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1 A Numerical Approach for Verifying Assumptions 1, 2, and 3
(main paper)

We begin by considering Assumption 1 in (15)(main paper). Let
f1 , 2 max{√p,

√
2ku,
√

2kxγ,
√
q}, f2 , max{

√
2ku,
√

2kxγ} and

ω , max{ωy, ωyx}. Let Z = (Z1, Z2, Z3, Z4) ∈ H′ with Φγ(Z1, Z2, Z3, Z4) = 1. It is straightforward
to check that:

Φγ [PH′F†I?FPH′(Z1, Z2, Z3, Z4)] ≥ f−1
1 σmin(PH?F†I?FPH?)

− max
{

1,
1

γ

}
(
√

3ω + ω +
√

3ω2)f2ψ
2 , T1

Notice that the quantity σmin(PH?F†I?FPH?) (and henceforth the quantity T1) is computable given
the population model. Thus a trivial lower bound for α is given by:

inf
H′∈U(ωy ,ωyx)

χ(H′,Φγ) ≥ α ≥ T1

We now consider Assumption 2 in (16) (main paper). Let Z = (Z1, Z2) ∈ H[2, 3]′ with
Γγ(Z1, Z2) = 1. Using triangle inequality, it is straightforward to check the following bound:

Γγ [PH[2,3]′G†I?GPH[2,3]′(Z1, Z2)] ≥ min
{

1,
1

γ

}
(
√

3f2)−1

σmin(PH[2,3]?G†I?GPH[2,3]?)

− max
{

1,
1

γ

}
(
√

3ω + ω +
√

3ω2)f2ψ
2 , T2

Notice that the quantity T2 is computable giving the population model. Then,

inf
H′∈U(ωy ,ωyx)

Ξ(H′,Γγ) ≥ T2
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Now we consider Assumption 3 in (17) (main paper). Using triangle inequality, it is straightforward
to check that:

Γγ [PH[2,3]′⊥G
†I?GPH[2,3]′(Z1, Z2)] ≤

√
3f2 max

{
1,

1

γ

}
σmax(PH[2,3]?⊥G

†I?GPH[2,3]?)

+ max
{

1,
1

γ

}
(
√

3ω + ω +
√

3ω2)f2ψ
2 , T3

Similarly, the quantity T3 can be computed given the population model. Then, an upper bound
for ϕ(H′,Γγ) is given by:

sup
H′∈U(ωyx,ωyx)

ϕ(H′,Γγ) ≤ 1− 2

1 + β
≤ T3

T2
=⇒ β ≤ 2

1− T3
T2

− 1

2 Proof of Proposition 1 (main paper)

Proof. We note that:

‖∆‖2 ≤ ‖∆Dy‖2 + ‖∆Ly‖2 + ‖∆Θyx‖2 + ‖∆Θx‖2 ≤ (3 + γ)Φγ(∆)

Furthermore, recall that

RΣ?(F(∆)) = Σ?−1
[ ∞∑
k=2

(−F(∆)Σ?−1)k
]
.

Using this observation and some algebra, we have that:

Φγ [F†RΣ?(F(∆))] ≤ mψ
[ ∞∑
k=2

(ψ‖∆‖2)k
]
≤ mψ3 (3 + γ)2Φγ [∆]2

1− (3 + γ)Φγ [∆]ψ

≤ 2mψC ′2Φγ [∆]2

3 Proof of Proposition 2 (main paper)

Proof. The proof of this result uses Brouwer’s fixed-point theorem, and is inspired by the proof of
a similar result in [5, 2]. The optimality conditions of (20) (main paper) suggest that there exist
Lagrange multipliers QDy ∈ W, QTy ∈ T ′y

⊥, and QTyx ∈ T ′yx
⊥ such that

[Σn − Θ̃−1]y +QDy = 0; [Σn − Θ̃−1]y +QTy ∈ λn∂‖L̃y‖?
[Σn − Θ̃−1]yx +QTyx ∈ −λnγ∂‖Θ̃yx‖?; [Σn − Θ̃−1]x = 0

Letting the SVD of L̃ and Θ̃yx be given by L̃y = ŪD̄V̄ ′ and Θ̃yx = ŬD̆V̆ ′ respectively, and
Z , (0, λnŪ V̄

′, −λnγŬ V̆ ′, 0), we can restrict the optimality conditions of (15) (main paper)
to the space H′ to obtain, PH′F†(Σn − Θ̃−1) = Z. Further, by appealing to the matrix inversion
lemma, this condition can be restated as PHMF†(En − RΣ?(F∆) + I?F(∆)) = Z. Based on the
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Fisher information assumption 1 in (15) (main paper), the optimum of (20) (main paper) is unique
(this is because the Hessian of the negative log-likelihood term is positive definite restricted to the
tangent space constraints). Moreover, using standard Lagrangian duality, one can show that the
set of variables (Θ̃, D̃y, L̃y) that satisfy the restricted optimality conditions are unique. Consider
the following function S(δ) restricted to δ ∈ W × T ′y × T ′yx × Sq with ρ(T (L?y), T

′
y) ≤ ωy and

ρ(T (Θ?
yx), T ′yx) ≤ ωyx:

S(δ) = δ − (PH′F†I?FPH′)−1
(
PH′F†[En − RΣ?F(δ + CT)

+I?F(δ + CT)]− Z
)

The function S(δ) is well-defined since the operator PH′F†I?FPH′ is bijective due to Fisher infor-
mation assumption 1 in (15) (main paper). As a result, δ is a fixed point of S(δ) if and only if
PH′F†[En−RΣ?(F(δ+CT))+ I?F(δ+CT)] = Z. Since the pair (Θ̃, D̃y, L̃y) are the unique solution
to (20) (main paper), the only fixed point of S is PH′ [∆]. Next we show that this unique optimum
lives inside the ball Bru1 ,ru2 = {δ | max{‖δ2‖2, 1

γ ‖δ3‖2} ≤ ru1 ,max{‖δ1‖2, ‖δ4‖2} ≤ ru2 δ ∈ H′}. In
particular, we show that under the map S, the image of Bru1 ,ru2 lies in Bru1 ,ru2 and appeal to Brouwer’s
fixed point theorem to conclude that PH′ [∆] ∈ Bru1 ,ru2 . For δ ∈ Bru1 ,ru2 , the first component of S(δ),
denoted by S(δ)1, can be bounded as follows:

‖S(δ)1‖2 =
∥∥∥[(PH′F†I?FPH′)−1

(
PH′F†[En −RΣ?(F(δ + CT))

+ I?FCT ] + Z
)]

1

∥∥∥
2
≤ 2

α

[
Φγ [F†(En + I?F(CT))]

]
+

2

α
Φγ [F†RΣ?(δ + CT )] ≤ ru2

2
+

2

α
Φγ [F†RΣ?(δ + CT )]

The first inequality holds because of Fisher Information Assumption 1 in (15) (main paper), and the
properties that Φγ [PHM(.)] ≤ 2Φγ(.) (since projecting into the tangent space of a low-rank matrix
variety increases the spectral norm by a factor of at most two) and Φγ(Z) = λn. Moreover, since
ru1 ≤ 1

4C′ , we have Φγ(δ + CT) ≤ Φγ(δ) + Φγ(CT) ≤ 2ru1 ≤ 1
2C′ . Moreover, ru1 ≤ ru2 max{1 + κ

2 ,
α
8 }.

We can now appeal to Proposition 1 (main paper) to obtain:

2

α
Φγ [F†RΣ?(δ + CT)] ≤ 4

α
mψC ′2[Φγ(δ + CT)]2

≤ 16

α
mψC ′2(ru2 )2 max{1 +

κ

2
,
α

8
}2

≤ ru2
2

Thus, we conclude that ‖S(δ)1‖2 ≤ ru2 . Similarly, we check that:

‖[S(δ)2]‖2 =
∥∥∥[(PH′F†I?FPH′)−1

(
PH′F†[En −RΣ?(F(δ + CT))

+ I?FCT ] + Z
)]

2

∥∥∥
2
≤ 2

α

[
Φγ [F†(En + I?F(CT)] + λn

]
+

2

α
Φγ [F†RΣ?(δ + CT )] ≤ ru1

2
+

2

α
Φγ [F†RΣ?(δ + CT )] ≤ ru1

Using a similar approach, we can conclude that 1
γ ‖S(δ)3‖2 ≤ ru1 and ‖S(δ)3‖2 ≤ ru2 . Therefore,

Brouwer’s fixed point theorem suggests that PH′(∆) ∈ Bru1 ,ru2 . Hence, ‖∆1‖2 ≤ ru2 , ‖∆4‖2 ≤ ru2 ,
‖∆2‖2 ≤ ‖PH′[2](∆2)‖2 + ‖PH′[2]⊥(∆2)‖2 ≤ 2ru1 , and
1
γ ‖∆3‖2 ≤ 1

γ ‖PH′[3](∆3)‖2 + 1
γ ‖PH′[3]⊥(∆2)‖2 ≤ 2ru1 .
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4 Proof of Proposition 3 (main paper)

Below, we outline our proof strategy:

1. We proceed by analyzing (19) (main paper) with additional constraints that the variables
Ly, and Θyx belong to the algebraic varieties low-rank matrices (specified by rank of L?y, and
Θ?
yx) , and that the tangent spaces T (Ly), T (Θyx) are close to the nominal tangent spaces

T (L?y), and T (Θ?
yx) respectively. We prove that under suitable conditions on the minimum

nonzero singular value of L?y, and minimum nonzero singular value of Θ?
yx, any optimum

pair of variables (Θ, Dy, Ly) of this non-convex program are smooth points of the underlying
varieties; that is rank(Ly) = rank(L?y) and rank(Θyx) = rank(Θ?

yx). Further, we show that Ly
has the same inertia as L?y so that Ly � 0.

2. Conclusions of the previous step imply the the variety constraints can be “linearized” at the
optimum of the non-convex program to obtain tangent-space constraints. Under the specified
conditions on the regularization parameter λn, we prove that with high probability, the unique
optimum of this “linearized” program coincides with the global optimum of the non-convex
program.

3. Finally, we show that the tangent-space constraints of the linearized program are inactive
at the optimum. Therefore the optimal solution of (19) (main paper) has the property that
with high probability: rank(L̄y) = rank(L?y) and rank(Θ̄yx) = rank(Θ?

yx). Since L̄y � 0, we
conclude that the variables (Θ̄, D̄y, L̄y) are the unique optimum of (4) (main paper).

4.1 Variety Constrained Program

We begin by considering a variety-constrained optimization program. Letting (M,N,P,Q) ⊂ Sp ×
Sp × Rp×q × Sq, we denote P[2,3](M,N,P,Q) = (N,P ) ⊂ Sp × Rp×q. The variety-constrained
optimization program is given by:

(ΘM, DMy , LMy ) = argmin
Θ∈Sq+p, Θ�0
Dy ,Ly∈Sp

−`(Θ;D+
n ) + λn[‖Ly‖? + γ‖Θyx‖?]

s.t. Θy = Dy − Ly, (Θ, Dy, Ly) ∈M. (1)

Here, the set M =M1 ∩M2, where the sets M1 and M2 are given by:

M1 ,
{

(Θ, Dy, Ly) ∈ S(p+q) × Sp × Sp
∣∣∣Dy is diagonal, rank(Ly) ≤ rank(L?y)

rank (Θyx) ≤ rank(Θ?
yx); ‖PT (L?y)⊥(Ly − L?y)‖2 ≤

λn
2ψ2

‖PT (Θ?yx)⊥(Θyx −Θ?
yx)‖2 ≤

λn
2ψ2

}
M2 ,

{
(Θ, Dy, Ly) ∈ S(p+q) × Sp × Sp

∣∣∣
‖I?F(∆)‖2 ≤ 6m̄ψ2λn

( 8

ακ
+

4

α
+

1

κ

)}
,

The optimization program (1) is non-convex due to the rank constraints rank(Ly) ≤ rank(L?y) and
rank(Θyx) ≤ rank(Θ?

yx) in the set M. These constraints ensure that the matrices Ly, and Θyx

belong to appropriate varieties. The constraints in M along T (L?y)
⊥ and T (Θ?

yx)⊥ ensure that the
tangent spaces T (Ly) and T (Θyx) are “close” to T (L?y) and T (Θ?

yx) respectively. Finally, the last
conditions roughly controls the error. We begin by proving the following useful proposition:
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Proposition 4.1. Let (Θ, Dy, Ly) be a set of feasible variables of (1). Let ∆ = (Dy − D?
y, Ly −

L?y,Θyx−Θ?
yx,Θx−Θ?

x) and recall that C ′1 = 2m̄m
κα

(
6ψ2+ 5

αψ
2+ 46ψ2κ

α +κ
)

+ 1
ψ2 . Then, Φγ [∆] ≤ C ′1λn

Proof. Let H? =W × T (L?y)× T (Θ?
yx)× Sq. Then,

Φγ [F†I?FPH?(∆)] ≤ Φγ [F†I?F(∆)] + Φγ [F†I?FPH?⊥(∆)]

≤ 6m̄mψ2λn

( 8

ακ
+

4

α
+

1

κ

)
+ mψ2

(ωyλn
2ψ2

+
ωyxλn
2ψ2

)
≤ m̄mλn

κ

(
6ψ2 +

24

α
ψ2 +

48ψ2κ

α
+ κ
)

Since Φγ [PH?(·)] ≤ 2Φγ(·), we have that Φγ [PH?F†I?FPH?(∆)] ≤ 2m̄mλn
κα

(
6ψ2 + 24

α ψ
2 + 48ψ2κ

α +κ
)

.

Consequently, we apply Fisher Information Assumption 1 in (15) (main paper) to conclude that

Φγ [PH?(∆)] ≤ 2m̄mλn
κα

(
6ψ2 + 24

α ψ
2 + 48ψ2κ

α + κ
)

. Moreover:

Φγ [∆] ≤ Φγ [PH?(∆)] + Φγ [PH?⊥(∆)] ≤ 2m̄mλn
κα

(
6ψ2 +

24

α
ψ2 +

48ψ2κ

α
+ κ
)

+
λn
ψ2

= C ′1λn

Proposition 4.1 leads to powerful implications. In particular, under additional conditions on
the minimum nonzero singular values of L?y and Θ?

yx, any feasible set of variables (Θ, Dy, Ly) of (1)
has two key properties: (a) The variables (Θyx, Ly) are smooth points of the underlying varieties,
(b) The constraints in M along T (L?y)

⊥ and T (Θ?
yx)⊥ are locally inactive at Θyx and Ly. These

properties, among others, are proved in the following corollary.

Corollary 4.2. Consider any feasible variables (Θ, Dy, Ly) of (1). Let σy be the smallest nonzero
singular value of L?y and σyx be the smallest nonzero singular value of Θ?

yx. Let H′ =W×T (Ly)×
T (Θyx)×Sq and CT ′ = PH′⊥(0, L?y,Θ

?
yx, 0). Furthermore, recall that C ′1 = 2m̄m

κα

(
6ψ2+ 24

α ψ
2+ 48ψ2κ

α +

κ
)

+ 1
ψ2 , C ′2 = 4

α (1+ 2
κ), C ′σy = C ′21 ψ

2 max{2κ+1, 2
C′2ψ

2 +1} and C ′σyx = C ′21 ψ
2 max{2κ+κ

γ ,
2

C′2ψ
2 +κ

γ }.
Suppose that the following inequalities are met: σy ≥ m

ωy
Cσyλn,

σyx ≥ mγ2

ωyx
C ′σyxλn. Then,

1. Ly and Θyx are smooth points of their underlying varieties, i.e. rank(Ly) = rank(L?y),
rank(Θyx) = rank(Θ?

yx); Moreover Ly has the same inertia as L?y.

2. ‖PT (L?y)⊥(Ly − L?y)‖2 ≤ λn
48mψ2 and ‖PT (Θ?yx)⊥(Θyx −Θ?

yx)‖2 ≤ λn
48mψ2

3. ρ(T (Ly), T (L?y)) ≤ ωy; ρ(T (Θyx), T (Θ?
yx)) ≤ ωyx; that is, the tangent spaces at Ly and Θyx

is “close” to the tangent space L?y and Θ?
yx.

4. Φγ [CT ′ ] ≤ min{ λn
κψ2 , C

′
2λn}
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Proof. We note the following relations before proving each step: C ′1 ≥ 1
ψ2 ≥ 1

mψ2 , ωy, ωyx ∈ (0, 1),
and κ ≥ 6. We also appeal to the results of regarding perturbation analysis of the low-rank matrix
variety [1].

1. Based on the assumptions regarding the minimum nonzero singular values of L?y and Θ?
yx,

one can check that:

σy ≥
C ′21 λn
ωy

mψ2(κ+ 1) ≥ C ′1λn
ωy

(2κ+ 1) ≥ 8‖L− L?y‖2

σyx ≥ C ′21 λn
ωyx

γ2mψ2
(6β

γ
+ 2κ

)
≥ 8‖Θyx −Θ?

yx‖2

Combining these results and Proposition 4.1, we conclude that Ly and Θyx are smooth points of
their respective varieties, i.e. rank(Ly) = rank(L?y), and rank(Θyx) = rank(Θ?

yx). Furthermore, Ly
has the same inertia as L?y.

2. Since σy ≥ 8‖Ly − L?y‖2, and σyx ≥ 8‖Θyx −Θ?
yx‖2, we can appeal to Proposition 2.2 of [2]

to conclude that the constraints in M along PT (L?y)⊥ and PT (Θ?yx)⊥ are strictly feasible:

‖PT (L?y)⊥(Ly − L?y)‖2 ≤
‖Ly − L?y‖22

σy
≤ λn

48mψ2

‖PT (Θ?yx)⊥(Θyx −Θ?
yx)‖2 ≤

‖Θyx −Θ?
yx‖22

σyx
≤ λn

48mψ2

3. Appealing to Proposition 2.1 of [2], we prove that the tangent spaces T (Ly) and T (Θyx) are
close to T (L?y) and T (Θ?

yx) respectively:

ρ(T (Ly), T (L?y)) ≤
2‖Ly − L?y‖2

σy
≤ 2C ′1λnωy
C ′21 λnmψ

2(2κ+ 1)
≤ ωy

ρ(T (Θyx), T (Θ?
yx)) ≤

2‖Θyx −Θ?
yx‖2

σyx
≤ 2C ′1λnγωyx

C′21 λn
ωyx

γ2mψ2
(
κ
γ + 2κ

) ≤ ωyx
4. Letting σ′y and σ′yx be the minimum nonzero singular value of Ly and Θyx respectively, one

can check that:

σ′y ≥ σy − ‖Ly − L?y‖2 ≥ 8C ′1λn ≥ 8‖Ly − L?y‖2

σ′yx ≥ σyx − ‖Θyx −Θ?
yx‖2 ≥ 8C ′1λnγ ≥ 8‖Θyx −Θ?

yx‖2

Once again appealing to Proposition 2.2 of [2] and simple algebra, we have:

Φγ(CT ′) ≤ m‖PT (Ly)⊥(Ly − L?y)‖2 +m‖PT (Θyx)⊥(Θyx −Θ?
yx)‖2

≤ m
‖Ly − L?y‖22

σ′y
+m
‖Θyx −Θ?

yx‖22
σ′yx

≤ min
{ λn
κψ2

, C ′2λn

}
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4.2 Variety Constrained Program to Tangent Space Constrained Program

Consider any optimal solution (ΘM, DMy , LMy ) of (1). In Corollary 4.2, we concluded that the

variables (ΘMyx , L
M
y ) are smooth points of their respective varieties. As a result, the rank constraints

rank(Ly) ≤ rank(L?y) and rank(Θyx) ≤ rank(Θ?
yx) can be “linearized” to Ly ∈ T (LMy ) and Θyx ∈

T (ΘMyx ) respectively. Since all the remaining constraints are convex, the optimum of this linearized
program is also the optimum of (1). Moreover, we once more appeal to Corollary 4.2 to conclude
that the constraints in M along PT (L?y)⊥ and PT (Θ?yx)⊥ are strictly feasible at (ΘM, DMy , LMy ). As
a result, these constraints are locally inactive and can be removed without changing the optimum.
Therefore the constraint (ΘM, DMy , LMy ) ∈M1 is inactive and can be removed. We now argue that

the constraint (ΘM, DMy , LMy ) ∈M2 in (1) can also removed in this “linearized” convex program.

In particular, letting HM ,W×T (LMy )×T (ΘMyx )×Sq, consider the following convex optimization
program:

(Θ̃, D̃y, L̃y) = argmin
Θ∈Sq+p, Θ�0
Dy ,Ly∈Sp

−`(Θ;D+
n ) + λn[‖Ly‖? + γ‖Θyx‖?]

s.t. Θy = Dy − Ly, (Dy, Ly,Θyx,Θx) ∈ HM (2)

We prove that under conditions imposed on the regularization parameter λn, the pair of variables
(ΘM, DMy , LMy ) is the unique optimum of (2). That is, we show that

1. ‖I?F(∆)‖2 < 6m̄ψ2λn

(
8
ακ + 4

α + 1
κ

)
Appealing to Corollary 4.2 and Proposition 4 (main paper), we have that Φγ [F†I?FCTM ] ≤

λn
κ , Φγ [CTM ] ≤ C ′2λn and (with high probability) Φγ [F†En] ≤ λn

κ . Consequently, based on the
bound on λn in assumption of Theorem 1 (main paper), it is straightforward to show that ru1 ≤
min

{
1

4C′ ,
α

32 max{1+κ
2
,α
8
}2mψC′2

}
so that Φγ [∆] ≤ 1

2C′ . Hence by Proposition 2 (main paper), we

have that ‖∆1‖2, ‖∆4‖2 ≤ ru2 < ru1 , ‖∆2‖2 ≤ 2ru1 and ‖∆‖3 ≤ 2γru1 . Therefore:

‖I?F(∆)‖2 ≤ ψ2(‖∆1‖2 + ‖∆2‖2 + ‖∆3‖2 + ‖∆4‖2)

< 6m̄ψ2ru1 ≤ 6m̄ψ2λn

( 8

ακ
+

4

α
+

1

κ

)
4.3 From Tangent Space Constraints to the Original Problem

The optimality conditions of (2) suggest that there exist Lagrange multipliers QDy ∈ W, QTy ∈
T (LMy )⊥, and QTyx ∈ T (ΘMyx )⊥ such that

[Σn − Θ̃−1]y +QDy = 0; [Σn − Θ̃−1]y +QTy ∈ λn∂‖L̃y‖?
[Σn − Θ̃−1]yx +QTyx ∈ −λnγ∂‖Θ̃yx‖?; [Σn − Θ̃−1]x = 0

Letting the SVD of L̃y and Θ̃yx be given by L̃y = Ū ŌV̄ ′ and Θ̃yx = Ŭ ŎV̆ ′ respectively, and
Z , (0, λnŪ V̄

′, −λnγŬ V̆ ′, 0), we can restrict the optimality conditions to the space HM to
obtain, PHMF†(Σn − Θ̃−1) = Z. We proceed by proving that the variables (Θ̃, D̃y, L̃y) satisfy the
optimality conditions of the original convex program (4) (main paper). That is:

1. PHMF†(Σn − Θ̃−1) = Z

2. max
{
‖PT ′⊥y (Σn − Θ̃−1)y‖2, 1

γ ‖PT ′⊥yx (Σn − Θ̃−1)yx‖2
}
< λn
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It is clear that the first condition is satisfied since the pair (Θ̃, S̃y, L̃y) is optimum for (2). To
prove that the second condition, we must prove that Γγ [PH⊥M[2,3]G†(Σn− Θ̃−1)] < λn. In particular,

denoting ∆ = (D̃y −D?
y, L̃y − L?y, Θ̃yx −Θ?

yx, Θ̃x −Θ?
x) we show that:

Γγ [PH⊥M[2,3]G
†I?GPHM[2,3](∆)] < λn − Φγ [PH⊥MF

†En] (3)

− Φγ [PH⊥MF
†RΣ?(F(∆))]

− Φγ [PH⊥MF
†I?FCTM ]

− Γγ [PHM[2,3]⊥G†I?F(∆1, 0, 0,∆4)]

Using the fact that Γγ [PHM[2,3]⊥G†(N)] ≤ Φγ [PH⊥MF
†(N)] for any matrix N ∈ Sp+q, this would

in turn imply that:

Γγ [PHM[2,3]⊥G†I?GPHM[2,3](∆)] < λn − Γγ [PHM[2,3]⊥G†En] (4)

− Γγ [PHM[2,3]⊥G†RΣ?(F(∆))]

− Γγ [PHM[2,3]⊥G†I?FCTM ]

− Γγ [PHM[2,3]⊥G†I?F(∆1, 0, 0,∆4)]

Indeed (4) implies that the second optimality condition is satisfied. So we focus on showing that
(4) is satisfied. Since Φγ [∆] ≤ 1

2C′ , we can appeal to Proposition 1 (main paper) and the bound

on λn to conclude Φγ [F†RΣ?(F(∆))] ≤ 2mψC ′2Φγ [∆]2 ≤ 2mψC ′2C ′21 λ
2
n ≤ λn

κ . Using the first
optimality condition, the fact that projecting into tangent spaces with respect to rank variety
increase the spectral norm by at most a factor of two (i.e. Φγ [PHM(·)] ≤ 2Φγ(·)), the fact that

Γγ [G†(·)] ≤ Φγ [F†(·)], and that κ = β(6 + 16ψ2m
α ), we have that:

Γγ [PHM[2,3]G†I?GPHM[2,3](∆)] ≤ λn + 2Γγ [G†RΣ?(∆)] + 2Γγ [G†I?FCTM ]

+ 2Γγ [G†En] + Γγ [G†I?F(∆1, 0, 0,∆4)]

≤ λn + 2Φγ [F†RΣ?(∆)] + 2Φγ [F†I?FCTM ]

+ 2Φγ [F†En] + Φγ [F†I?F(∆1, 0, 0,∆4)]

≤ λn +
λn
β

Applying Fisher Information Assumption 2 in (16) (main paper), we obtain:

Γγ [PHM[2,3]⊥G†I?GPHM[2,3](∆)] ≤ (β + 1)λn
β

(
1− 2

β + 1

)
= λn −

λn
β

< λn −
λn
2β

≤ λn − Φγ [F†RΣ(F(∆))]− Φγ [F†I?FCTM ]

− Φγ [F†En]− Γγ [G†I?F(∆1, 0, 0,∆4)]

≤ λn − Φγ [PH⊥MF
†RΣ?(F(∆))]

− Φγ [PH⊥MF
†I?FCTM ]

− Φγ [PH⊥MF
†En]

− Γγ [PHM[2,3]⊥G†I?F(∆1, 0, 0,∆4)]

Here, we used the fact that ‖PT⊥(.)‖2 ≤ ‖.‖2 for a tangent space T of the low-rank matrix variety.
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5 Proof of Proposition 4 (main paper)

We must study the rate of convergence of the sample covariance matrix to the population covariance
matrix. The following result from [3] plays a key role in obtaining this result.

Proposition 5.1. Given natural numbers n, p with p ≤ n, Let Γ be a p × n matrix with i.i.d
Gaussian entries that have zero-mean and variance 1

n . Then the largest and smallest singular
values σ1(Γ) and σp(Γ) of Γ are such that:

max

{
Prob[σ1(Γ) ≤ 1 +

√
p

n
+ t],Prob[σp(Γ) ≤ 1−

√
p

n
− t]

}
.

We now proceed with proving Proposition 4 (main paper). First, note that Φγ [F†En] ≤ m‖Σn−
Σ?‖2. Using Proposition 5.1 and the fact that λn

mκ ≤ 8ψ and n ≥ 64κ2(p+q)m2ψ2

λ2
n

, the following bound

holds: Pr[m‖Σn−Σ?‖2 ≥ λn
κ ] ≤ 2exp

{
− nλ2

n
128κ2m2ψ2

}
. Thus, Φγ [F†En] ≤ λn

κ with probability greater

than 1− 2exp
{
− nλ2

n
128κ2m2ψ2

}
.

6 Consistency of the Convex Program (18) (main paper)

In this section, we prove the consistency of convex program (18) (main paper) for estimating a
factor model. We first introduce some notation. We define the linear operator: F̃ : Sp × Sp → Sp
and its adjoint F̃† : Sp → Sp × Sp as follows:

F̃(M,K) ,M −K, F̃†(Q) , (Q,Q). (5)

We consider a population composite factor model (3) (main paper) y = A?x + B?uζu + ε un-
derlying a pair of random vectors (y, x) ∈ Rp × Rq, with rank(A?) = kx, B?u ∈ Rp×ku , and
column-space(A?) ∩ column-space(B?u) = {0}. As the convex relaxation (18) (main paper) is
solved in the precision matrix parametrization, the conditions for our theorems are more natu-
rally stated in terms of the joint precision matrix Θ? ∈ Sp+q, Θ? � 0 of (y, x). The algebraic
aspects of the parameters underlying the factor model translate to algebraic properties of sub-
matrices of Θ?. In particular, the submatrix Θ?

yx has rank equal to kx, and the submatrix Θ?
y

is decomposable as D?
y − L?y with D?

y being diagonal and L?y � 0 having rank equal to ku. Fi-
nally, the transversality of column-space(A?) and column-space(B?u) translates to the fact that
column-space(Θ?

yx) ∩ column-space(L?y) = {0} have a transverse intersection. We consider the fac-
tor model underlying the random vector y ∈ Rp that is induced upon marginalization of x. In
particular, the precision matrix of y is given by Θ̃?

y = D?
y− [L?y +Θ?

yx(Θ?
x)−1Θ?

xy]. To learn an accu-

rate factor model, we seek an estimate ( ˆ̃Dy,
ˆ̃Ly) from the convex program (18) (main paper) such

that rank( ˆ̃Ly) = rank(L?y+Θ?
yxΘ?

x
−1Θ?

xy), and the errors ‖ ˆ̃Dy−D?
y‖2, ‖

ˆ̃Ly− [L?y+Θ?
yx(Θ?

x)−1Θ?
xy]‖2

are small.

Following the same reasoning as the Fisher information conditions for consistency of the convex
program (4) (main paper), A natural set of conditions on the population Fisher information at Θ̃?

y
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defined as I?y = (Θ̃?
y)
−1 ⊗ (Θ̃?

y)
−1 are given by:

Assumption 4 : inf
H′∈Ũ(ω̃y)

χ̃(H′, Φ̃) ≥ α̃, for some α̃ > 0 (6)

Assumption 5 : inf
H′∈Ũ(ω̃y)

Ξ̃(H′) > 0 (7)

Assumption 6 : sup
H′∈Ũ(ω̃y)

ϕ̃(H′) ≤ 1− 2

β̃ + 1
for some β̃ ≥ 2, (8)

where,

χ̃(H, ‖.‖Υ) , min
Z∈H
‖Z‖Υ=1

‖PHĨ†I?yĨPH(Z)‖Υ

Ξ̃(H) , min
Z∈H[2]
‖Z‖2=1

‖PH[2]I?yPH[2](Z)‖2

ϕ̃(H) , max
Z∈H[2]
‖Z‖2=1

‖PH⊥[2]I?yPH[2](PH[2]I?yPH[2])
−1(Z)‖2

Ũ(ω̃y) ,
{
W × T ′ | ρ(T ′, T (L?y + Θ?

yx(Θ?
x)−1Θ?

xy)) ≤ ω̃y
}

Φ̃(D,L) , max {‖D‖2, ‖L‖2} .

Assumption 4 controls the gain of the Fisher information I?y restricted to appropriate subspaces and
Assumption 5 and 6 are in the spirit of irrepresentability conditions. As the variety of low-rank
matrices is locally curved around T (L?y + Θ?

yx(Θ?
x)−1Θ?

xy), we control the Fisher information I?y at
nearby tangent spaces T ′ where ρ(T ′, T (L?y + Θ?

yx(Θ?
x)−1Θ?

xy)) ≤ ω̃y. We also note that measuring

the gains of Fisher information I?y with the norm Φ̃ and ‖ · ‖2 is natural as these are closely tied

with dual norm of the regularizer trace(L̃y) in (18) (main paper).
We present a theorem of consistency of the convex relaxation (18) (main paper) under Assump-

tions 4, 5 and 6. We let σ denote the minimum nonzero singular value of L?y + Θ?
yx(Θ?

x)−1Θ?
xy. The

proof strategy is similar in spirit to the strategy for proving the consistency of the convex relaxation
(4) (main paper).

Theorem 6.1. Suppose that there exists α̃ > 0, β̃ ≥ 2, ω̃y ∈ (0, 1) so that the population Fisher
information I?y satisfies Assumptions 4, 5 and 6 in (6), (7), and (8). Suppose that the following
conditions hold:

1. n &
[
β̃2

α̃2

]
(p)

2. λ̃n ∼ β̃
α̃

√
p
n

3. σ & β̃
α̃5ω̃y

λ̃n

Then with probability greater than 1 − 2 exp
{
− C α̃

β̃
nλ̃2

n

}
, the optimal solution (Θ̂, ˆ̃Dy,

ˆ̃Ly) of

(18) (main paper) with i.i.d. observations Dn = {y(i)}ni=1 satisfies the following properties:

1. rank( ˆ̃Ly) = rank(L?y + Θ?
yx(Θ?

x)−1Θ?
xy)

2. ‖ ˆ̃Dy −D?
y‖2 . λ̃n

α̃2 , ‖ ˆ̃Ly − L?y −Θ?
yx(Θ?

x)−1Θ?
xy‖2 . λ̃n

α̃2
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