Supporting Information available for

Identifying the Hydrogenated Planar Tetracoordinate Carbon: a Combined Experimental and Theoretical Study of CAl₄H and CAl₄H

Jing Xu, ^{§, §, +} Xinxing Zhang, * ^{t, +} Shuang Yu, [§] Yi-hong Ding, * [§] and Kit H. Bowen *^t

[§]Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China.

[†]Noyes Laboratory of Chemical Physics and the Beckman Institute, California Institute of Technology,

Pasadena, California, 91125, USA.

^{*}Departments of Chemistry and Material Sciences, Johns Hopkins University, Baltimore, Maryland,

MD 21218, USA.

Corresponding Author

*E-mail: zhangx@caltech.edu; *E-mail: yhdd@jlu.edu.cn; *E-mail: kbowen@jhu.edu

Table of Contents

- 1. Experimental and theoretical methods
- 2. Figure S1. The key structural parameters of CAl₄⁻, CAl₄²⁻, CAl₄H, CAl₄H⁻ and CAl₄Na⁻ at the level of B3LYP/aug-cc-pVTZ.
- 3. Figure S2. The conversion between CAl₄H-01 and CAl₄H-03, CAl₄H⁻01 and CAl₄H⁻02 at the levels of B3LYP/6-311G(2d,d,p) and CBS-QB3.
- 4. Figure S3. Molecular orbitals of neutral CAl₄H-03 and anion CAl₄H⁻-02 with the terminal-H ptC at the level of B3LYP/aug-cc-pVTZ.
- 5. Structures, total energies (E), zero-point energies (ZPE) and the Cartesian coordinates of all the low-lying CAl₄H isomers (ΔE< 10 kcal/mol) at the levels of B3LYP/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ. All the energies are in Hartree.
- 6. Structures, total energies (E), zero-point energies (ZPE) and the Cartesian coordinates of all the low-lying CAl₄H⁻ isomers (ΔE< 10 kcal/mol) at the levels of B3LYP/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ. All the energies are in Hartree.
- 7. Structures, total energies with zero-point energy correction (in Hartree) and Cartesian coordinates of 41 isomers of CAl4H at the level of CBS-QB3.
- 8. Structures, total energies with zero-point energy correction (in Hartree) and Cartesian coordinates of 32 isomers of CAl4H⁻ at the level of CBS-QB3.

1. Experimental and theoretical methods

Anion photoelectron spectroscopy was conducted by crossing a mass-selected, negative ion beam with a fixed-energy photon beam and analyzing the energies of the resultant photodetached electrons. This technique is governed by the well-known energy-conserving relationship, hv = EBE + EKE, where hv, EBE, and EKE are the photon energy, electron binding energy (transition energy), and the electron kinetic energy, respectively. Our photoelectron instruments, which have been described elsewhere,¹ consist of an ion source, a linear time-of-flight mass spectrometer, a mass gate, a momentum decelerator, a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser operated at various harmonics for photodetachment, and a magnetic bottle electron energy analyzer with a resolution of 35 meV at EKE = 1 eV. The photoelectron spectra were calibrated against the well-known photoelectron spectrum of Cu²² In this experiment, carbon aluminum hydride clusters were generated by a pulsed arc cluster ionization source (PACIS), which has been described in detail elsewhere.³ This PACIS source has been proven to be a powerful tool for generating metal and metal hydride cluster anions.^{4–14} In brief, a ~30 µs long, 150 V, 1000 A electrical pulse applied across the anode and sample cathode of the discharging chamber vaporizes the aluminum and carbon atoms and forms plasma. In this case the cathode was prepared by mixing and pressing aluminum and carbon powder into a well drilled hole on the top of an aluminum rod. About 200 psi of ultrahigh purity hydrogen gas was then injected into the arc region, and broken into H atoms. The plasma mix was then flushed down in a 20 cm flow tube, where it reacted, formed clusters and cooled. Anions generated by this method are at a temperature of 450 K.⁴ The anions were then mass-selected for photoelectron spectroscopic studies. The high power of this PACIS source and its ability of breaking molecules and metals into atoms turn out to be the key of generating metal hydride clusters in the gas phase, while other conventional ion sources, such as laser vaporization source, cannot make these novel clusters.

The global, unbiased, isomeric search for CAl₄H and CAl₄H⁻ were done by using the homedeveloped "grid" program.^{15–21} In this strategy, a three-dimensional box containing 6x6x6 grid points are built up. The distance between the neighboring grid points is set to the averaged value of H-H, C-H, C–Al and Al–Al single bonds. The five heavy atoms (one C and four Al) and one H-aom are placed onto these grid sites to exhausitively sort possible effective sets. If no atoms or groups are completely separated from the remaining parts, the structure can be considered as an effective starting structure for the CAl₄H or CAl₄H⁻. In each system, we have totally 2026 input structures. The geometry and frequency calculations of the initial structures were computed at the B3LYP^{22–24/}6-31G(d)²⁵ level. We totally obtained 32 local minima for CAl₄H⁻ and 41 local minima for CAl₄H, all of which have all positive frequency values. Then, we performed CBS-QB3 calculations²⁶ for all the minima. In order to improve the accuracy, high level B3LYP/aug-cc-pVTZ²⁷ (for geometry and vibrational frequencies) and $CCSD(T)^{28,29}$ /aug-cc-pVTZ (for single-point energy) calculations are performed for all the low-lying isomers ($\Delta E < 10$ kcal/mol at CBSQB3 level). Natural bond orbital (NBO)^{30,31} analyses at the B3LYP/aug-cc-pVTZ level were also carried out. All calculations were performed using the Gaussian 03³² and Gaussian 09³³ program packages.

References

- Gerhards, M.; Thomas, O. C.; Nilles, J. M.; Zheng, W.-J.; Jr, K. H. B. Cobalt–Benzene Cluster Anions: Mass Spectrometry and Negative Ion Photoelectron Spectroscopy. J. Chem. Phys. 2002, 116, 10247– 10252.
- (2) Ho, J.; Ervin, K. M.; Lineberger, W. C. Photoelectron Spectroscopy of Metal Cluster Anions: Cu⁻n, Ag⁻n, and Au⁻n. J. Chem. Phys. **1990**, *93*, 6987–7002.
- (3) Zhang, X.; Wang, Y.; Wang, H.; Lim, A.; Gantefoer, G.; Bowen, K. H.; Reveles, J. U.; Khanna, S. N. On the Existence of Designer Magnetic Superatoms. *J. Am. Chem. Soc.* **2013**, *135*, 4856–4861.
- Buytendyk, A.; Graham, J.; Wang, H.; Zhang, X.; Collins, E.; Ko, Y.-J.; Gantefoer, G.; Eichhorn, B.; Regmi, A.; Kiran, B.; et al. Photoelectron Spectra of the MgH⁻ and MgD⁻ Anions. *Int. J. Mass Spectrom.* 2014, 365–366, 140–142.
- (5) Graham, J. D.; Buytendyk, A. M.; Zhang, X.; Collins, E. L.; Kiran, B.; Gantefoer, G.; Eichhorn, B. W.; Gutsev, G. L.; Behera, S.; Jena, P.; Bowen, K. H. J Alanate Anion, AlH₄⁻: Photoelectron Spectrum and Computations. *Phys. Chem. A* **2014**, *118*, 8158–8162.
- (6) Ivanov, A. S.; Zhang, X.; Wang, H.; Boldyrev, A. I.; Gantefoer, G.; Bowen, K. H.; Černušák, I. Anion Photoelectron Spectroscopy and CASSCF/CASPT2/RASSI Study of La_n⁻ (n = 1, 3–7). J. Phys. Chem. A 2015, 119, 11293–11303.
- (7) Joseph, J.; Pradhan, K.; Jena, P.; Wang, H.; Zhang, X.; Ko, Y. J.; Jr, K. H. B. Evolution of Superhalogen Properties in PtCl_n Clusters. *J. Chem. Phys.* **2012**, *136*, 194305.
- (8) Wang, H.; Zhang, X.; Ko, Y. J.; Grubisic, A.; Li, X.; Ganteför, G.; Schnöckel, H.; Eichhorn, B. W.; Lee, M.-S.; Jena, P.; et al. Aluminum Zintl anion Moieties within Sodium Aluminum Clusters. J. Chem. Phys. 2014, 140, 054301.
- (9) Wang, H.; Zhang, X.; Ko, Y. J.; Gantefoer, G.; Bowen, K. H.; Li, X.; Kiran, B.; Kandalam, A. K. Photoelectron Spectroscopy of Boron Aluminum Hydride Cluster Anions. J. Chem. Phys. 2014, 140, 164317.
- (10) Wang, H.; Ko, Y. J.; Zhang, X.; Gantefoer, G.; Schnoeckel, H.; Eichhorn, B. W.; Jena, P.; Kiran, B.; Kandalam, A. K.; Jr, K. H. B. The Viability of Aluminum Zintl Anion Moieties within Magnesium-Aluminum Clusters. J. Chem. Phys. 2014, 140, 124309.
- (11) Zhang, X.; Ganteför, G.; Bowen, K. H.; Alexandrova, A. N. The PtAl⁻ and PtAl₂⁻ anions: Theoretical and Photoelectron Spectroscopic Characterization. J. Chem. Phys. **2014**, 140, 164316.
- (12) Zhang, X.; Robinson, P. J.; Ganteför, G.; Alexandrova, A.; Bowen, K. H. Photoelectron Spectroscopic and Theoretical Study of the [HPd(η2-H₂)]⁻ Cluster Anion. J. Chem. Phys. 2015, 143, 094307.
- (13) Zhang, X.; Wang, H.; Collins, E.; Lim, A.; Ganteför, G.; Kiran, B.; Schnöckel, H.; Eichhorn, B.; Bowen, K. H. Photoelectron Spectroscopy of the Aluminum Hydride Anions: AlH₂⁻, AlH₃⁻, Al₂H₆⁻, Al₃H₉⁻, and Al₄H₁₂⁻. J. Chem. Phys. **2013**, 138, 124303.
- (14) Zhang, X.; Visser, B.; Tschurl, M.; Collins, E.; Wang, Y.; Wang, Q.; Li, Y.; Sun, Q.; Jena, P.; Gantefoer, G.; et al. Communication: In Search of Four-Atom Chiral Metal Clusters. J. Chem. Phys. 2013, 139, 111101.
- (15) Shao, C. B.; Ding, Y. H. Grid-Based Comprehensive Iso-Meric Search Algorithm, Ver. 1.0. Jilin University, 2010.
- (16) Cui, Z.; Contreras, M.; Ding, Y.; Merino, G. Planar Tetracoordinate Carbon versus Planar Tetracoordinate Boron: The Case of CB₄ and Its Cation. *J. Am. Chem. Soc.* **2011**, *133*, 13228–13231.
- (17) Xu, J.; Ding, Y. Pentaatomic Planar Tetracoordinate Silicon with 14 Valence Electrons: A Large-Scale Global Search of $SiX_{(n)}Y_{(m)}^{(q)}$ (n + m = 4; q= 0, ±1, -2; X, Y = Main Group Elements from H to Br). *J. Comput. Chem.* **2015**, *36*, 355–360.
- (18) Gao, S.; Ding, Y. Theoretical Study of Nitrogen-Rich CN_3^- Anion and Related Salts $M^+[CN_3]^-$ (M = Li, Na, K). *RSC Adv.* **2012**, *2*, 11764–11776.

- (19) Guo, C.; Cui, Z.-H.; Ding, Y.-H. Structures, Energetics, and Isomerism of [Be,C,O,S]: Stability of Triply Bonded Sulfur. *Int. J. Quantum Chem.* **2013**, *113*, 2213–2219.
- (20) Guo, C.; Wang, C.; Ding, Y. Structures and Stability of SCBO^{+/-} and SBCO^{+/-}: Prediction of Very Short yet Classical Triple Bonding of Sulfur. *Struct. Chem.* **2014**, *25*, 1023–1031.
- (21) He, F.; Ding, Y. Global Picture of Isomerization and Dissociation of CN₂O₂ : New Metastable Isomers. *RSC Adv.* **2016**, *6*, 26441–26450.
- (22) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652.
- (23) Parr, R. G.; Weitao, Y. *Density-Functional Theory of Atoms and Molecules*; Oxford University Press, 1994.
- (24) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. *Phys. Rev. B* 1992, *46*, 6671–6687.
- (25) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-shell Atoms and Hydrides of the First-row Elements. J. Chem. Phys. 1988, 89, 2193–2218.
- (26) Montgomery, Jr, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. A Complete Basis Set Model Chemistry. VI. Use of Density Functional Geometries and Frequencies. J. Chem. Phys. 1999, 110, 2822– 2827.
- (27) Kendall, R. A.; Jr, T. H. D.; Harrison, R. J. Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. **1992**, *96*, 6796–6806.
- (28) Cizek, J. Coupled Cluster Approach. Adv. Chem. Phys. 1969, 21, 35.
- (29) Purvis III, G. D.; Bartlett, R. J. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys. **1982**, 76, 1910–1918.
- (30) Foster, J. P.; Weinhold, F. Natural Hybrid Orbitals. J. Am. Chem. Soc. 1980, 102, 7211-7218.
- (31) Reed, A. E.; Weinhold, F. Natural Bond Orbital Analysis of Near-Hartree–Fock Water Dimer. J. Chem. Phys. 1983, 78, 4066–4073.
- (32) M. J. Frisch, et.al., Gaussian 03, Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
- (33) M. J. Frisch, et.al., Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.
- 2.

Figure S1. The key structural parameters of CAl₄⁻, CAl₄²⁻, CAl₄H, CAl₄H⁻ and CAl₄Na⁻ at the level of B3LYP/aug-cc-pVTZ.

Figure S2. The conversion between CAl₄H-01 and CAl₄H-03, CAl₄H⁻01 and CAl₄H⁻02. The black values are the energy differences at the level of B3LYP/6-311G(2d,d,p), green values are corrected with zero-point energy, and purple values are at the level of CBS-QB3 with zero-point energy correction. Red and blue values are the Gibbs free energy differences at CBS-QB3 level at 298.15K and 450K.

Figure S3. Molecular orbitals of neutral CAl₄H-03 and anion CAl₄H⁻-02 with the terminal-H ptC at the level of B3LYP/aug-cc-pVTZ.

5. Structures, total energies (E), zero-point energies (ZPE) and the Cartesian coordinates all the low-lying CAl₄H isomers (ΔE< 10kcal/mol) at the levels of B3LYP/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ. All the energies are in Hartree.

CAl₄H	B3LYP/aug-cc-pVTZ						(T)/aug	-cc-pVTZ//B3	BLYP/aug-co	c-pVTZ
	E= -10	08.479	80968 ZPE	= 0.012859		E= -10	06.5778	3215		
	13	0	-1.357579	-1.295756	0.000000	13	0	-1.357579	-1.295756	0.000000
	1	0	-0.000085	-2.462105	0.000000	1	0	-0.000085	-2.462105	0.000000
• •	6	0	0.000002	0.196027	0.000000	6	0	0.000002	0.196027	0.000000
	13	0	-1.593297	1.348021	0.000000	13	0	-1.593297	1.348021	0.000000
	13	0	1.357485	-1.295856	0.000000	13	0	1.357485	-1.295856	0.000000
	13	0	1.593399	1.347883	0.000000	13	0	1.593399	1.347883	0.000000

	E=-100	8.4733	5954 ZPE= 0	0.012460		E=-100	6.5745	5201		
	13	0	-1.773955	0.422462	0.000000	13	0	-1.773955	0.422462	0.000000
	1	0	-2.481988	1.839920	0.000000	1	0	-2.481988	1.839920	0.000000
	13	0	-0.714583	-1.782072	0.000000	13	0	-0.714583	-1.782072	0.000000
	6	0	0.160640	0.038066	0.000000	6	0	0.160640	0.038066	0.000000
	13	0	1.988432	-0.742240	0.000000	13	0	1.988432	-0.742240	0.000000
	13	0	0.654066	1.958888	0.000000	13	0	0.654066	1.958888	0.000000
	E- 100	0 1721	1714 705-0	012522		E- 100	6 574	2261		
	40	0.47.34	4 200202	4 740007	0.000000	E100	0. 574	4 000000	4 740007	0.000000
	13	0	-1.200383	1.7 18207	0.000000	13	0	-1.200383	1.7 18207	0.000000
	6	0	0.056759	0.240362	0.000000	6	0	0.056759	0.240362	0.000000
	13	0	-1.710116	-0.968654	0.000000	13	0	-1.710116	-0.968654	0.000000
	13	0	1.843336	0.715668	0.000000	13	0	1.843336	0.715668	0.000000
	1	0	2.973739	1.812875	0.000000	1	0	2.973739	1.812875	0.000000
	13	0	0.810189	-1.696229	0.000000	13	0	0.810189	-1.696229	0.000000
	E=-100	8.4733	8000 ZPE=	0.012701		E=-100	6.5731	499		
	13	0	-1.242201	-0.244231	1.237358	13	0	-1.242201	-0.244231	1.237358
	1	0	-1.275101	-0.543490	2.795186	1	0	-1.275101	-0.543490	2.795186
	13	0	-1.422371	0.230247	-1.345099	13	0	-1.422371	0.230247	-1.345099
9	6	0	0.168026	0.004697	-0.055079	6	0	0.168026	0.004697	-0.055079
	13	0	1.364524	-1.557557	-0.313971	13	0	1.364524	-1.557557	-0.313971
	13	0	1.336735	1.582436	0.232938	13	0	1.336735	1.582436	0.232938
	E=-100	8.4717	1996 7PF=	0.013544		E=-100	6.5722	2183		
	13	0	-2 193237	0.006925	-0 121249	13	0	-2 193237	0 006925	-0 121249
The	13	0	1 999705	-0.005870	-0 137345	13	0	1 999705	-0.005870	-0 137345
	13	0	0 166500	-2 026381	0.015421	13	0	0 166500	-2 026381	0.015421
•	6	0	-0.196707	0.000873	0.268556	6	0	-0.196707	0.000873	0.268556
	1	0 0	-0 378990	0.001660	1 370946	1	0	-0 378990	0.001660	1 370946
	13	n	0 178808	2 025785	0.014519	13	n	0 178808	2 025785	0.014519
	10	U	0.170000	2.020100	0.017010		U	0.170000	2.020100	0.017012

6. Structures, total energies (E), zero-point energies (ZPE) and Cartesian coordinates of all the low-lying CAl₄H⁻ isomers (Δ E< 10kcal/mol) at the levels of B3LYP/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ. All the energies are in Hartree.

CAl₄H¯	B3LYP	B3LYP/aug-cc-pVTZ					(T)/aug	-cc-pVTZ//B3	BLYP/aug-c	c-pVTZ
	E= -100	08.567	82972 ZPE=0	0.013015		E= -10	06.674	3261		
	13	0	1.375725	-1.347696	0.000000	6	0	0.002068	0.154093	0.000000
	1	0	-0.006618	-2.513768	0.000000	13	0	1.951227	0.471255	0.000000
	6	0	0.000191	0.078375	0.000000	13	0	-0.551007	2.014855	0.000000
	13	0	1.450012	1.415520	0.000000	13	0	-1.720356	-0.715107	0.000000
	13	0	-1.382821	-1.340446	0.000000	13	0	0.556000	-1.857126	0.000000
	13	0	-1.442603	1.423085	0.000000	1	0	-3.049486	0.206482	0.000000
	E=-100	8.5630	9743 ZPE=0).012717		E=-10	06.6698	3457		
	13	0	1.375725	-1.347696	0.000000	6	0	0.002068	0.154093	0.000000
	1	0	-0.006618	-2.513768	0.000000	13	0	1.951227	0.471255	0.000000
	6	0	0.000191	0.078375	0.000000	13	0	-0.551007	2.014855	0.000000
	13	0	1.450012	1.415520	0.000000	13	0	-1.720356	-0.715107	0.000000
	13	0	-1.382821	-1.340446	0.000000	13	0	0.556000	-1.857126	0.000000
	13	0	-1.442603	1.423085	0.000000	1	0	-3.049486	0.206482	0.000000

7. Structures, total energies and Cartesian coordinates of 41 isomers of CAl₄H at the level of CBS-QB3 with zero-point energy correction.

	E= -1006.580456				
	1 2.276527 -2.040203 0.000000				
	13 0.732518 -1.680642 0.000000				
	13 1.803050 0.980823 0.000000				
•••	13 -1.627318 -1.035764 0.000000				
	13 -1.083368 1.820898 0.000000				
	6 0.000000 0.155186 0.000000				
0-0	E= -1006.580208				
	1 2.425781 2.496294 0.000000				
	13 1.614977 1.146480 0.000000				
9 9	13 -1.589963 1.359666 0.000000				
۲. ۲	6 0.000000 0.248012 0.000000				
	13 1.206301 -1.442316 0.000000				
	13 -1.417912 -1.370319 0.000000				
	E= -1006.579424				
Y	1 -1.242067 -0.960904 2.681660				
	13 -1.247118 -0.397181 1.199280				
	13 -1.411646 0.419723 -1.315267				
0	13 1.357637 -1.526989 -0.428875				
	13 1.322280 1.570974 0.364181				
	6 0.161182 0.016009 -0.055466				
	E= -1006.577905				
Q	13 1.421409 0.016572 -1.414677				
X	1 2.558218 -0.014714 1.321824				
Q	13 -1.269242 -1.615335 -0.117583				
ß	6 -0.105581 0.000994 -0.072595				
	13 -1.266181 1.619903 -0.082295				
	13 0.965958 -0.020468 1.546381				
	E= -1006.573790				
	1 -0.320222 -0.002019 1.372753				
	6 -0.207059 -0.001054 0.256792				
	13 -2.204866 -0.005271 -0.117474				
	13 0.160096 -2.022007 -0.003925				
—	13 0.148662 2.022315 -0.003789				
	13 2.016306 0.005604 -0.098928				
	I				

-	E= -1006.570606				
	1 -1.282202 0.000061 1.515119				
	6 -0.889907 0.000040 0.475088				
	13 0.314511 -1.509514 0.037401				
•	13 0.314590 1.509519 0.037388				
	13 2.619286 -0.000033 -0.149977				
	13 -2.739029 0.000004 -0.260631				
	E= -1006.569521				
	6 1.479189 -0.001516 0.003637				
	13 0.372972 -1.049257 -1.266371				
	13 0.364114 -0.573914 1.542082				
•	13 0.373592 1.622095 -0.273543				
	13 -1.991166 0.002020 -0.004478				
	1 2.571204 -0.003191 0.008199				
	E= -1006.564471				
	1 2.870254 -0.443314 0.000000				
	13 1.288731 -0.384835 0.000000				
Ý	6 0.000000 0.981675 0.000000				
J	13 -0.345331 -2.696384 0.000000				
	13 -1.447182 -0.215209 0.000000				
	13 0.282993 2.877449 0.000000				
	E= -1006.563004				
	1 -3.226454 -0.000520 0.001076				
	6 -2.139311 -0.000654 0.000112				
	13 -0.812153 -1.083793 0.757046				
	13 -0.813092 1.082703 -0.757991				
	13 1.429043 0.988626 0.831027				
	13 1.431766 -0.987195 -0.830216				
	E= -1006.560836				
	6 0.038355 -1.288527 -0.043585				
	1 0.069329 -2.224469 -0.614029				
	13 0.008268 -0.199863 1.507914				
9	13 1.797660 -0.395746 -0.618498				
	13 -0.064700 1.853216 -0.204120				
	13 -1.764264 -0.491789 -0.617947				

	E= -1006.560254				
•	13 -0.001919 2.943800 0.000000				
	13 -1.365716 -0.294314 0.000000				
	6 0.000000 1.012170 0.000000				
•	13 0.001216 -2.507797 0.000000				
	13 1.366470 -0.293531 0.000000				
	1 -0.000657 -4.099058 0.000000				
	E= -1006.560109				
	1 -4.056487 -0.213648 0.104783				
	13 -2.486467 -0.128847 0.035792				
	13 2.535775 -0.599878 0.040837				
	6 -0.842460 0.669944 -0.049235				
	13 0.774909 1.612434 -0.009626				
	13 -0.123351 -1.176480 -0.052339				
	E= -1006.559999				
<u>_</u>	1 1.332910 -3.766569 0.000000				
	13 0.836840 -2.252340 0.000000				
	13 -1.053423 -0.485474 0.000000				
	13 1.662289 0.265377 0.000000				
	6 0.000000 1.158078 0.000000				
	13 -1.548238 2.227675 0.000000				
	E= -1006.557078				
	1 2.818484 -1.601572 -0.023750				
	6 1.932874 -0.970610 -0.051046				
	13 0.160268 -1.235258 0.502396				
	13 1.650857 0.834686 -0.473407				
	13 -0.720816 1.467945 0.503096				
	13 -2.199211 -0.496201 -0.506698				
	E= -1006.553691				
	13 -0.299013 -2.881273 0.000000				
	13 1.547424 -0.070980 0.000000				
	1 1.259961 -1.781815 0.000000				
-	6 0.000000 0.989008 0.000000				
	13 -0.010874 2.933811 0.000000				
	13 -1.334457 -0.300960 0.000000				

	E= -1006.548666				
	13 -0.646322 1.645841 -0.002509				
	6 0.958592 0.718510 0.009605				
	13 2.612314 -0.186277 -0.001786				
	13 0.100387 -1.056216 0.000277				
	1 1.669169 -1.810543 -0.007027				
	13 -2.637204 -0.595695 0.000126				
	E= -1006.545910				
	13 2.344564 -0.109374 0.653869				
	13 0.220605 -1.417497 -0.510034				
	13 0.375356 1.499762 -0.418874				
•	13 -2.626975 -0.020429 0.484592				
	6 -0.947516 0.105055 -0.293988				
	1 1.608949 -0.012333 -0.960276				
— —	E= -1006.541457				
Q	13 -1.245388 -2.178467 0.000000				
	6 0.293397 -1.020359 0.000000				
	13 2.146746 -1.617470 0.000000				
•	13 0.000000 0.765966 0.000000				
	13 -1.029815 3.158282 0.000000				
	1 -0.090440 4.454106 0.000000				
•	E= -1006.540844				
	13 -1.783988 2.868648 0.000000				
	13 0.000000 0.745126 0.000000				
	1 1.728789 1.199269 0.000000				
	13 -0.752637 -2.627334 0.000000				
	6 0.416482 -1.120084 0.000000				
	13 2.211419 -0.561730 0.000000				
	E= -1006.535810				
9	13 3.406311 -0.139407 -0.000603				
	1 1.873910 0.983884 0.002189				
6	13 0.761096 -0.423570 0.001024				
	13 -2.398448 -1.371653 -0.000229				
	6 -1.072118 0.013096 -0.000635				
	13 -1.418283 1.852903 -0.000068				

	E= -1006.533805			
0	1 0.013112 -3.799776 0.000000			
	6 0.009729 -2.712404 0.000000			
	13 -1.367737 -1.423671 0.000000			
	13 1.379646 -1.415662 0.000000			
	13 0.000000 0.796692 0.000000			
	13 -0.017408 3.586810 0.000000			
	E= -1006.514478			
	13 -2.450782 -1.031099 -0.377779			
	13 -1.974998 1.404370 0.090224			
v 5	13 0.097744 -0.341698 0.369053			
	13 3.275912 0.268763 -0.488710			
	6 1.900431 -0.479229 0.631502			
	1 2.275020 -1.028990 1.504750			
<u> </u>	E=1006.505762			
1	1 -1.604789 -2.647864 -0.009761			
	13 -1.238359 -1.109953 -0.005513			
	13 1.381815 -0.193984 1.287893			
	13 -0.448625 1.428057 0.006354			
	6 -2.077828 0.564622 -0.001507			
	13 1.387612 -0.181033 -1.287288			
	E= -1006.499148			
	13 -2.231721 -1.238692 -0.177580			
	13 0.206555 -0.020091 0.342106			
	13 -2.204789 1.264259 -0.130410			
	6 1.897193 -0.069010 1.000403			
	13 3.025687 0.020131 -0.391382			
	1 4.272331 0.081167 -1.357960			
<u> </u>	E= -1006.498604			
	1 1.989623 0.000099 -1.373017			
	13 2.140855 -1.249628 -0.076558			
	13 2.140826 1.249686 -0.076415			
	13 -0.327966 -0.000071 0.301913			
	13 -3.165768 0.000102 -0.486550			
	6 -2.038822 -0.000209 0.960323			

	E= -1006.496973				
	1 -2.365309 0.000150 1.130878				
	13 -2.147658 -1.242883 -0.162600				
	13 -2.130634 1.254425 -0.147396				
	13 0.340436 -0.009521 0.228076				
	6 2.019981 -0.024464 0.963119				
	13 3.187503 0.009258 -0.449586				
	E= -1006.494065				
	1 2.362483 -0.000045 1.131339				
	13 2.139835 -1.248549 -0.155040				
	13 2.138768 1.249269 -0.154033				
	13 -0.340587 -0.000554 0.226114				
	6 -2.019272 -0.001672 0.963542				
	13 -3.187774 0.000610 -0.448780				
	E= -1006.489660				
	13 -2.083682 -1.555106 0.000000				
	6 -1.741362 0.272967 0.000000				
	13 0.571878 -1.902734 0.000000				
•	13 0.000000 0.809659 0.000000				
	13 2.041538 2.377843 0.000000				
	1 3.561629 1.876597 0.000000				
9	E= -1006.483730				
	1 -2.211438 -2.773108 0.000000				
	13 -1.023917 -1.707927 0.000000				
	13 1.545768 -1.893881 0.000000 13 0.000000 0.675307 0.000000				
	13 -1.156927 3.156748 0.000000				
	6 1.744571 -0.036685 0.000000				
	E= -1006.482145				
0	1 -0.797921 4.041791 0.000000				
	6 -0.592487 2.979071 0.000000				
	13 -0.234283 1.189227 0.000000				
	13 1.754090 -0.648553 0.000000				
	13 -0.592487 -1.113268 1.381114				
	13 -0.592487 -1.113268 -1.381114				

	E= -1006.470487				
2	1 -4.288650 -2.097257 0.000000				
	13 -3.940878 -0.529280 0.000000				
	13 -1.461898 0.258140 0.000000				
	6 0.000000 1.314872 0.000000				
	13 1.542993 0.355287 0.000000				
	13 4.189680 -0.529684 0.000000				
	E= -1006.469666				
	13 4.096508 -0.681380 0.005250				
	13 1.498423 0.329720 -0.005846				
	6 0.056753 1.429322 -0.014248				
	13 -1.480772 0.488238 0.011221				
	13 -3.745224 -0.795862 -0.011894				
	1 -5.136681 -0.005240 0.102000				
— —	E= -1006.468433				
0	13 3.835949 0.122700 0.032710				
	6 1.882029 -0.063687 0.015221				
	13 -0.001518 -0.139645 -0.149396				
	1 -0.804838 -1.252466 1.019555				
	13 -2.259289 -1.250348 -0.011458				
	13 -2.381859 1.393031 0.042693				
	E= -1006.464911				
2	13 -3.838826 -0.941267 0.000000				
	13 -1.528842 0.437071 0.000000				
	1 -3.230228 0.864288 0.000000				
	6 0.000000 1.420320 0.000000				
	13 1.496869 0.377085 0.000000				
	13 4.119279 -0.594905 0.000000				
	E=-1006.465952				
	13 -2.949431 0.020644 -0.406115				
	6 -1.894379 -0.062522 1.127881				
	1 -1.425209 0.065726 -1.308913				
	13 -0.312746 -0.019084 0.133547				
	13 2.107181 1.262266 -0.052979				
	13 2.138957 -1.240026 -0.094328				

8. Structures, total energies and Cartesian coordinates of 32 isomers of CAl₄H⁻ at the level of CBS-QB3 with zero-point energy correction.

	E= -1006.645228				
	13 -2.420224 0.000083 0.584545				
	13 -0.287478 1.467935 -0.426157				
	13 -0.287605 -1.467876 -0.426177				
	6 0.897193 0.000053 -0.127836				
	13 2.710214 -0.000062 0.403409				
	1 -1.676947 -0.001364 -0.996053				
	E= -1006.641318				
	6 -2.134281 -0.005904 -0.000371 13 -0.793408 -1.146397 -0.679067				
	13 -0.802347 1.144806 0.678886				
	13 1.417483 -1.050525 0.738863				
	13 1.411256 1.055619 -0.738411				
	1 -3.223115 -0.010114 -0.001288				
	E=-1006.640901				
	1 -2.700762 -0.457785 0.000000				
	13 -1.087925 -0.484355 0.000000				
X	13 -0.788247 2.837966 0.000000				
J	13 0.629466 -2.755131 0.000000 13 1.454457 -0.079274 0.000000				
	6 0.000000 1.118017 0.000000				
	E= -1006.640088				
	13 -2.713798 -0.303112 0.000020				
	6 -0.952323 0.806552 -0.000027				
	13 -0.193888 -1.009514 -0.000028				
	13 0.861073 1.472813 -0.000006				
	13 2.616308 -0.657541 0.000020				
	1 -1.692108 1.626288 0.000085				
	E= -1006.638967				
P	1 -1.986324 0.767541 0.000000				
	13 -2.060351 2.539712 0.000000				
	13 0.000000 0.904870 0.000000				
•	13 2.598607 -1.052630 0.000000				

	6 0.721978 -0.822317 0.000000				
	13 -0.718682 -2.071462 0.000000				
	E= -1006.637299				
	13 2.093996 0.000992 -0.002689				
	13 -0.380536 1.434209 -0.615833				
	13 -0.378819 -1.251154 -0.933135				
•	6 -1.628888 -0.001091 0.002762				
	1 -2.720862 -0.001916 0.005452				
	13 -0.373550 -0.183396 1.549963				
	E= -1006.635687				
	6 0.500520 -0.976291 0.000000				
	13 -0.886468 -2.277307 0.000000				
4	13 2.354101 -1.389864 0.000000				
•	13 0.000000 0.816366 0.000000				
	13 -1.665845 2.986422 0.000000				
	1 -0.426369 4.094721 0.000000				
	E= -1006.634628				
0	13 1.404520 -1.346530 -0.227028				
	13 1.403978 1.347347 -0.224390				
	13 -0.473414 -0.001839 1.418206				
0 0	6 -0.155127 0.000758 -0.641689				
	1 -0.445970 0.001928 -1.717457				
	13 -2.229181 0.000524 -0.538512				
	E= -1006.631816				
	1 4.034234 0.627523 0.000000				
	13 2.435232 0.521978 0.000000				
	13 0.000000 1.014991 0.000000				
-	6 1.083065 -0.748885 0.000000				
	13 -0.574813 -1.604876 0.000000				
	13 -2.670621 0.365275 0.000000				

	E (000 0/000E
	E= -1006.618685
	13 3.146686 0.000190 -0.611058
	6 1.924160 -0.000330 0.828722
0- 3	1 2.198845 -0.000638 1.890913
	13 0.093693 -0.000178 0.466270
	13 -2.148889 -1.219257 -0.191764
	13 -2.148705 1.219446 -0.191391
—	E= -1006.603111
٩	1 2.673965 1.239249 0.000000
	6 1.916831 0.455918 0.000000
	13 1.678399 -1.403014 0.000000
	13 0.000000 0.605742 0.000000
	13 -1.787491 2.569839 0.000000
	13 -0.981289 -2.078318 0.000000
	E= -1006.602450
	13 2.891339 -0.278592 0.000000
	13 0.375270 -1.270996 0.000000
	13 0.000000 1.285828 0.000000
O r	6 -1.863013 1.389389 0.000000
	1 -2.624854 2.168985 0.000000
	13 -2.204845 -0.544341 0.000000
	E= -1006.600493
	1 -3.264879 0.004026 1.239849
	6 -2.431709 0.002563 0.533742
	13 -1.364971 -1.460101 -0.065628
	13 -1.360593 1.461092 -0.067395
	13 0.761624 -0.002768 -0.553474
	13 3.337412 0.000285 0.344781

	E= -1006.593055
	1 1.052188 3.156103 0.000000
	13 -0.626257 2.608956 0.000000
	6 0.000000 0.771484 0.000000
	13 1.896053 1.397764 0.000000
	13 -0.464814 -0.981029 0.000000
	13 -0.885919 -3.624537 0.000000
	E= -1006.583795
0	1 -1.500282 2.645771 -0.001676
	13 -1.214963 1.072768 -0.000777
	13 1.409160 0.150678 -1.318732
0	13 -0.475338 -1.324173 -0.000447
	6 -2.187407 -0.549573 -0.000457
	13 1.406119 0.150854 1.320296
	E= -1006.572962
	E= -1006.572962 6 -1.899007 -0.000702 1.009978
	E= -1006.572962 6 -1.899007 -0.000702 1.009978 13 -2.989595 0.000214 -0.411227
	E= -1006.572962 6 -1.899007 -0.000702 1.009978 13 -2.989595 0.000214 -0.411227 1 -4.287753 0.000912 -1.347225
	E= -1006.572962 6 -1.899007 -0.000702 1.009978 13 -2.989595 0.000214 -0.411227 1 -4.287753 0.000912 -1.347225 13 -0.153785 -0.000273 0.384129
	E= -1006.572962 6 -1.899007 -0.000702 1.009978 13 -2.989595 0.000214 -0.411227 1 -4.287753 0.000912 -1.347225 13 -0.153785 -0.000273 0.384129 13 2.174672 1.210770 -0.167431
	E= -1006.572962 6 -1.899007 -0.000702 1.009978 13 -2.989595 0.000214 -0.411227 1 -4.287753 0.000912 -1.347225 13 -0.153785 -0.000273 0.384129 13 2.174672 1.210770 -0.167431 13 2.175000 -1.210457 -0.167982
	E= -1006.572962 6 -1.899007 -0.000702 1.009978 13 -2.989595 0.000214 -0.411227 1 -4.287753 0.000912 -1.347225 13 -0.153785 -0.000273 0.384129 13 2.174672 1.210770 -0.167431 13 2.175000 -1.210457 -0.167982 E= -1006.572515
	E= -1006.572962 6 -1.899007 -0.000702 1.009978 13 -2.989595 0.000214 -0.411227 1 -4.287753 0.000912 -1.347225 13 -0.153785 -0.000273 0.384129 13 2.174672 1.210770 -0.167431 13 2.175000 -1.210457 -0.167982 E= -1006.572515 1 2.654677 0.042699 0.942856
	E= -1006.572962 6 -1.899007 -0.000702 1.009978 13 -2.989595 0.000214 -0.411227 1 -4.287753 0.000912 -1.347225 13 -0.153785 -0.000273 0.384129 13 2.174672 1.210770 -0.167431 13 2.175000 -1.210457 -0.167982 E= -1006.572515 1 2.654677 0.042699 0.942856 13 2.226225 -1.218595 -0.248504
	E= -1006.572962 6 -1.899007 -0.000702 1.009978 13 -2.989595 0.000214 -0.411227 1 -4.287753 0.000912 -1.347225 13 -0.153785 -0.000273 0.384129 13 2.174672 1.210770 -0.167431 13 2.175000 -1.210457 -0.167982 E= -1006.572515 1 2.654677 0.042699 0.942856 13 2.226225 -1.218595 -0.248504 13 2.037730 1.377567 -0.074178
	E= -1006.572962 6 -1.899007 -0.000702 1.009978 13 -2.989595 0.000214 -0.411227 1 -4.287753 0.000912 -1.347225 13 -0.153785 -0.000273 0.384129 13 2.174672 1.210770 -0.167431 13 2.175000 -1.210457 -0.167982 E= -1006.572515 1 2.654677 0.042699 0.942856 13 2.226225 -1.218595 -0.248504 13 2.037730 1.377567 -0.074178 13 -0.227988 -0.140815 0.275517
	E= -1006.572962 6 -1.899007 -0.000702 1.009978 13 -2.989595 0.000214 -0.411227 1 -4.287753 0.000912 -1.347225 13 -0.153785 -0.000273 0.384129 13 2.174672 1.210770 -0.167431 13 2.175000 -1.210457 -0.167982 E= -1006.572515 1 2.654677 0.042699 0.942856 13 2.226225 -1.218595 -0.248504 13 2.037730 1.377567 -0.074178 13 -0.227988 -0.140815 0.275517 6 1.059664 0.325285 0.771620
	E= -1006.572962 6 -1.899007 -0.000702 1.009978 13 -2.989595 0.000214 -0.411227 1 -4.287753 0.000912 -1.347225 13 -0.153785 -0.000273 0.384129 13 2.174672 1.210770 -0.167431 13 2.175000 -1.210457 -0.167982 E= -1006.572515 1 2.654677 0.042699 0.942856 13 2.226225 -1.218595 -0.248504 13 2.037730 1.377567 -0.074178 13 -0.227988 -0.140815 0.275517 6 -1.959664 -0.325285 0.771620

	F - 1006 560560
	13 -0.144077 -0.000131 -0.009669
	6 -1.891598 -0.000367 -0.475108
	13 -3.662754 0.000091 0.163628
	E= -1006.566719
	1 0.555639 -3.027417 0.000000
	13 1.924102 -1.873485 0.000000
	13 -1.131211 -2.427893 0.000000
	13 0.000000 0.034371 0.000000
	6 -0.323285 1.808843 0.000000
	13 -0.686424 3.665035 0.000000
	E= -1006.551277
	13 4.142841 0.353573 0.093650
	13 1.691960 -0.444246 -0.314332
	1 2.456415 0.971239 0.520926
	13 -0.828013 -0.177807 0.108796
	6 -2.545475 -0.388816 0.623040
	13 -4.020909 0.373222 -0.215743
	E= -1006.543564
	1 -5.298560 -0.003323 -0.168367
	13 -3.812674 -0.665668 0.015955
	13 -1.692283 0.816241 -0.171943
	13 0.762290 0.154836 0.151024
	6 2.483997 0.077390 0.692318
	13 4.003788 -0.340871 -0.301616
	E= -1006.541796
	13 -4.299708 -0.910762 0.000000
	13 -1.604809 -0.439733 0.000000
Ţ	1 -4.134188 -2.565675 0.000000
Ţ	1 -4.134188 -2.565675 0.000000 6 0.000000 0.465835 0.000000

