimers, so that the two dimers within a single Lac repressor515

can only be either active/active or inactive/inactive.516

We show how both models can characterize the induction curves given in Fig. 5 of the main text517

(albeit for different value of the physical parameters). We then show that the two models make vastly518

different predictions for the induction profiles of the Lac repressor whose tetramerization region has been519

removed, thereby providing a possible means to experimentally distinguish between the two models.520

A.1 Two Independent Allosteric Dimers521

First, we assume that the two dimers in a Lac repressor are allosterically independent, so that the522

allosteric conformation of one dimer does not affect the allosteric conformation of the other dimer.523

Fig. 2 in the main text shows the possible states and weights for either Lac repressor dimer in this case.524

Considering only one of the two Lac dimers in a given tetramer, the probability that this dimer is in the525

active state is given by526

pdimer
A (c) =

(
1 + c

KA

)2

(
1 + c

KA

)2

+ e−β∆εAI

(
1 + c

KI

)2 . (S1)

As in the main text R represents the copy number of Lac repressor dimers (i.e. twice the copy number527

of Lac repressors per cell, since a Lac repressor is comprised of two dimers). Substituting pdimer
A (c) into528

Eq. (3) yields the same formula for fold-change Eq. (5) given in the main text, namely,529

fold-change =

1 +

(
1 + c

KA

)2

(
1 + c

KA

)2

+ e−β∆εAI

(
1 + c

KI

)2

R

NNS
e−β∆εRA


−1

. (S2)

Following the main text, we use the allosteric energy ∆εAI = 4.5 kBT (see Appendix D) and fit the530

single O2 strain (∆εRA = −13.9 kBT ) with R = 260 repressors/cell to obtain the physical parameters531

KA = 196+11
−11 × 10−6 M and KI = 0.63+0.02

−0.02 × 10−6 M. We can then use these parameters to predict the532

response at other repressor copy numbers and DNA binding energies, as shown Fig. S1A.533

We note that unlike in the main text, here we are simultaneously fitting data from all the strains to534

get the best estimate of the KA and KI values. By fitting the entire data set, we can compare how well535

the two theories - that the Lac repressor is comprised of two independent dimers versus an allosteric536

tetramer - can characterize the data.537

A.2 An Allosteric Tetramer538

We now turn to a second model of the Lac tetramer, where the two Lac repressor dimers must either be539

simultaneously active or simultaneously inactive. In other words, the repressor as a whole is either active540

or inactive. In such a case, the Lac repressor can be viewed as an allosteric receptor with four identical541
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ALLOSTERIC INDEPENDENCE     

ALLOSTERIC DEPENDENCE 

Figure S1. Two models of allostery for the Lac repressor. (A) The induction profiles assuming
that a Lac repressor is comprised of two allosterically independent dimers using Eq. (S2). Fitting the
entire data set yields the best-fit parameters KA = 196+11

−11 × 10−6 M and KI = 0.63+0.02
−0.02 × 10−6 M. (B)

If the Lac repressor is an allosteric tetramer, the induction profile is given by Eq. (S4). Fitting the entire
data set yields the different set of parameters KA = 57+3

−3 × 10−6 M and KI = 3.5+0.1
−0.1 × 10−6 M. Note

that while the n = 4 curves are slightly sharper, they closely match the n = 2 curves.

inducer binding sites, which implies that the probability that the Lac repressor is active is given by542

ptetramer
A (c) =

(
1 + c

KA

)4

(
1 + c

KA

)4

+ e−β∆εAI

(
1 + c

KI

)4 . (S3)

Substituting ptetramer
A (c) into Eq. (3) yields a fold-change whose exponents are fourth powers,543

fold-change =

1 +

(
1 + c

KA

)4

(
1 + c

KA

)4

+ e−β∆εAI

(
1 + c

KI

)4
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, (S4)

reflecting the fact that all four inducer binding sites influence the single allosteric state of the Lac544

repressor. Note that the factor of R appears because there are R/2 Lac repressors per cell, but each one545

is able to bind to the operator in two ways (i.e. with each dimer).546

As in the previous case, we use the allosteric energy ∆εAI = 4.5 kBT (see Appendix D) and fit the547

single O2 strain (∆εRA = −13.9 kBT ) with R = 260 repressors/cell to obtain the physical parameters548

KA = 57+2
−3 × 10−6 M and KI = 3.5+0.1

−0.1 × 10−6 M . We can then predict the induction profiles at other549

repressor copy numbers and DNA binding energies and compare these predictions to experimental data,550

as shown in Fig. S1B. Again, we note that these are global fits using all of the data.551

A.3 Removing the Tetramerization Region552

The above two sections demonstrate that the two modes of allostery can both be used to characterize the553

induction data in Fig. 5, although they predict different values for the physical parameters KA and KI .554

In this section, we propose an experiment that may differentiate between these two models of allostery.555
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It has been shown that removing the tetramerization region in the lac gene results in a functional556

dimeric repressor that: (1) can bind to DNA; (2) exists in both an active and inactive allosteric557

conformation; and (3) has two binding sites for the inducer IPTG [1–4]. We now consider what the558

induction profile of such a construct would look like.559

For the first model considered above where the Lac repressor consists of two independent allosteric560

dimers, cutting the tetramerization region should have no effect on the Lac repressor. This dimeric Lac561

repressor would have the same states and weights shown in Fig. 2, so that its probability of being active562

is still given by Eq. (S1) and the fold-change equation would still be given by Eq. (S2). Therefore, the563

predicted induction curves are identical to those shown in Fig. S1A. Note that this analysis assumes that564

removing the tetramerization region does not alter the thermodynamic parameter KA, KI , and ∆εAI .565

On the other hand, within the second model of allostery where the Lac repressor is an allosteric566

tetramer, removing the tetramerization region would have a large effect on the induction profiles. But567

now each dimer must necessarily be active or inactive independently of all other dimers, and therefore568

the probability of a repressor being active and the corresponding equation fold-change would change569

from the tetramer version Eq. (S4) to the dimer version Eq. (S2). This shift in the exponents from fourth570

powers to second powers dramatically changes the fold-change curves. Fig. S2 demonstrates that indeed571

the induction profiles for the O1, O2, and O3 strains are predicted to significantly decrease after the572

tetramerization region of the Lac repressor has been removed. Therefore, this experimental measurement573

could be done to differentiate these two models of allostery within the Lac repressor.574

WITH TETRAMERIZATION

WITHOUT TETRAMERIZATION

Figure S2. Removing the tetramerization region of the Lac repressor. (A) The same data
and best-fit curves from Fig. S1A assuming that the Lac repressor is an allosteric tetramer. (B) Upon
removing the tetramerization region, the induction profile of the repressor will significantly change from
Eq. (S4) to Eq. (S2). If data from a dimer experiment would match data from a tetramer experiment, it
would support the hypothesis that the Lac repressor is comprised of two allosterically independent
dimers; conversely, significant discrepancies between these two data sets would support the allosteric
tetramer model. Note that analysis assumes that removing the tetramerization region does not alter the
thermodynamic parameter KA, KI , and ∆εAI .
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B Flow Cytometry575

In this section, we provide information regarding the equipment used to make experimental measurements576

of the fold-change in gene expression in the interests of transparency and reproducibility. We also provide577

a summary of our unsupervised method of gating the flow cytometry measurements for consistency578

between experimental runs.579

B.1 Equipment580

Due to past experience using the Miltenyi Biotec MACSQuant flow cytometer during the Physiology581

summer course at the Marine Biological Laboratory, we used the same flow cytometer for the formal582

measurements in this work. All measurements were made using an excitation wavelength of 488 nm583

with an emission filter set of 520/50 nm. This excitation wavelength provides approximately 40% of the584

maximum YFP absorbance [5], and this was found to be sufficient for the purposes of this experiment.585

A useful feature of modern flow cytometry is the high-sensitivity signal detection through the use of586

photomultiplier tubes (PMT) whose response can be tuned by adjusting the voltage. Thus, the voltage for587

the forward-scatter (FSC), side-scatter (SSC), and gene expression measurements were tuned manually588

to maximize the dynamic range between autofluorescence signal and maximal expression without losing589

the details of the population distribution. Once these voltages were determined, they were used for590

all subsequent measurements. Extremely low signal producing particles were discarded before data591

storage by setting a basal voltage threshold, thus removing the majority of spurious events. The various592

instrument settings for data collection are given in Table S1.593

Table S1. Instrument settings for data collection using the Miltenyi-Biotec MACSQuant
flow cytometer. All experimental measurements were collected using these values.

Laser Channel Sensor Voltage

488 nm Forward-Scatter (FSC) 423V

488 nm Side-Scatter (SSC) 537V

488 nm Intensity (B1 Filter, 525/50nm) 790V

488 nm Trigger (debris threshold) 24.5V

B.2 Experimental Measurement594

Collection of a single data set consisting of all eight bacterial strains under twelve IPTG concentrations595

took place over two to three hours. During this time, the cultures were held at approximately 4◦C by596

placing the 96-well plate on a MACSQuant ice block. Because the ice block thawed over the course597

of the experiment, the samples measured last were approximately at room temperature. This means598

that samples may have grown slightly by the end of the experiment. To confirm that this continued599

growth did not alter the measured results, a subset of experiments were run in reverse meaning that600

the fully induced cultures were measured first and the uninduced samples last. The plate arrangements601

and corresponding fold-change measurements are shown in Fig. S3A and Fig. S3B, respectively. The602

measured fold-change values in the reverse ordered plate appear to be drawn from the same distribution603

as those measured in the forward order, meaning that any growth that might have taken place during604

the experiment did not significantly affect the results. Both the forward and reverse data sets were used605

in our analysis.606

B.3 Unsupervised Gating607

As explained in the Methods, we used an automatic unsupervised gating procedure to filter the flow608

cytometry data based on the front and side-scattering values returned by the MACSQuant flow cytometer.609

We assume that the region with highest density of points in these two channels corresponds to single-cell610
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[IPTG]

 R

no YFP
∆lacI

FORWARD

0µM 5mM

22

1740

[IPTG]

 R

REVERSE

0µM5mM

22

1740

PLATE ARRANGEMENT INFLUENCE ON FOLD-CHANGEA B

no YFP

∆lacI

Figure S3. Plate arrangements for flow cytometry. (A) Samples were measured primarily in the
forward arrangement with a subset of samples measured in reverse. The black arrow indicates the order
in which samples were processed by the flow cytometer. (B) The experimentally measured fold-change
values for the two sets of plate arrangements show that samples measured in the reverse arrangement
appear to be indistinguishable from those measured in reverse order.

measurements. Everything extending outside of this region was discarded in order to exclude sources of611

error such as cell clustering, particulates, or other spurious events.612

In order to define the gated region we fit a two-dimensional Gaussian function to the log10 forward613

scattering (FSC) and the log10 side scattering (SSC) data. We then kept a fraction α ∈ [0, 1] of the data614

by defining an elliptical region given by615

(x− µ)
T

Σ−1 (x− µ) ≤ χ2
α(p), , (S5)

where x is the 2 × 1 vector containing the log FSC and log SSC, µ is the 2 × 1 vector representing616

the mean values of log FSC and log SSC as obtained from fitting a two-dimensional Gaussian to the617

data, and Σ is the 2× 2 covariance matrix also obtained from the Gaussian fit. χ2
α(p) is the quantile618

function for probability p of the chi-squared distribution with two degrees of freedom. Fig. S4 shows619

an example of different gating contours that would arise from different values of α in Eq. (S5). In this620

work, we chose α = 0.4 which we deemed was a sufficient constraint to minimize the noise in the data.621

As explained in Appendix C we compared our high throughput flow cytometry data with single cell622

microscopy, confirming that the automatic gating did not introduce systematic biases to the analysis623

pipeline. The specific code where this gating is implemented can be found in GitHub repository.624

B.4 Comparison of Flow Cytometry with Other Methods625

Previous work from our lab experimentally determined fold-change for similar simple repression constructs626

using a variety of different measurement methods [6, 7]. Garcia and Phillips used the same background627

strains as the ones used in this work, but gene expression was measured with Miller assays based on628

colorimetric enzymatic reactions with the LacZ protein [8]. Brewster et al. used a LacI dimer with the629

tetramerization replaced with an mCherry tag. In this case the fold-change was measured as the ratio of630

the gene expression rate rather than a single snapshot [7].631

Fig. S5 shows the comparison of these methods along with the flow cytometry method used in632

this work. The consistency of these three readouts validates the quantitative use of flow cytometry633

and unsupervised gating to determine the fold-change in gene expression. However, one important634
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Figure S4. Representative unsupervised gating contours. Points indicate individual flow
cytometry measurements of forward scatter and side scatter. Colored points indicate arbitrary gating
contours ranging from 100% (α = 1.0) to 5% (α = 0.05). All measurements for this work were made
computing the mean fluorescence from the 40th percentile (α = 0.4), shown as orange points.

caveat revealed by this figure is that the sensitivity of flow cytometer measurements is not sufficient to635

accurately determine the fold-change for the high repressor copy number strains in O1 without induction.636

Instead, a method with a large dynamic range such as the Miller assay is needed to accurately resolve637

the fold-change of such low expression levels.638

Figure S5. Comparison of experimental methods to determine the fold-change. The
fold-change in gene expression for equivalent simple-repression constructs has been determined using
three independent methods: flow cytometry (this work), colorimetric Miller assays [8], and time lapse
microscopy [7]. All three methods give consistent results, although flow cytometry measurements lose
accuracy for fold-change less than 10−2. Note that the repressor-DNA binding energies ∆εRA used for
the theoretical predictions were determined in [8].
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C Single-Cell Microscopy639

In this section, we detail the procedures and results from single-cell microscopy verification of our flow640

cytometry measurements. Our previous measurements of fold-change in gene expression have been641

measured using bulk-scale Miller assays [8] or through single-cell microscopy [7]. In this work, flow642

cytometry was an attractive method due to the ability to screen through many different strains at643

different concentrations of inducer in a short amount of time. To verify our results from flow cytometry,644

we examined two bacterial strains with different repressor-DNA binding energies (∆εRA) of −13.9 kBT645

and −15.3 kBT with 260 repressors per cell using fluorescence microscopy and estimated the parameter646

values for direct comparison between the two methods. For a detailed explanation of the Python code647

implementation of the processing steps described below, please see this paper’s GitHub repository. An648

outline of our microscopy workflow can be seen in Fig. S6.649

C.1 Strains and Growth Conditions650

Cells were grown in an identical manner to those used for measurement via flow cytometry (see Materials651

and Methods, main text). Briefly, cells were grown overnight (between 10 and 13 hours) to saturation in652

rich media broth (LB) with 100µg ·mL−1 spectinomycin in a deep-well 96 well plate at 37◦C. These653

cultures were then diluted 1000 fold into 500µL of M9 minimal medium supplemented with 0.5% glucose654

and the appropriate concentration of the inducer IPTG. Strains were allowed to grow at 37◦C with655

vigorous aeration for approximately 8 hours. Prior to mounting for microscopy, the cultures were diluted656

ten fold into M9 glucose minimal medium in the absence of IPTG.657

For the purposes of comparison, we examined only one repressor copy number (R = 260) with two658

different repressor binding energies ∆εRA = −13.9 kBT and ∆εRA = −15.3 kBT [8]. Each construct659

was measured using the same range of inducer concentration values as was performed in the flow660

cytometry measurements (between 100 nM and 5 mM IPTG). Each condition was measured in triplicate661

in microscopy whereas approximately ten measurements were made using flow cytometry.662

C.2 Imaging Procedure663

During the last hour of cell growth, an agarose mounting substrate was prepared containing the664

appropriate concentration of the IPTG inducer. This mounting substrate was composed of M9 minimal665

medium supplemented with 0.5% glucose and 2% agarose (Life Technologies UltraPure Agarose, Cat.666

No. 16500100). This solution was heated in a microwave until molten followed by addition of the IPTG667

to the appropriate final concentration. This solution was then thoroughly mixed and a 500 µL aliquot668

was sandwiched between two glass coverslips and was allowed to solidify.669

Once solid, the agarose substrates were cut into approximately 10 mm× 10 mm squares. An aliquot of670

one to two microliters of the diluted cell suspension was then added to each pad. For each concentration671

of inducer, a sample of the autofluorescent control, the ∆lacI constitutive expression control, and the672

experimental strain was prepared yielding a total of thirty-six agarose mounts per experiment. These673

samples were then mounted onto two glass-bottom dishes (Ted Pella Wilco Dish, Cat. No. 14027-20)674

and sealed with parafilm.675

All imaging was performed on a Nikon Ti-Eclipse inverted fluorescent microscope outfitted with676

a custom built laser illumination system and operated by the open-source MicroManager control677

software [9]. The YFP fluorescence was imaged using a CrystaLaser 514 nm excitation laser coupled678

with a laser-optimized (Semrock Cat. No. LF514-C-000) emission filter.679

For each sample, between fifteen and twenty positions were imaged allowing for measurement of680

several hundred cells. At each position, a phase contrast image, an mCherry image, and a YFP image681

were collected in that order with exposures on a time scale of ten to twenty milliseconds. For each682

channel, the same exposure time was used across all samples in a given experiment. All images were683

collected and stored in ome.tiff format. All microscopy images are available upon request.684
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EXPONENTIAL GROWTH SINGLE-CELL MICROSCOPY SEGMENTATION

QUANTIFICATIONFOLD-CHANGE CALCULATION

[IPTG]

[IPTG]

x10-3

x10-2

10µm

x103

Figure S6. Experimental workflow for single-cell microscopy. For comparison with the flow
cytometry results, the cells were grown in an identical manner to those described in the main text. Once
cells had reached mid to late exponential growth, the cultures were diluted and placed on agarose
substrates and imaged under 100× magnification. Regions of interest representing cellular mass were
segmented and average single-cell intensities were computed. The mean of the distributions were used to
compute the fold-change in gene expression.

C.3 Image Processing685

C.3.1 Correcting Uneven Illumination686

The excitation laser has a two-dimensional gaussian profile. To minimize non-uniform illumination of a687

single field of view, the excitation beam was expanded to illuminate an area larger than that of the camera688

sensor. While this allowed for an entire field of view to be illuminated, there was still approximately a689

10% difference in illumination across both dimensions. This nonuniformity was corrected for in post690

by capturing twenty images of a homogenously fluorescent plastic slide (Autofluorescent Plastic Slides,691

Chroma Cat. No. 920001) and averaging to generate a map of illumination intensity at any pixel IYFP.692

To correct for shot noise in the camera (Andor iXon+ 897 EMCCD), twenty images were captured in693

the absence of illumination using the exposure time used for the experimental data. Averaging over694

these images produced a map of background noise at any pixel Idark. To perform the correction, each695

fluorescent image in the experimental acquisition was renormalized with respect to these average maps as696

Iflat =
I − Idark

IYFP − Idark
〈IYFP − Idark〉, (S6)

where Iflat is the renormalized image and I is the original fluorescence image. An example of this697

correction can be seen in Fig. S7.698

C.3.2 Cell Segmentation699

Each bacterial strain constitutively expressed an mCherry fluorophore from a low copy-number plasmid.700

This served as a volume marker of cell mass allowing us to segment individual cells through edge detection701

in fluorescence. We used the Marr-Hildreth edge detector [10] which identifies edges by taking the second702
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ORIGINAL IMAGE CORRECTED IMAGE

pixel intensity (a.u.)

Figure S7. Correction for uneven illumination. A representative image of the illumination profile
of the 512 nm excitation beam on a homogenously fluorescent slide is shown in the left panel. This is
corrected for using equation Eq. (S6) and is shown in the right panel.

derivative of a lightly Gaussian blurred image. Edges are identified as those regions which cross from703

highly negative to highly positive values or vice-versa within a specified neighborhood. Bacterial cells704

were defined as regions within an intact and closed identified edge. All segmented objects were then705

labeled and passed through a series of filtering steps.706

To ensure that primarily single cells were segmented, we imposed area and eccentricity bounds. We707

assumed that single cells projected into two dimensions are roughly 2µm long and 1µm wide, so that708

cells are likely to have an area between 0.5µm2 and 6µm. To determine the eccentricity bounds, we709

assumed that the a single cell can be approximated by an ellipse with semimajor (a) and semiminor710

(b) axis lengths of 0.5µm and 0.25µm respectively. The eccentricity of this hypothetical cell can be711

computed as712

eccentricity =

√
1−

(
b

a

)2

, (S7)

yielding a value of approximately 0.8. Any objects with an eccentricity below this value were not713

considered to be single cells. After imposing both an area (Fig. S8A) and eccentricity filter (Fig. S8B),714

the remaining objects were considered cells of interest (Fig. S8C) and the mean fluorescence intensity of715

each cell was extracted.716

C.3.3 Calculation of Fold-Change717

Cells exhibited background fluorescence even in the absence of an expressed fluorophore. We corrected718

for this autofluorescence contribution to the fold-change calculation by subtracting the mean YFP719

fluorescence of cells expressing only the mCherry volume marker from each experimental measurement.720

The fold-change in gene expression was therefore calculated as721

fold-change =
〈IR>0〉 − 〈Iauto〉
〈IR = 0〉 − 〈Iauto〉

, (S8)
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Figure S8. Segmentation of single bacterial cells. (A) Objects with an area between 0.5µm2

and 6µm2 and eccentricities greater than 0.8. Highlighted in blue are the regions considered to be
representative of single cells. The black lines correspond to the empirical cumulative distribution
functions for the parameter of interest. (B) A representative final segmentation mask in which
segmented are shown in cyan over the phase contrast image.

where 〈IR>0〉 is the mean fluorescence intensity of cells expressing LacI repressors, 〈Iauto〉 is the mean722

intensity of cells expressing only the mCherry volume marker, and 〈IR = 0〉 is the mean fluorescence723

intensity of cells in the absence of LacI repressors. These fold-change values were very similar to those724

obtained through flow cytometry and were well described using the thermodynamic parameters used in725

the main text. With these experimentally measured fold-change values, the best-fit parameter values of726

the model were inferred and compared to those obtained from flow cytometry.727

C.4 Parameter Estimation and Comparison728

To confirm quantitative consistency between flow cytometry and microscopy, the parameter values of729

KA and KI were also estimated from three biological replicates of IPTG titration curves obtained by730

microscopy for strains with R = 260 and operators O1 and O2. Fig. S9(A) shows the data from these731

measurements (orange circles) and the ten biological replicates from our flow cytometry measurements732

(blue circles), along with the fold-change predictions from each inference. In comparison with the values733

obtained by flow cytometry, each parameter estimate overlapped with the 95% credible region of our734

flow cytometry estimates, as shown in Fig. S9(B). Specifically, these values were KA = 142+40
−34 µM735

and KI = 0.6+0.1
−0.1 µM from microscopy and KA = 149+14

−12 µM and KI = 0.57+0.03
−0.02 µM from the flow736

cytometry data. We note that the credible regions from the microscopy data shown in Fig. S9(B) are737

much broader than those from flow cytometry due to the fewer number of replicates performed.738
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Figure S9. Comparison of measured fold-change between flow cytometry and single-cell
microscopy. (A) Experimentally measured fold-change values obtained through single-cell microscopy
and flow cytometry are shown as white filled and solid colored circles respectively. Solid and dashed
lines indicate the predicted behavior using the most likely parameter values of KA and KI inferred from
flow cytometry data and microscopy data, respectively. The red and blue plotting elements correspond
to the different operators O1 and O2 with binding energies ∆εRA of −13.9 kBT and −15.3 kBT ,
respectively [8]. (B) The marginalized posterior distributions for KA and KI are shown in the top and
bottom panel respectively. The posterior distribution determined using the microscopy data is wider
than that computed using the flow cytometry data due to a smaller collection of data sets (three for
microscopy and ten for flow cytometry).
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D Inferring Allosteric Parameters from Previous Data739

The fold-change profile described by Eq. (5) features three unknown parameters KA, KI , and ∆εAI .740

In this section, we explore different conceptual approaches to determining these parameters. We first741

discuss how the induction titration profile of the simple repression constructs used in this paper are742

not sufficient to determine all three MWC parameters simultaneously, since multiple degenerate sets743

of parameters can produce the same fold-change response. We then utilize an additional data set from744

Brewster et al. [7] to determine the parameter ∆εAI = 4.5 kBT , after which the remaining parameters745

KA and KI can be extracted from any induction profile with no further degeneracy.746

D.1 Degenerate Parameter Values747

In this section, we discuss how multiple sets of parameters may yield identical fold-change profiles. More748

precisely, we shall show that if we try to fit the data in Fig. 4C to the fold-change Eq. (5) and extract749

the three unknown parameters (KA, KI , and ∆εAI), then multiple degenerate parameter sets would750

yield equally good fits. In other words, this data set alone is insufficient to uniquely determine the actual751

physical parameter values of the system. This problem persists even when fitting multiple data sets752

simultaneously as in Appendix E.753

In Fig. S10A, we fit the R = 260 data by fixing ∆εAI to the value shown on the x-axis and letting754

the KA and KI parameters fit freely. We use the fold-change function Eq. (5) but with β∆εRA modified755

to the form β∆ε̃RA in Eq. (S12) to account for the underlying assumptions used when fitting previous756

data (see Appendix D.2 for a full explanation of why this modification is needed).757

The best-fit curves for several different values of ∆εAI are shown in Fig. S10B. Note that these758

fold-change curves are nearly overlapping, demonstrating that different sets of parameters can yield759

nearly equivalent responses. Without more data, the relationships between the parameter values shown760

in Fig. S10A represent the maximum information about the parameter values that can be extracted from761

the data. Additional experiments which independently measure any of these unknown parameters could762

resolve this degeneracy. For example, NMR measurements could be used to directly measure the fraction763

(1 + e−β∆εAI )−1 of active repressors in the absence of IPTG [11,12].764

Figure S10. Multiple sets of parameters yield identical fold-change responses. (A) The data
for the O2 strain (∆εRA = −13.9 kBT ) with R = 260 in Fig. 4C was fit using Eq. (5) with n = 2. ∆εAI
is forced to take on the value shown on the x-axis, while the KA and KI parameters are fit freely. (B)
The resulting best-fit functions for several value of ∆εAI all yield nearly identical fold-change responses.

D.2 Computing ∆εAI765

As shown in the previous section, the fold-change response of a single strain is not sufficient to determine766

the three MWC parameters (KA, KI , and ∆εAI), since degenerate sets of parameters yield nearly767

identical fold-change responses. To circumvent this degeneracy, we now turn to some previous data from768
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the lac system in order to determine the value ∆εAI in Eq. (5) for the induction of the Lac repressor.769

Specifically, we consider two previous sets of work from: (1) Garcia et al. [8] and (2) Brewster et al. [7],770

both of which measured fold-change with the same simple repression system in the absence of inducer771

(c = 0) but at various repressor copy numbers R. The original analysis for both data sets assumed that in772

the absence of inducer all of the Lac repressors were in the active state. As a result, the effective binding773

energies they extracted were a convolution of the DNA binding energy ∆εRA and the allosteric energy774

difference ∆εAI between the Lac repressor’s active and inactive states. We refer to this convoluted775

energy value as ∆ε̃RA. We first deconvolute the relationship between these parameters in Garcia et776

al. and then use this relationship to extract the value of ∆εAI from the Brewster et al. dataset.777

First, Garcia et al. determined the total repressor copy numbers R of different strains using quantitative778

Western blots. Then they measured the fold-change at these repressor copy numbers for simple repression779

constructs carrying the O1, O2, O3, and Oid lac operators integrated into the chromosome. These data780

were then fit to the following thermodynamic model to determine the repressor-operator DNA binding781

energies ∆ε̃RA of each operator,782

fold-change(c = 0) =

(
1 +

R

NNS
e−β∆ε̃RA

)−1

. (S9)

Note that this functional form does not exactly match our fold-change Eq. (5) in the limit c = 0,783

fold-change(c = 0) =

(
1 +

1

1 + e−β∆εAI

R

NNS
e−β∆εRA

)−1

, (S10)

since it does not account for the factor 1
1+e−β∆εAI

which denotes the fraction of repressors that are in784

the active state in the absence of inducer,785

1

1 + e−β∆εAI
=
RA
R
. (S11)

In terms of our notation, the convoluted energy values ∆ε̃RA extracted by Garcia et al. (namely,786

∆ε̃RA = −15.3 kBT for O1 and ∆ε̃RA = −17.0 kBT for Oid) represent787

β∆ε̃RA = β∆εRA − log

(
1

1 + e−β∆εAI

)
. (S12)

Note that if e−β∆εAI � 1, then nearly all of the repressors are active in the absence of inducer so that788

∆ε̃RA ≈ ∆εRA.789

In simple repression systems where we definitively know the value of ∆εRA, it is possible to extract790

the value of ∆εAI by fitting theory curves to experimental simple repression data; this is because a791

decrease in ∆εAI in Eq. (S10) causes a distinctive rightward shift in the fold-change curve as the number792

of active repressors is reduced (see Fig. S11A), particularly when ∆εAI is negative. For positive values793

of ∆εAI the shift is much less dramatic, as demonstrated by the minimal effect on fold-change for794

positive ∆εAI and c = 0 shown in Fig. S11B. Importantly, it is impossible to determine the individual795

contributions of ∆εAI and ∆εRA in systems where we only know the convolved energy value ∆ε̃RA. In796

order to explicitly fix the ∆εAI parameter, we instead turn to a slightly different set of experiments.797

A variation on simple repression in which multiple copies of the promoter are available for repressor798

binding (for instance, when the simple repression construct is on plasmid) can be used to circumvent the799

problems that arise when using ∆ε̃RA. This is because the behavior of the system is distinctly different800

when RA is less than or greater than the number of promoters N . Given repression data for plasmids801

with known copy number N allows us to perform a fit for the value of RA, which allows us to determine802

∆εAI using Eq. (S11). To perform such an analysis, we use the measured values of ∆ε̃RA and ∆ε̃RA for803

O1 and Oid from Garcia et al. together with the relation Eq. (S12), and turn to data from Brewster804

et al. in order to determine the value of ∆εAI . Specifically, we consider fold-change data for a system805
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A B

Figure S11. Effect of ∆εAI on simple repression systems. For a fixed binding energy ∆εRA of
the repressor to the operator, varying the allosteric energy difference ∆εAI between the active and
inactive repressor states significantly shifts the fold-change profile. (A) Simple repression titration
curves (modeled here for ∆εRA = −15.3 kBT , c = 0) shift dramatically to the right for negative values
of ∆εAI . (B) The fold-change at c = 0 approaches zero when ∆εAI > 0, but grows large for ∆εAI < 0.

with multiple identical copies of the lac gene expressed on plasmid with known copy numbers, using a806

thermodynamic model (see Eq. (4) of [7]) with the functional form807

fold-change(c = 0) =

∑min(N,RA)
m=0

RA!
(NNS)m(RA−m)!

(
N
m

)
e−mβ∆εRA(N −m)∑min(N,RA)

m=0
RA!

(NNS)m(RA−m)!

(
N
m

)
e−mβ∆εRA

. (S13)

Fold-change was measured for strains with known R and ∆ε̃RA. Three plasmids with known copy number808

N were used together with NNS = 4.6 × 106 given by the length of the E. coli genome. Thus, after809

applying Eqs. (S11) and (S12), the only unknown parameter in Eq. (S13) is the ∆εAI dependence within810

RA.811

Fig. S12A shows how tuning ∆εAI leads to significantly different fold-change response curves. It812

should be noted that these different responses occur in spite of the fact that the energy term used for813

these curves is the convolved energy ∆ε̃AI . Thus, analyzing the specific fold-change response of any814

strain with a known plasmid copy number N will fix ∆εAI . Interestingly, the inflection point of Eq. (S13)815

occurs near RA = N , so that merely knowing where the fold-change response transitions from concave816

down to concave up is sufficient to determine ∆εAI . In addition, once the energy gets sufficiently large817

(∆εAI & 5 kBT ), nearly all of the repressors are in the active state and increasing ∆εAI further does not818

affect the fold-change.819

Fig. S12B shows measurements of fold-change for two O1 promoters with N = 64 and N = 52 copy820

numbers and one Oid promoter with N = 10 from Brewster et al. [7]. By fitting this data to Eq. (S13),821

we extracted the parameter value ∆εAI = 4.5 kBT . Substituting this value into Eq. (S11) shows that822

99% of the repressors are in the active state in the absence of inducer and ∆ε̃RA ≈ ∆εRA, so that all of823

the previous energies and calculations made by Garcia et al. and Brewster et al. were very accurate.824
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Figure S12. Fold-change of multiple identical genes. (A) In the presence of N = 10 identical
promoters, the fold-change Eq. (S13) depends strongly on the allosteric energy difference ∆εAI between
the Lac repressor’s active and inactive states. The vertical dotted lines represent the number of
repressors at which RA = N for each value of ∆εAI . (B) Using fold-change measurements from [7] for
the operators and gene copy numbers shown, we can determine the most likely value ∆εAI = 4.5 kBT
for LacI.
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E Global Fit of All Parameters825

In the main text, we used the repressor copy numbers R and repressor-DNA binding energies ∆εRA as826

reported by Garcia and Phillips [8]. However, any error in these previous measurements of R and ∆εRA827

will necessarily propagate into our own fold-change predictions. In this section we take an alternative828

approach to fitting the physical parameters of the system to that used in the main text. First, rather829

than fitting only a single strain, we fit the entire data set in Fig. 5 along with microscopy data for the830

synthetic operator Oid (see Appendix F). In addition, we also simultaneously fit the parameters R and831

∆εRA using the prior information given by the previous measurements. By using the entire data set and832

fitting all of the parameters, we obtain the best possible characterization of the statistical mechanical833

parameters of the system given our current state of knowledge.834

To fit all of the parameters simultaneously we follow a similar approach to the one detailed in the835

Methods section. Briefly, we perform a Bayesian parameter estimation of the dissociation constants KA836

and KI , the six different repressor copy numbers R corresponding to the six lacI ribosomal binding sites837

used in our work, and the four different binding energies ∆εRA characterizing the four distinct operators838

used to make the experimental strains. As in the main text, we fit the logarithms k̃A = − log KA
1 M and839

k̃I = − log KI
1 M of the dissociation constants which grants better numerical stability.840

We begin by writing Bayes’ theorem,841

P (k̃A, k̃I ,R,∆εRA | D) =
P (D | k̃A, k̃I ,R,∆εRA)P (k̃A, k̃I ,R,∆εRA)

P (D)
, (S14)

where R is an array containing the six different repressor copy numbers to be fit, ∆εRA is an array842

containing the four binding energies to be fit, and D is the experimental fold-change data. The term843

P (k̃A, k̃I ,R,∆εRA | D) gives the probability distributions of all of the parameters given the data. The844

term P (D | k̃A, k̃I ,R,∆εRA) represents the likelihood of having observed our experimental data given845

some value for each parameter. P (k̃A, k̃I ,R,∆εRA) contains all the prior information on the values of846

these parameters. Lastly, P (D) serves as a normalization constant and hence can be ignored.847

As in Eqs. (12) and (13), we assume that deviations of the experimental fold-change from the
theoretical predictions are normally distributed with mean zero and standard deviation σ. Given n
independent measurements of the fold-change, the first term in Eq. (S14) can be written as

P (k̃A, k̃I ,R,∆εRA, σ | D) =
1

(2πσ2)
n
2

n∏
i=1

exp

[
−

(fc(i)
exp − fc(k̃A, k̃I , R

(i),∆ε
(i)
RA, c

(i)))2

2σ2

]
, (S15)

where fc(i)
exp is the ith experimental fold-change and fc(· · ·) is the theoretical prediction. Note that the848

standard deviation σ of this distribution is not known and hence needs to be included as a parameter to849

be fit.850

The second term in Eq. (S14) represents the prior information of the parameter values. We assume851

that all parameters are independent of each other, so that852

P (k̃A, k̃I ,R,∆εRA, σ) = P (k̃A) · P (k̃I) ·
∏
i

P (R(i)) ·
∏
j

P (∆ε
(j)
RA) · P (σ), (S16)

where the superscript (i) indicates the repressor copy number of index i and the superscript (j) denotes853

the binding energy of index j. As above, we note that a prior must also be included for the unknown854

parameter σ.855

Because we knew nothing about the values of k̃A, k̃I , and σ before performing the experiment, we856

assign maximally uninformative priors to each of these parameters. More specifically, we assign uniform857

priors to k̃A and k̃I and a Jeffreys prior to σ [13]. We do, however, have prior information for the858

repressor copy numbers and the repressor-DNA binding energies from Ref. [8]. This prior knowledge is859

included within our model using an informative prior for these two parameters, which we assume to be860
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Gaussian for simplicity. Hence each of the R(i) repressor copy numbers to be fit satisfies861

P (R(i)) =
1√

2πσ2
Ri

exp

(
− (R(i) − R̄(i))2

2σ2
Ri

)
, (S17)

where R̄(i) is the mean repressor copy number as reported in [8], and σRi is the variability associated862

with this parameter. Since this is an informative prior, we use the given value of σRi from previous863

measurements rather than leaving it as a free parameter.864

The binding energies ∆ε
(j)
RA are also assumed to have a Gaussian informative prior of the same form.865

We write it as866

P (∆ε
(j)
RA) =

1√
2πσ2

εj

exp

(
−

(∆ε
(j)
RA −∆ε̄

(j)
RA)2

2σ2
εj

)
, (S18)

where ∆ε̄
(j)
RA is the binding energy as inferred in [8] and σεj is the variability associated with the parameter867

around the mean value reported.868

The σRi and σεj parameters will constrain the range of values for R(i) and ∆ε
(j)
RA found from the869

fitting. For example, if for some i the standard deviation σRi is very small, it implies a strong confidence870

in the previously reported value. Mathematically, the exponential in Eq. (S17) will ensure that the871

best-fit R(i) lies within a few standard deviations of R̄(i). Since we are interested in exploring which872

values could give the best fit, the errors are taken to be wide enough to allow the parameter estimation873

to freely explore parameter space in the vicinity of the best estimates. Putting all these terms together,874

we use Markov chain Monte Carlo to sample the posterior distribution P (k̃A, k̃I ,R,∆εRA, σ | D). This875

allows us to determine both the most likely value for each physical parameter as well as its associated876

credible regions (see GitHub repository for the implementation).877

Fig. S13 shows the result of this global fit. When compared with Fig. 5 we can see that fitting for878

the binding energies and the repressor copy numbers improves the agreement between the theory and879

the data. Table S2 summarizes the values of the parameters as obtained with this MCMC parameter880

inference. We note that even though we allowed the repressor copy numbers and repressor-DNA binding881

energies to vary, the resulting fit values were very close to the previously reported values. The fit values882

of the repressor copy numbers were all within one standard deviation of the previous reported values883

provided in Ref. [8]. And although some of the repressor-DNA binding energies differed by a few standard884

deviations from the reported values, the differences were always less than 1 kBT , which represents a885

small change in the biological scales we are considering. The biggest discrepancy between our fit values886

and the previous measurements arose for the synthetic Oid operator, which we discuss in more detail in887

Appendix F.888
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Figure S13. Global fit of dissociation constants, repressor copy numbers and binding
energies. Theoretical predictions resulting from simultaneously fitting the dissociation constants KA

and KI , the six repressor copy numbers R, and the four repressor-DNA binding energies ∆εRA using the
entire data set from Fig. 5 as well as the microscopy data for the Oid operator. Error bars of
experimental data show the standard error of the mean (eight or more replicates) and shaded regions
denote the 95% credible region. For the Oid operator, all of the data points are shown since a smaller
number of replicates were taken. The shaded regions are significantly smaller than in Fig. 5 because this
fit was based on all data points, and hence the fit parameters are much more tightly constrained. The
dashed lines at 0 IPTG indicates a linear scale, whereas solid lines represent a log scale.
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Table S2. Global fit of all parameter values using the entire data set in Fig. 5. In addition
to fitting the repressor inducer dissociation constants KA and KI as was done in the text, we also fit the
repressor DNA binding energy ∆εRA as well as the repressor copy numbers R for each strain. The
middle columns show the previously reported values for all ∆εRA and R values, with ± representing the
standard deviation of three replicates. The right column shows the global fits from this work, with the
subscript and superscript notation denoting the 95% credible region. Note that there is overlap between
all of the repressor copy numbers and that the net difference in the repressor-DNA binding energies is
less than 1 kBT .

Reported Values [8] Global Fit

k̃A − −5.33+0.06
−0.05

k̃I − 0.31+0.05
−0.06

KA − 205+11
−12 µM

KI − 0.73+0.04
−0.04 µM

R22 22± 4 20+1
−1

R60 60± 20 74+4
−3

R124 124± 30 130+6
−6

R260 260± 40 257+9
−11

R1220 1220± 160 1191+32
−55

R1740 1740± 340 1599+75
−87

O1 ∆εRA −15.3± 0.2 kBT −15.2+0.1
−0.1 kBT

O2 ∆εRA −13.9± 0.2 kBT −13.6+0.1
−0.1 kBT

O3 ∆εRA −9.7± 0.1 kBT −9.4+0.1
−0.1 kBT

Oid ∆εRA −17.0± 0.2 kBT −17.7+0.2
−0.1 kBT
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F Applicability of Theory to the Oid Operator Sequence889

In addition to the native operator sequences (O1, O2, and O3) considered in the main text, we were890

also interested in testing our model predictions against the synthetic Oid operator. In contrast to891

the other operators, Oid is one base pair shorter in length (20 bp) and is known to provide stronger892

repression than the native operator sequences considered so far. While the theory should be similarly893

applicable, measuring the lower fold-changes associated with this YFP construct was expected to be894

near the sensitivity limit for our flow cytometer, due to the especially strong binding energy of Oid895

(∆εRA = −17.0 kBT ) [6]. Accordingly, fluorescence data for Oid were obtained using microscopy rather896

than flow cytometery.897

To test the predictions, we follow the approach of the main text and make fold-change predictions898

based on the parameter estimates from our strain with R = 260 and an O2 operator. These predictions899

are shown in Fig. S14A, where we also plot data taken in triplicate for strains containing R = 22, 60,900

and 124, obtained by single-cell microscopy. We find that the data is systematically below the theoretical901

predictions. We also considered our global fitting approach to see whether we might find better agreement902

with the observed data. Interestingly, we find that the parameters remain largely unchanged, except that903

our estimate for the Oid binding energy ∆εRA is shifted to −17.7 kBT instead of the value −17.0 kBT904

found by Garcia et al. [8]. In Fig. S14B we again plot the Oid fold-change data but with theoretical905

predictions using the new estimate for the Oid binding energy from our global fit (see Appendix E).906

Figure S14. Predictions of fold-change for strains with an Oid binding sequence versus
experimental measurements with different repressor copy numbers. (A) Experimental data
is plotted against the parameter-free predictions that are based on our fit to the O2 strain with R = 260.
Here we use the previously measured binding energy ∆εRA = −17.0 kBT [8]. (B) The same
experimental data is plotted against the best-fit parameters using the entire data set O1, O2, O3, and
Oid data sets to infer KA, KI , repressor copy numbers, and the binding energies of all operators (see
Appendix E). Here the major difference in the inferred parameters is a shift in the binding energy for
Oid from ∆εRA = −17.0 kBT to ∆εRA = −17.7 kBT , which now shows agreement between the
theoretical predictions and experimental data. Shaded regions from the theoretical curves denote the
95% credible region. These are narrower in Part B because the inference of parameters was performed
with much more data, and hence the best-fit values are more tightly constrained. Individual data points
are shown due to the small number of replicates. The dashed lines at 0 IPTG indicates a linear scale,
whereas solid lines represent a log scale.

Fig. S15 shows the cumulative data from Garcia et al. [8], Brewster et al. [7], as well as our data with907

c = 0 µM , which all measured fold-change for the same simple repression architecture utilizing different908

reporters and measurement techniques. We find that a binding energy for Oid ∆εRA = −17.7 kBT still909

compares reasonably well with all previous measurements.910
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Figure S15. Comparison of fold-change predictions based on binding energies from
Garcia et al. and those inferred from this work. Fold-change curves for the different
repressor-DNA binding energies ∆εRA are plotted as a function of repressor copy number when IPTG
concentration c = 0. Solid curves use the binding energies determined from Garcia et al. [8], while the
dashed curves use the inferred binding energies we obtained when performing a global fit of KA, KI ,
repressor copy numbers, and the binding energies using all available data from our work. Fold-change
measurements from our experiments (outlined circles) [8] (solid circles), and [7] (diamonds) show that
the small shifts in binding energy that we infer are still in agreement with prior data. Note that only a
single data flow cytometry data point is shown for Oid from this study, since the R = 60 and R = 124
curves from Fig. S14 had extremely low fold-change in the absence of inducer (c = 0) as to be
indistinguishable from autofluorescence, and in fact their fold-change values in this limit were negative
and hence do not appear on this plot.
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G Properties of Induction Titration Curves911

In this section, we discuss five physiologically important properties of an induction profile which are912

shown schematically in Fig. S16: the leakiness, saturation, dynamic range, [EC50], and effective Hill913

coefficient. These results build upon extensive work by Martins and Swain, who computed many such914

properties for ligand-receptor binding within the MWC model [14]. Here we extend their work into the915

realm of induction.916

Figure S16. The leakiness, dynamic range, [EC50], and effective Hill coefficient for an
input-output response. The titration curve of operator O3 (∆εRA = −9.7 kBT ) with R = 1740.

The leakiness is given by the minimal system response, which for simple repression is the fold-change917

in the absence of inducer, given by Eq. (6) as918

leakiness =

(
1 +

1

1 + e−β∆εAI

R

NNS
e−β∆εRA

)−1

. (S19)

The dynamic range is the difference between the maximum system response - which for simple repression919

occurs at saturating ligand concentrations given by Eq. (7) - and the minimum system response,920

dynamic range =

1 +
1

1 + e−β∆εAI

(
KA
KI

)n R

NNS
e−β∆εRA

−1

−
(

1 +
1

1 + e−β∆εAI

R

NNS
e−β∆εRA

)−1

.

(S20)
Systems that minimize leakiness repress strongly in the absence of a signal (i.e. a ligand), and systems921

that maximize saturation have high expression levels in the presence of a signal. Together, these two922

properties determine the dynamic range of a system’s response. Fig. S17 shows how these properties are923

affected by operator binding energy and repressor copy number. These plots show that repressor copy924

number does not determine the system’s minimum leakiness or maximum saturation and dynamic range,925

but it does determine the operator binding energy at which these maximum and minimum values occur.926

The two remaining properties, the [EC50] and effective Hill coefficient, determine the horizontal927

properties of a system - that is, they determine the range of inducer concentration in which the system’s928

output goes from its minimum to maximum values. The [EC50] denotes the inducer concentration929

required to generate a system response Eq. (5) halfway between its minimum and maximum value,930

fold-change(c = [EC50]) =
fold-change(c = 0) + fold-change(c→∞)

2
. (S21)
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Figure S17. Leakiness and dynamic range depend on both operator binding energy and
repressor copy number. (A) Leakiness values range between 0 and 1, and experience a right-shift
relative to operator binding energy as repressor copy number is increased. (B) As with leakiness, curves
for saturation shift right relative to operator binding energy as repressor copy number is increased. (C)
Dynamic range values also shift right as repressor copy numbers increase. For small operator repressor
binding energies, the leakiness is small but the saturation increases with ∆εRA; for large operator
repressor binding energies the saturation is near unity and the leakiness increases with ∆εRA, thereby
decreasing the dynamic range and causing the peaked character of the dynamic range curve. Repressor
copy number does not affect the maximum dynamic range. Circles, diamonds, and squares represent
∆εRA values for the O1, O2, and O3 operators, respectively.

For the simple repression system, the [EC50] is given by931

[EC50]

KA
=

KA
KI
− 1

KA
KI
−
((

1+ R
NNS

e−β∆εRA

)
+
(
KA
KI

)n(
2e−β∆εAI+

(
1+ R

NNS
e−β∆εRA

))
2
(

1+ R
NNS

e−β∆εRA

)
+e−β∆εAI+

(
KA
KI

)n
e−β∆εAI

) 1
n

− 1. (S22)

Next, we compute the effective Hill coefficient h, which equals twice the log-log slope of the normalized932

current evaluated at c = [EC50],933

h ≡
(

2
d

d log c

[
log

(
fold-change(c)− leakiness

dynamic range

)])
c=[EC50]

. (S23)

Fig. S18 shows how the [EC50] and effective Hill coefficient depend on operator binding energy and934

repressor copy number. This dependence is reflected in the right-shifts and slope variations seen in935

fold-change induction curves as repressor copy number increases. Both [EC50] and h vary significantly936
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with repressor copy number for sufficiently strong operator binding energies. Interestingly, for low937

operator binding energies on the order of O3, it is predicted that the effective Hill coefficient should not938

vary with repressor copy number.939

Figure S18. [EC50] and effective Hill coefficient depend strongly on repressor copy
number and operator binding energy. (A) [EC50] values range from very small and tightly
clustered at weak operator binding energies (e.g. O3) to relatively large and spread out for stronger
operator binding energies (O1 and O2). (B) The effective Hill coefficient is maximized at approximately
1.75 for weak binding energies (O3), and decreases for stronger binding energies (O1 and O2). Circles,
diamonds, and squares represent ∆εRA values for the O1, O2, and O3 operators, respectively.
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H Fold-Change Sensitivity Analysis940

In Fig. 5 we found that the width of the credible regions varied widely depending on the repressor copy941

number R and repressor operator binding energy ∆εRA. More precisely, the credible regions were much942

narrower for low repressor copy numbers R and weak binding energy ∆εRA. In this section, we explain943

how this behavior comes about.944

We focus our attention on the fold-change in the c → ∞ limit given by Eq. (7), where all of the945

credible regions in Fig. 5 are widest. The width of the credible regions corresponds to how sensitive the946

fold-change is to the fit values of the dissociation constants KA and KI . To be quantitative, we define947

∆ fold-changeKA ≡ fold-change(KA,K
fit
I )− fold-change(Kfit

A ,K
fit
I ), (S24)

the difference between the fold-change at a particular KA value relative to the best-fit dissociation948

constant Kfit
A = 139× 10−6 M. For simplicity, we keep the inactive state dissociation constant fixed at its949

best-fit value Kfit
I = 0.53× 10−6 M. A larger difference ∆ fold-changeKA implies a wider credible region.950

Similarly, we define the analogous quantity951

∆ fold-changeKI = fold-change(Kfit
A ,KI)− fold-change(Kfit

A ,K
fit
I ) (S25)

to measure the sensitivity of the fold-change to KI at a fixed Kfit
A . Fig. S19 shows both of these quantities952

in the limit c→∞ for different repressor-DNA binding energies ∆εRA and repressor copy numbers R.953

See our GitHub repository for the code that reproduces these plots.954

To understand how the width of the credible region scales with ∆εRA and R, we can Taylor expand955

the difference in fold-change to first order, ∆ fold-changeKA ≈
∂ fold-change

∂KA

(
KA −Kfit

A

)
, where the partial956

derivative has the form957

∂ fold-change

∂KA
=

e−β∆εAI n
KI

(
KA
KI

)n−1

(
1 + e−β∆εAI

(
KA
KI

)n)2

R

NNS
e−β∆εRA

1 +
1

1 + e−β∆εAI

(
KA
KI

)n R

NNS
e−β∆εRA

−2

.

(S26)
Similarly, the Taylor expansion ∆ fold-changeKI ≈

∂ fold-change
∂KI

(
KI −Kfit

I

)
features the partial derivative958

∂ fold-change

∂KI
= −

e−β∆εAI n
KI

(
KA
KI

)n
(

1 + e−β∆εAI

(
KA
KI

)n)2

R

NNS
e−β∆εRA

1 +
1

1 + e−β∆εAI

(
KA
KI

)n R

NNS
e−β∆εRA

−2

.

(S27)
From Eqs. (S26) and (S27), we find that both ∆ fold-changeKA and ∆ fold-changeKI increase in magnitude959

with R and decrease in magnitude with ∆εRA. Accordingly, we expect that the O3 strains (with the least960

negative ∆εRA) and the strains with the smallest repressor copy number will lead to partial derivatives961

with smaller magnitude and hence to tighter credible regions. Indeed, this prediction is carried out in962

Fig. S19.963

Lastly, we note that Eqs. (S26) and (S27) enable us to quantify the scaling relationship between the964

width of the credible region and the two quantities R and ∆εRA. For example, for the O3 strains, where965

the fold-change at saturating inducer concentration is ≈ 1, the right-most term in both equations which966

equals the fold-change squared is roughly 1. Therefore, we find that both ∂ fold-change
∂KA

and ∂ fold-change
∂KI

967

scale linearly with R and e−β∆εRA . Thus the width of the R = 22 strain will be roughly 1/1000 as large968

as that of the R = 1740 strain; similarly, the width of the O3 curves will be roughly 1/1000 the width of969

the O1 curves.970
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Figure S19. Determining how sensitive the fold-change values are to the fit values of the
dissociation constants.(A) The difference ∆ fold-changeKA in fold change when the dissociation

constant KA is slightly offset from its best-fit value KA = 139+29
−22 × 10−6 M, as given by Eq. (S24).

Fold-change is computed in the limit of saturating inducer concentration (c→∞, see Eq. (7)) where the
credible regions in Fig. 5 are widest. The O3 strain (∆εRA = −9.7 kBT ) is about 1/1000 as sensitive as
the O1 operator to perturbations in the parameter values, and hence its credible region is roughly
1/1000 as wide. All curves were made using R = 260. (B) As in Part A, but plotting the sensitivity of
fold-change to the KI parameter relative to the best-fit value KI = 0.53+0.04

−0.04 × 10−6 M. Note that only
the magnitude, and not the sign, of this difference describes the sensitivity of each parameter. Hence,
the O3 strain is again less sensitive than the O1 and O2 strains. (C) As in A, but showing how the
fold-change sensitivity for different repressor copy numbers. The strains with lower repressor copy
number are less sensitive to changes in the dissociation constants, and hence their corresponding curves
in Fig. 5 have tighter credible regions. All curves were made using ∆εRA = −13.9 kBT . (D) As in Part
C, the sensitivity of fold-change with respect to KI is again smallest (in magnitude) for the low
repressor copy number strains.
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I Comparison of Parameter Estimation and Fold-Change Pre-971

dictions across Strains972

The inferred parameter values for KA and KI in the main text were determined with induction fold-973

change measurements from a single strain (R = 260, ∆εRA = −13.9 kBT , n = 2, and ∆εAI = 4.5 kBT ).974

After determining these parameters, we were able to predict the fold-change of the remaining strains975

without any additional fitting. Ultimately, the theory should be independent of the specific strain used976

to estimate KA and KI ; using any alternative strain to fit KA and KI should yield similar predictions.977

For the sake of completeness, we demonstrate below what the corresponding predictions would be if we978

had used one of the other strains to fix the KA and KI parameters. Overall, we find that regardless979

of which strain is chosen to determine the unknown parameters, the predictions laid out by the theory980

closely match the experimental measurements.981

We first take a look at how the inferred parameters KA and KI compare had we used a different982

strain to infer their values. In Fig. S20 we plot the corresponding values of these two parameters along983

with the global estimates using all available data. In general we find good agreement regardless of which984

strain is chosen, especially for strains containing an O1 or O2 operator binding site. We do note some985

deviation in these predictions with strains containing an O3 operator, as reflected by the larger error986

bars which represent the 95% highest probability credible region in the parameter inference. This is987

likely related to the fact that in Fig. 5, the predictions for the O3 operator were also slightly less accurate988

than for the O1 and O2 operators.989

O1

O2

O3

O1

O2

O3

µ
M

µ
M

Figure S20. Inference of KA and KI from each strain-specific fold-change data set. KA

and KI were separately fit to each strain’s induction fold-change data set. Best fit values are grouped by
operator binding site (O1, O2, and O3), with the strain’s LacI copy number noted in the x-axis. Error
bars denote the 95% credible region from the parameter inference. The blue dashed line shows the best
estimate of KA and KI from our global inference with all available data across all strains.

Next we follow the approach taken in the main text and use Eq. (5) to predict fold-change for different990

LacI copy numbers. Here we expect the agreement between our theoretical predictions and data to hold,991

irrespective of the strain associated with our inference. In Fig. S21 we plot the fold-change predictions992
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along with experimental data for each of our strains that contains an O1 operator. To make sense of this993

plot consider the first row as an example. In the first row, KA and KI were estimated using data from994

the strain containing R = 1740 and an O1 operator (top left most plot, shaded in gray). The remaining995

plots in this row show the predicted fold-change using these values for KA and KI . Moving down a996

column, we then infer KA and KI using data from a strain containing a different repressor copy number.997

In Fig. S22 and Fig. S23, we similarly apply this inference to our strains with O2 and O3 operators,998

respectively. We note that the overwhelming majority of predictions closely match the experimental999

data.The notable exception is that using the R = 22 strain provides poor predictions for the strains with1000

large copy numbers (especially R = 1220 and R = 1740). This loss in predictive power is due to the1001

poorer estimates of KA and KI for the R = 22 strain shown in Eq. (S20).1002

O1 15.3

Figure S21. O1 strain fold-change predictions based on strain-specific parameter
estimation of KA and KI . Fold-change in expression is plotted as a function of IPTG concentration
for all strains containing an O1 operator. The solid points correspond to the mean experimental value.
The solid lines correspond to Eq. (5) using the parameter estimates of KA and KI . Each row uses a
single set of parameter values based on the strain noted on the left axis. The shaded plots along the
diagonal are those where the parameter estimates are plotted along with the data used to infer them.
Values for repressor copy number and operator binding energy are from [8]. The shaded region on the
curve represents the uncertainty from our parameter estimates and reflect the 95% highest probability
density region of the parameter predictions.
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Figure S22. O2 strain fold-change predictions based on strain-specific parameter
estimation of KA and KI . Fold-change in expression is plotted as a function of IPTG concentration
for all strains containing an O2 operator. The plots and data shown are analogous to Fig. S21, but for
the O2 operator.
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O3 9.7

Figure S23. O3 strain fold-change predictions based on strain-specific parameter
estimation of KA and KI . Fold-change in expression is plotted as a function of IPTG concentration
for all strains containing an O3 operator. The plots and data shown are analogous to Fig. S21, but for
the O3 operator. We note that when using the R = 22 O3 strain to predict KA and KI , the large
uncertainty in the estimates of these parameters (see Fig. S20) leads to correspondingly wider credible
regions.
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J Applications to Other Regulatory Architectures1003

In this section, we discuss how the theoretical framework presented in this work is sufficiently general to1004

include a variety of regulatory architectures outside of simple repression by LacI. We begin by noting1005

that the exact same formula for fold-change given in Eq. (5) can also describe corepression. We then1006

demonstrate how our model can be generalized to include other architectures, such as a coactivator1007

binding to an activator to promote gene expression. In each case, we briefly describe the system and1008

describe its corresponding theoretical description. For further details, we invite the interested reader to1009

read references [15,16].1010

J.1 Corepression1011

Consider a regulatory architecture where binding of a transcriptional repressor occludes the binding of1012

RNAP to the DNA. A corepressor molecule binds to the repressor and shifts its allosteric equilibrium1013

towards the active state in which it binds to the DNA and represses expression (in contrast, an inducer1014

shifts the allosteric equilibrium towards the inactive state.) As in the main text, we can enumerate the1015

states and statistical weights of the promoter and the allosteric states of the repressor. We note that1016

these states and weights exactly match Figs. 1 and 2 and yield the same fold-change equation as Eq. (5),1017

fold-change ≈

1 +

(
1 + c

KA

)n
(

1 + c
KA

)n
+ eβ∆εAI

(
1 + c

KI

)n R

NNS
e−β∆εRA

−1

, (S28)

where c now represents the concentration of the corepressor molecule. Mathematically, the difference1018

between these two architectures can be seen in the relative sizes of the dissociation constants KA and1019

KI between the inducer and repressor in the active and inactive states, respectively and the sign of the1020

allosteric parameter ∆εAI . The corepressor is defined by KA < KI , since the corepressor favors binding1021

to the repressor’s active state; an inducer must satisfy KI < KA, as was found in the main text from the1022

induction data (see Fig. 4).1023

J.2 Activation1024

We now turn to the case of activation. While this architecture was not studied in this work, we wish to1025

demonstrate how the framework presented here can be extended to include transcription factors other1026

than repressors. To that end, we consider a transcriptional activator which binds to DNA and aids in1027

the binding of RNAP through energetic interaction term εAP . Note that in this architecture, binding of1028

the activator does not occlude binding of the polymerase. Binding of a coactivator molecule binds shifts1029

its allosteric equilibrium towards the active state (KA < KI), where the activator is more likely to be1030

bound to the DNA and promote expression. Enumerating all of the states and statistical weights of this1031

architecture and making the approximation that the promoter is weak generates a fold-change equation1032

of the form1033

fold-change =

1 +

(
1+ c

KA

)n(
1+ c

KA

)n
+eβ∆εAI

(
1+ c

KI

)n A
NNS

e−β∆εAAe−βεAP

1 +

(
1+ c

KA

)n(
1+ c

KA

)n
+eβ∆εAI

(
1+ c

KI

)n A
NNS

e−β∆εAA

, (S29)

where A is the total number of activators per cell, c is the concentration of a coactivator molecule, ∆εAA1034

is the binding energy of the activator to the DNA in the active allosteric state, and εAP is the interaction1035

energy between the activator and the RNAP. Unlike in the cases of induction and corepression, the1036

fold-change formula for activation includes terms from when the RNAP is bound by itself on the DNA1037

as well as when both RNAP and the activator are simultaneously bound to the DNA.1038

As in the case of induction, the Eq. (S29) is straightforward to generalize. For example, the relative1039

values of KI and KA can be switched such that KI < KA in which the secondary molecule drives the1040
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activator to assume the inactive state represents induction of an activator. In this regime, the sign of the1041

allosteric parameter ∆εAI becomes negative.While these cases might be viewed as separate biological1042

phenomena, mathematically they can all be described by the same formalism and result in the same1043

formula.1044
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K E. coli Primer and Strain List1045

Here we provide additional details about the genotypes of the strains used, as well as the primer sequences1046

used to generate them. E. coli strains were derived from K12 MG1655. For those containing R = 22, we1047

used strain HG104 which additionally has the lacYZA operon deleted (positions 360,483 to 365,579) but1048

still contains the native lacI locus. All other strains used strain HG105, where both the lacYZA and1049

lacI operons have both been deleted (positions 360,483 to 366,637).1050

All 25x+11-yfp expression constructs were integrated at the galK locus (between positions 1,504,0781051

and 1,505,112) while the 3*1x-lacI constructs were integrated at the ybcN locus (between positions1052

1,287,628 and 1,288,047). Integration was performed with λ Red recombineering [17] as described in [8]1053

using the primers listed in Table S3. We follow the notation of Lutz and Bujard [18] for the nomenclature1054

of the different constructs used. Specifically, the first number refers to the antibiotic resistance cassette1055

that is present for selection (2 = kanamycin, 3 = chloramphenicol, and 4 = spectinomycin) and the1056

second number refers to the promoter used to drive expression of either YFP or LacI (1 = PLtetO−1, and1057

5 = lacUV5 ). Note that in 25x+11-yfp, x refers to the LacI operator used, which is centered at +11 (or1058

alternatively, begins at the transcription start site). For the different LacI constructs, 3*1x-lacI, x refers1059

to the different ribosomal binding site modifications that provide different repressor copy numbers and1060

follows from Garcia et al. [8]. The asterisk refers to the presence of FLP recombinase sites flanking the1061

chloramphenicol resistance gene that can be used to lose this resistance. However, we maintained the1062

resistance gene in our constructs. A summary of the final genotypes of each strain is listed in Table S4.1063

In addition each strain also contained the plasmid pZS4*1-mCherry and provided constitutive expression1064

of the mCherry fluorescent protein. This pZS plasmid is a low copy (SC101 origin of replication) where1065

like with 3*1x-lacI, mCherry is driven by a PLtetO−1 promoter.1066

Table S3. Primers used in this work. Lower case sequences denote homology to a chromosomal
locus used for integration of the construct into the E. coli chromosome. Uppercase sequences refer to
the sequences used for PCR amplification.

Primer Sequence Comment

General sequencing primers:

pZSForwSeq2 TTCCCAACCTTACCAGAGGGC Forward primer for 3*1x-lacI

251F CCTTTCGTCTTCACCTCGA Forward primer for 25x+11-yfp

YFP1 ACTAGCAACACCAGAACAGCCC

Reverse primer for 3*1x-lacI
and 25x+11-yfp

Integration primers:

HG6.1 (galK )
gtttgcgcgcagtcagcgatatccattttcgcgaatccgg

agtgtaagaaACTAGCAACACCAGAACAGCC

Reverse primer for 25x+11-yfp
with homology to galK locus.

HG6.3 (galK )
ttcatattgttcagcgacagcttgctgtacggcaggcacc

agctcttccgGGCTAATGCACCCAGTAAGG

Forward primer for 25x+11-yfp
with homology to galK locus.

galK-control-upstream1 TTCATATTGTTCAGCGACAGCTTG To check integration.

galK-control-downstream1 CTCCGCCACCGTACGTAAATT To check integration.

HG11.1 (ybcN )
acctctgcggaggggaagcgtgaacctctcacaagacggc

atcaaattacACTAGCAACACCAGAACAGCC

Reverse primer for 3*1x-lacI with
homology to ybcN locus.

HG11.3 (ybcN )
ctgtagatgtgtccgttcatgacacgaataagcggtgtag

ccattacgccGGCTAATGCACCCAGTAAGG

Forward primer for 3*1x-lacI with
homology to ybcN locus.

ybcN-control-upstream1 AGCGTTTGACCTCTGCGGA To check integration.

ybcN-control-downstream1 GCTCAGGTTTACGCTTACGACG To check integration.
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Table S4. E. coli strains used in this work. Each strain contains a unique operator-yfp construct
for measurement of fluorescence and R refers to the dimer copy number as measured by Garcia et al. [8].

Strain Genotype

O1, R = 0 HG105::galK〈〉25O1+11-yfp

O1, R = 22 HG104::galK〈〉25O1+11-yfp

O1, R = 60 HG105::galK〈〉25O1+11-yfp, ybcN〈〉3*1RBS1147-lacI

O1, R = 124 HG105::galK〈〉25O1+11-yfp, ybcN〈〉3*1RBS1027-lacI

O1, R = 260 HG105::galK〈〉25O1+11-yfp, ybcN〈〉3*1RBS446-lacI

O1, R = 1220 HG105::galK〈〉25O1+11-yfp, ybcN〈〉3*1RBS1-lacI

O1, R = 1740 HG105::galK〈〉25O1+11-yfp, ybcN〈〉3*1-lacI (RBS1L)

O2, R = 0 HG105::galK〈〉25O2+11-yfp

O2, R = 22 HG104::galK〈〉25O2+11-yfp

O2, R = 60 HG105::galK〈〉25O2+11-yfp, ybcN〈〉3*1RBS1147-lacI

O2, R = 124 HG105::galK〈〉25O2+11-yfp, ybcN〈〉3*1RBS1027-lacI

O2, R = 260 HG105::galK〈〉25O2+11-yfp, ybcN〈〉3*1RBS446-lacI

O2, R = 1220 HG105::galK〈〉25O2+11-yfp, ybcN〈〉3*1RBS1-lacI

O2, R = 1740 HG105::galK〈〉25O2+11-yfp, ybcN〈〉3*1-lacI (RBS1L)

O3, R = 0 HG105::galK〈〉25O3+11-yfp

O3, R = 22 HG104::galK〈〉25O3+11-yfp

O3, R = 60 HG105::galK〈〉25O3+11-yfp, ybcN〈〉3*1RBS1147-lacI

O3, R = 124 HG105::galK〈〉25O3+11-yfp, ybcN〈〉3*1RBS1027-lacI

O3, R = 260 HG105::galK〈〉25O3+11-yfp, ybcN〈〉3*1RBS446-lacI

O3, R = 1220 HG105::galK〈〉25O3+11-yfp, ybcN〈〉3*1RBS1-lacI

O3, R = 1740 HG105::galK〈〉25O3+11-yfp, ybcN〈〉3*1-lacI (RBS1L)

Oid, R = 0 HG105::galK〈〉25Oid+11-yfp

Oid, R = 22 HG104::galK〈〉25Oid+11-yfp

Oid, R = 60 HG105::galK〈〉25Oid+11-yfp, ybcN〈〉3*1RBS1147-lacI

Oid, R = 124 HG105::galK〈〉25Oid+11-yfp, ybcN〈〉3*1RBS1027-lacI

Oid, R = 260 HG105::galK〈〉25Oid+11-yfp, ybcN〈〉3*1RBS446-lacI

Oid, R = 1220 HG105::galK〈〉25Oid+11-yfp, ybcN〈〉3*1RBS1-lacI

Oid, R = 1740 HG105::galK〈〉25Oid+11-yfp, ybcN〈〉3*1-lacI (RBS1L)
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