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Abstract— In this paper we consider estimation of a multiple-
input multiple-output dynamical system over a wireless fading
communication channel using a Kalman filter. We are interested
in finding the optimum receiver design in terms of handing
noisy samples. We reformulate the estimation problem to
include the impact of stochastic communication noise in the
noisy packets. We will show how the eigenvalues of the state
transition matrix A affect the optimum receiver design. We
prove that, in the absence of a cross-layer information path,
packet drop should be designed to balance information loss and
communication noise in order to optimize the performance. In
the presence of a cross-layer path, we show that keeping all the
packets will minimize the average estimation error covariance.
We also derive the stability condition in the presence of noisy
packets and prove that it is independent of the shape of the
communication noise variance or availability of a cross-layer
information path.

I. INTRODUCTION

In this paper, we are interested in mobile sensor networks

that are running real-time applications and are therefore

delay-sensitive. We consider a mobile sensor that is observ-

ing a dynamical system. It transmits its observation over a

wireless link to a remote node that is in charge of estimation

using a Kalman filter. This is a fundamental problem that

can arise in networked sensing, estimation and control.

Communication plays a key role in the overall perfor-

mance of such networks since both sensor measurements and

control commands are transmitted over wireless links. Digital

transmission over wireless links can experience bit error

rate due to multipath fading, shadowing, receiver thermal

noise and excessive distance between the transmitter and

receiver [1]. This is in addition to the impact of quantization.

Impact of quantization on estimation and control has been

studied extensively. The impact of other channel unrelia-

bility such as fading, shadowing, and mobility, however,

has not been studied extensively. For mobile applications,

such channel unreliability will introduce a time-varying noise

in the received samples. The receiver can then decide to

either keep the received sample or drop it. The criteria for

making this decision vary depending on the application. Data

networks, for example, are not as sensitive to delays since

the application is not real time. The receiver, therefore, can

afford to drop erroneous packets and wait for retransmission.

Voice applications such as cellular networks, on the other

hand, are sensitive to delays. In every transmitted bit stream,

there are key bits embedded for synchronization and other

crucial tasks. If these bits get corrupted, the receiver drops

the transmitted stream. However, once these bits are received

accurately, the rest of the bit error rate is either corrected

through channel coding or tolerated [2] since there is no

time for retransmission. Estimation and control of dynamical

systems over wireless links is an emerging application, for

which new communication design paradigms should be de-

veloped. Control applications are typically delay sensitive as

we are racing against the dynamics of the system. Therefore,

the communication protocols and designs suitable for other

already-existing applications like data networks may not be

entirely applicable.

Current work in literature has assumed applying data

network design principles to networked control applications

by considering a receiver that only keeps noise-free packets

(packet erasure channels). Along this line, impact of packet

drop on networked control applications has been studied.

Micheli et al. investigated impact of packet loss on estimation

by considering random sampling of a dynamical system [3].

This is followed by the work of Sinopoli et al. which derived

bounds for the maximum tolerable probability of packet loss

to maintain stability [4]. In [5], [6] we studied the impact

of the stochastic communication noise introduced by fading

and mobility on networked control systems. Instead of ap-

plying data network design principles to such delay-sensitive

applications, we developed new receiver design paradigms

for single-input single-output systems. In this paper, we are

extending that work to multiple-input multiple-output cases.

The main question this paper addresses is the following:

“How should noisy packets be handled in the receiver for

a multiple-input multiple-output system?”. We answer this

question both in terms of stability and performance. We will

find the impact of the eigenvalues of matrix A. Furthermore,

we explore the role of a cross-layer information path and its

impact on the optimum design.

II. SYSTEM MODEL

Consider a mobile sensor observing a linear dynamical

system: x[k + 1] = Ax[k] + w[k] and y[k] = Cx[k] + v[k],
where x[k] ∈ R

N and y[k] ∈ R
M represent the state

and observation respectively. w[k] ∈ R
N and v[k] ∈ R

M

represent zero-mean Gaussian process and observation noise

vectors with covariances of Q < 0 and R ≻ 0 respectively.
In this paper, we take M = N and C invertible to focus

on the impact of communication noise. We are interested

in estimating unstable dynamics and therefore we consider

cases where matrix A has at least one eigenvalue outside the

unit circle. The sensor then transmits its observation over a

wireless fading channel to a remote node, which is in charge

of estimation. Since estimation of dynamical systems over
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mobile links has not been extensively studied before, we

keep our analysis general by considering mobile channels.

A. Physical Layer: Wireless Communication [1]

In this part we will summarize how to model the impact

of a time-varying fading wireless communication channel on

the observation. The sensor quantizes the observation, y[k],
transforms it into a packet of bits and transmits it over a

fading channel. The remote node will receive a noisy version

of the transmitted data. Let ŷ[k] represent the signal at the
end of the physical layer pipeline. ŷ[k] is what the second
node assumes the kth transmitted observation was. Let n[k]
represent the difference between the transmitted observation

and the received one at the end of the physical layer pipeline:

n[k] = y[k] − ŷ[k], where n[k] = nc[k] + nq[k]. In this
paper, we refer to n[k] as communication noise. It consists
of two parts, link noise (nc): noise due to the quality of the

communication link and quantization noise (nq). Since the

impact of quantization noise on estimation and control is

studied extensively, in this paper we are mainly interested in

the impact of the link noise.

1) Multipath Fading Channel: One of the major per-

formance degradation factors of a mobile communication

environment is multipath fading. “Multipath” is a term used

to describe multiple paths that a radio wave may follow

between the transmitter and the receiver. Waves that are

received in phase reinforce each other producing a stronger

signal, while those that are received out of phase produce

a weaker signal. Small changes in the transmission paths,

caused by movements of the receiver or transmitter can

change the phase relationship of the two signals, introducing

a rapidly time-varying fading channel. This is in addition to

the distance-dependent attenuation factor.

2) Channel Signal to Noise Ratio: A fundamental param-

eter that characterizes the performance of a communication

channel is the received Signal to Noise Ratio. Received Sig-

nal to Noise Ratio is defined as the ratio of the received signal

power divided by the receiver thermal noise power. Let Υ[k]
represent the instantaneous received Signal to Noise Ratio at

kth transmission. Υ[k] determines how well the transmitted
bits of the kth transmission can be retrieved. As the sensor

moves, the remote node will experience different channels

and therefore different received Signal to Noise Ratios. In

a given area, Υ[k] can be considered a stationary stochastic
process with Υave representing its average. The distribution

of Υ[k] is a function of the transmission environment and the
level of mobility of the sensor. In this paper we do not make

any assumption on the probability distribution of Υ. Only
when we want to provide an example, we will take Υ to
be exponentially distributed, which is a common model for

outdoor fading channels with no Line-Of-Sight path. We also

take Υ to be uncorrelated from one transmission to the next.
This will be the case as long as the time interval between

consecutive transmissions is bigger than channel coherence

time [1].

3) Communication Noise Variance: Let σ2
n[k] repre-

sent the variance of n[k] at kth transmission: σ2
n[k] =

E(n2[k]|Υ[k]) = Ξ(Υ[k]). When necessary, we may write
σ2

n(Υ) to indicate the dependency. Ξ is a non-increasing
function that depends on the transmitter and receiver design

principles, such as modulation and coding, as well as the

transmission environment. To keep our analysis general, in

this paper we do not make any assumption on Ξ.
4) Packet Drop Probability: Depending on the receiver

design, there can be a packet drop mechanism deployed

in the receiver. Let µ[k] represent the probability that the
receiver drops the kth packet. µ[k] can also be represented
as a function of Υ[k]: µ[k] = G(Υ[k]), where function G

is a non-increasing function. Functions Ξ and G provide

the abstraction necessary to consider the impact of physical

layer in the higher application layer. To ease mathematical

derivations, in this paper we will approximate function G

with the following:

µ[k] =

{
0 Υ[k] ≥ ΥT

1 else
(1)

This means that the receiver keeps those packets with re-

ceived Signal to Noise Ratio above a designated threshold:

ΥT . Experimental results confirm this to be a good approx-

imation [7].

B. Application Layer: Estimation

The remote node estimates the state based on the received

observation using a Kalman filter [8]. Let x̂[k] denote the
estimate of x[k] at the remote node. Then P [k] represents
the corresponding estimation error covariance matrix given

Υ[k − 1], Υ[k − 2], . . . , Υ[0]:

P [k] = E
[
(x[k] − x̂[k])(x[k] − x̂[k])T

]

|Υ[k−1],Υ[k−2],...,Υ[0]
.

(2)

This is different from traditional form of Kalman filtering

since P [k] is a function of channel statistics throughΥ[k−1],
Υ[k − 2], . . . , Υ[0]. To obtain E(P [k]), P [k] should be
averaged over the joint distribution of Υ[k − 1], Υ[k − 2],
. . . , Υ[0]. There will be different forms of recursion for P [k]
depending on the availability of a cross-layer information

path in the receiver, as we shall see in the subsequent

sections.

C. Cross-Layer Information Path

When estimating over wireless links, the application layer

will be in charge of estimation whereas the knowledge of the

quality of the communication link will be available in the

physical layer. A cross-layer information path in this paper

refers to a path from physical layer to the application layer

that carries information on the quality of the link (Signal

to Noise Ratio or communication noise variance). In other

words, the physical layer can let the application layer know,

using a cross-layer path, how much it trusts the accuracy

of each received packet. While presence of such a path can

play a key role in the overall performance and the optimum

design typically involves one, the receiver architecture may

not support it. Therefore, we will consider scenarios where

such a path is available at the receiver as well as cases where

it is not supported by the architecture.
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D. Scenario 1: Ideal Communication Noise

As discussed in Section I, current work in literature mainly

applies data network design principles to networked control

applications by assuming that the receiver drops packets that

contain any amount of error. Then those packets that are

kept in the receiver are considered noise-free. We refer to

this assumption on the communication noise as “ideal noise”

throughout the paper. Similarly we refer to this design strat-

egy, which applies data-network type protocols, as “scenario

1”. Such an assumption translates to the following recursion

for the estimation error covariance:

P [k + 1] = AP [k]AT + Q

−AP [k]CT
(
R + CP [k]CT + S1(Υ[k])

)−1
CP [k]AT ,

(3)

where S1[k] =

{
0 Υ[k] ≥ ΥT

∞ otherwise
. Current work in liter-

ature mainly considers Kalman filtering over fixed wireless

channels by assuming that the probability of packet drop

is the same from one transmission to the next. For a fixed

probability of packet drop, µscenario 1, authors in [4] found the

following condition for stability: µscenario 1 < ρ−2
max, where

ρmax represents spectral radius of matrix A.

III. RECEIVER DESIGN THEORIES

In Section II-D we saw that the current work in the

literature assumed a receiver that drops those packets that

contain any amount of error, which is a suitable design for

non real-time applications like data networks. Estimation of

a rapidly changing dynamical system, however, is delay sen-

sitive. Dropping all the erroneous packets can result in loss

of information, can reduce the useful transmission rate and

can lead to instability. In this section, we will consider the

impact of stochastic communication noise on the estimation

of a multiple-input multiple-output system and will derive

receiver design theories for real-time estimation. To keep

the analysis general, we will not make any assumption on

the communication noise variance or Signal to Noise Ratio

distribution. We will analyze the performance and stability

conditions for the following cases:

Scenario 2: Receiver can not provide a cross-layer path,

Scenario 3: Receiver is equipped with a cross-layer path.

A. Scenario 2: Case of No Cross-Layer Path

In this part we will consider a receiver that does not

support a cross-layer path. Then the application layer (i.e. the

Kalman filter) does not have any knowledge of the quality of

the communication link. We will find the optimum way of

dropping packets for such a receiver. To ease mathematical

derivation of this scenario, we assume that the observation

noise is negligible compared to the communication noise.1

1The analysis can be similarly carried out under the condition that the
knowledge of observation noise covariance, R, is not available in the
estimator. Then σ2

nIN should be replaced by σ2
nIN + R throughout the

analysis.

The estimation using a Kalman filter will then be as follows:

x̂[k + 1] =

{
Ax̂[k] if kth packet is dropped

AC−1ŷ[k] if kth packet is kept.
(4)

The estimation error will be as follows:

x[k + 1] − x̂[k + 1] =
{

A(x[k] − x̂[k]) + w[k] if kth packet is dropped

w[k] − AC−1(v[k] + n[k]) if kth packet is kept.
(5)

This will result in the following recursion for the estimation

error covariance, assuming that the observation noise is

negligible:

P [k + 1] =

AP [k]AT + Q − AP [k]AT −AC−1σ2

n[k]C−1T AT

S2[k] ,
(6)

where σ2
n is the communication noise variance as defined in

Section II and S2[k] =

{
1 Υ[k] ≥ ΥT

∞ otherwise.
. As the mobile

node moves in a given area, it will experience different Signal

to noise Ratios. Averaging Eq. 6 over Υ[k], Υ[k−1], . . . will
result in the following recursion for average estimation error

covariance:

E(P [k + 1]) =
µave(ΥT )AE(P [k])AT + Q + σ2

n,ave(ΥT )A(CT C)−1AT .
(7)

µave and σ2
n,ave represent average probability of packet

loss (spatial averaging) and average communication noise

variance that entered the estimation process respectively:

µave(ΥT ) = E(µ) =

∫ ΥT

0

χ(Υ)dΥ (8)

and

σ2
n,ave(ΥT ) =

∫ ∞

ΥT

σ2
n(Υ)χ(Υ)dΥ, (9)

where χ represents probability density function of Υ.
Lemma 1 (see [8]): Consider the following Lyapunov

equation with Θ Hermitian and Π real: Σ = ΠΣΠT + Θ.
The following hold:

a) If Π is a stable matrix (spectral radius less that one),
Σ will be unique and Hermitian and can be expressed as
follows: Σ =

∑∞
i=0 ΠiΘ(ΠT )i,

b) if {Π, Θ1/2} is controllable and Θ < 0, then Σ will be
Hermitian, unique and positive-definite iff Π is stable.

1) Stability:

Definition 1: We consider the estimation process stable as

long as average estimation error covariance stays bounded.

Using Lemma 1b, it can be easily seen from Eq. 7 that the

stability condition will be as follows:

µave,scenario 2 < ρ−2
max, (10)

where ρmax represents the spectral radius of matrix A.

Remark 1: The stability condition is independent of the

shape of the communication noise variance, σ2
n.

2) Optimum Performance: Intuitively, there should be an

optimum ΥT (optimum way of dropping packets) that will

minimize the asymptotic average estimation error covariance
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for this case. If ΥT is too low, the receiver will keep most

of the packets but the estimation will be too noisy. On the

other hand, if ΥT is too high, the receiver will be strict about

the quality of the packets that it will keep. This reduces the

amount of communication noise that enters the estimation

process but will result in high packet loss rate and therefore

information loss rate. Then the optimum ΥT will be the

one that provides a balance between information loss and

communication noise. In [6], we related the optimum ΥT to

the dynamics of the system under estimation for a scalar case.

Here we will find how eigenvalues of A affect the optimum

design.

The asymptotic average estimation error covariance is as

follows as long as the stability condition of Eq. 10 holds:

E(P [∞]) = µave(ΥT )AE(P [∞])AT +
σ2

n,ave(ΥT )A(CT C)−1AT + Q for µave(ΥT ) < ρ−2
max.
(11)

Let ΥT1,opt represent the optimum way of dropping packets

which will minimize the spectral norm of the asymptotic

average estimation error covariance matrix:

ΥT1,opt = arg min ||E(P [∞, ΥT ])||. (12)

Let ΥT2,opt represent the optimum way of dropping packets

which will minimize the determinant of the asymptotic

average estimation error covariance:

ΥT2,opt = arg min det E(P [∞, ΥT ]). (13)

We will derive an analytical expression that relates optimum

way of dropping packets to the characteristics of the com-

munication channel and eigenvalues of matrix A. For this

derivation, we assume that C = ςIN and Q = qIN , where

IN represents an N×N identity matrix. We furthermore take

A = As, where As is a symmetric matrix, i.e. As = AT
s .

Later in this subsection we will discuss cases where A is not

symmetric.

Theorem 1 (Balance of Information Loss & Communica-

tion Noise): Consider the system model described in Section

II, with C = ςIN ,Q = qIN and A = As. Consider a receiver

that is equipped with a packet drop mechanism described by

Eq. 1 and does not support a cross-layer path. Then ΥT1,opt

will be as follows:

ΥT1,opt =

{
Υ∗

T1
Υ∗

T1
≥ 0

0 otherwise
(14)

where Υ∗
T1
is the unique solution to the following equation:

µave(Υ
∗
T1

)
︸ ︷︷ ︸

information loss

+ σ2
n,norm(Υ∗

T1
)

︸ ︷︷ ︸

communication noise

+
ς2q

ρ2
maxσ2

n(Υ = Υ∗
T1

)
= ρ−2

max,

(15)

where σ2
n,norm refers to the normalized average commu-

nication noise variance: σ2
n,norm(Υ∗

T1
) =

σ2

n,ave(Υ∗

T1
)

σ2
n(Υ=Υ∗

T1
) , and

ΥT2,opt will be as follows:

ΥT2,opt =

{
Υ∗

T2
Υ∗

T2
≥ 0

0 otherwise
(16)

where Υ∗
T2
is the unique solution to the following equation:

N∑

i=1

ρ2
i

1 − ρ2
i µave(Υ∗

T2
)

=
N∑

i=1

1

σ2
n,norm(Υ∗

T2
) + qς2

σ2
n(Υ=Υ∗

T2
)ρ2

i

,

(17)

where ρ1, ρ2,. . . ,ρN represent eigenvalues of matrix A,

where |ρ1| ≥ |ρ2| ≥ . . . ≥ |ρN | and ρmax = |ρ1|.
Proof of Theorem 1: Using Lemma 1a (under stability

condition of Eq. 10) with C = ςIN , Q = qIN and A = As

will result in

E(P [∞]) = ς−2σ2
n,ave(ΥT )

∑∞
i=0 µi

ave(ΥT )(As)
2i+2

+q
∑∞

i=0 µi
ave(ΥT )(As)

2i.
(18)

We will have the following decomposition: As = LΛLT ,

where Λ = diag{ρ1, ρ2, . . . , ρN} and LT L = IN . It can be

confirmed that,

E(P [∞]) =

Ldiag{ q+ς−2ρ2

1
σ2

n,ave(ΥT )

1−ρ2

1
µave(ΥT )

, . . . ,
q+ς−2ρ2

N σ2

n,ave(ΥT )

1−ρ2

N
µave(ΥT )

}LT ,

(19)

This results in

||E(P [∞])|| = (
q + ς−2ρ2

1σ
2
n,ave(ΥT )

1 − ρ2
1µave(ΥT )

). (20)

Let Υ∗
T1
represent any solution to Eq. 15. It can be easily

verified that
∂E(||P [∞]||)

∂ΥT
is only zero at Υ∗

T1
. Next we show

that Eq. 15 has a unique solution. Assume that Eq. 15 has

two solutions: Υ∗
T1,1
and Υ∗

T1,2
> Υ∗

T1,1
. Since σ2

n is a non-

increasing function of Υ, we will have the following:

µave(Υ
∗
T1,1

) + σ2
n,norm(Υ∗

T1,1
) + ς2q

ρ2
maxσ2

n(Υ=Υ∗

T1,1
)−

[

µave(Υ
∗
T1,2

) + σ2
n,norm(Υ∗

T1,2
) + ς2q

ρ2
maxσ2

n(Υ=Υ∗

T1,2
)

]

=
∫ Υ∗

T1,1

Υ∗

T1,2

χ(Υ)dΥ +

∫ Υ∗

T1,2

Υ∗

T1,1

σ2
n(Υ)χ(Υ)

σ2
n(Υ = Υ∗

T1,1
)
dΥ

︸ ︷︷ ︸

<0

+

(
1

σ2
n(Υ = Υ∗

T1,1
)
− 1

σ2
n(Υ = Υ∗

T1,2
)
)

∫ ∞

Υ∗

T1,2

σ2
n(Υ)χ(Υ)dΥ

︸ ︷︷ ︸

<0

+
ς2q

ρ2
max

(
1

σ2
n(Υ = Υ∗

T1,1
)
− 1

σ2
n(Υ = Υ∗

T1,2
)
)

︸ ︷︷ ︸

<0

< 0.

(21)

Therefore2, Υ∗
T1,1

= Υ∗
T1,2
. Let Υc

T be the critical sta-

bility threshold: 1 − ρ2
maxµave(Υ

c
T ) = 0. We have

Υ∗
T1

< Υc
T . Consider those cases where there exists

a positive solution to Eq. 15. Then using the fact that

limΥT →Υc
T

E(P [∞, ΥT ]) → ∞ shows that Υ∗
T1
cor-

responds to the unique minimum of ||E(P [∞, ΥT ])||,
i.e.ΥT1,opt = Υ∗

T1
. If process noise is the dominant noise,

compared to the communication noise, there may be no

positive solution to Eq. 15. It can be easily seen that, in

2Note that
∂σ

2

n(Υ)

∂Υ
is taken to be zero only asymptotically.
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such cases, ||E(P [∞, ΥT ])|| will be an increasing function
for ΥT ≥ 0, resulting in ΥT1,opt = 0.
Next we will find ΥT2,opt. We will have,

det E(P [∞]) =

N∏

i=1

ρ2
i ς

−2σ2
n,ave(ΥT ) + q

1 − ρ2
i µave(ΥT )

. (22)

It can be easily confirmed that

∂ det E(P [∞])
∂ΥT

= χ(ΥT )
Q

N
i=1(ς−2σ2

n,ave(ΥT )ρ2

i +q)
Q

N
i=1(1−ρ2

i
µave(ΥT ))

×
[
∑N

j=1

ρ2

j

1−ρ2

j
µave(ΥT )

−
∑N

j=1

ς−2σ2

n(Υ=ΥT )ρ2

j

ς−2σ2
n,ave(ΥT )ρ2

j
+q

]

.

(23)

Therefore,
∂ det(E(P [∞]))

∂ΥT
|ΥT =Υ∗

T2

= 0 will result in Eq. 17.
In a similar manner, it can be easily confirmed that Eq.

17 has a unique solution and that ΥT2,opt corresponds to

the global minimum of the determinant of the asymptotic

average estimation error covariance.

Theorem 1 shows that the optimum way of dropping pack-

ets is the one that provides a balance between information

loss (µave) and communication noise (σ
2
n,ave). Eq. 15 (and

Eq. 17) may not have a positive solution if process noise

is the dominant noise compared to the communication noise

(the third term on the left hand side of Eq. 15, for instance,

can get considerably high values). In such cases, the receiver

should keep all the packets as communication noise is not

the bottleneck. However, as long as process noise is not the

dominant noise, the optimum way of dropping packets is the

one that provides a balance between information loss and

communication noise.

Theorem 1 confirms that dropping all the erroneous pack-

ets will not minimize the estimation error covariance and that

the optimum receiver would allow some amount of commu-

nication noise in the estimation process in order to avoid high

information loss rate. In general, minimizing spectral norm

and determinant would result in different optimum packet

drop thresholds depending on the eigenvalues of matrix A,

as can be seen from Theorem 1. If A has one dominant

eigenvalue or all the eigenvalues of A are the same, then it

is easy to see from Eq. 17 that ΥT1,opt = ΥT2,opt.

To see the impact of operating at the optimum ΥT , Fig.

1 shows ‖E(P [∞])‖ as a function of ΥT and for different

levels of average Signal to Noise Ratio, Υave. For this exam-

ple, Signal to Noise Ratio, Υ, is taken to have an exponential
distribution and the communication noise variance is taken

as follows: σ2
n(Υ) = α + δ × Ω(

√
Υ), where Ω(d) =

1√
2π

∫ ∞
d e−t2/2dt for an arbitrary d. This is the variance of

the communication noise for a binary modulation system that

utilizes gray coding [9]. The following parameters are chosen

for this example: A =





2 0.3 0.45
0.4 0.2 0.5
1.5 0.6 0.34



, Q = qI3,

C = ςI3, q = 0.001, ς = 2, α = 1.27× 10−4 and δ = 533.3
(which corresponds to 10 bits per sample and quantization

step size of 0.0391). It can be seen from Fig. 1 that if ΥT is

too low, estimation performance degrades due to excessive

communication noise. On the other hand, having ΥT too

high will result in loss of information, which will degrade the

performance. The optimum ΥT (as predicted by Theorem 1)

provides the necessary balance between loss of information

and communication noise, reaching the minimums of the

estimation error curves. As ΥT increases, the estimation will

approach the instability regions, predicted by Eq. 10 due to

high information loss.

Remark 2: Eq. 15 is derived for symmetric A matrices.

Still, the minimums of the curves in Fig. 1 (optimum ΥT )

satisfy Eq. 33. This suggests that a similar expression could

be valid for the general case. We will further discuss this in

Section IV.
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Fig. 1. Scenario 2: Minimums of the curves indicating optimum packet
drop mechanism in the absence of a cross-layer path

B. Scenario 3: Impact of A Cross-Layer Information Path

Consider a scenario where the receiver can support a cross-

layer path. This means that the Kalman filter will have access

to and can utilize the knowledge of the communication

noise variance. We will have the following recursion for the

estimation error covariance:

P [k + 1] = AP [k]AT + Q

−AP [k]CT
(
σ2

z(Υ[k]) + CP [k]CT
)−1

CP [k]AT ,
(24)

where

σ2
z(Υ[k]) =

{
σ2

n(Υ[k])IN + R Υ[k] ≥ ΥT

∞ otherwise
(25)

1) Stability

Matrix Convexity (see [10]): Let f represent a symmetric

matrix-valued function, f : R
N×N → R

M×M . Function f

is convex with respect to matrix inequality if

f(θΠ1 + (1 − θ)Π2) 4 θf(Π1) + (1 − θ)f(Π2), (26)

for arbitrary Π1 ∈ and Π2 ∈ R
N×N and θ ∈ [0, 1].

Lemma 2: Consider Π1, Π2, Π3 and Π4 ∈ R
N×N . The

following can be easily confirmed (see [11]):

a) if Π1 and Π2 are positive definite, then

Π1 4 Π2 if and only if Π−1
2 4 Π−1

1 .

b) if 0 4 Π1 4 Π2 and 0 4 Π3 4 Π4, then Π1Π3 4

Π2Π4.
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Lemma 3: Let Π1 and Π2 ∈ R
N×N represent symmetric

positive definite matrices.

a) Let f : R
N×N → R

N×N represent inverse of Π:
f(Π) = Π−1. f is convex with respect to matrix inequality

(see [12]).

b) if f : R
N×N → R

M×M is convex as a function of Π1,

it can be easily confirmed that f(Π1 + Π2) is convex for a
constant Π2 ∈ R

N×N .

c) if f : R
N×N → R

N×N is convex as a function of

Π1, it can be easily shown that Ψ
T f(Π1)Ψ is convex for an

arbitrary matrix Ψ ∈ R
N×M .

Lemma 4: Let Π1 and Π2 ∈ R
N×N represent symmetric

positive definite matrices. Let f : R
N×N → R

N×N represent

the following function f(Π1) = Π1(Π2 + Π1)
−1Π1. f is a

convex function of Π1.

proof:

f(Π1) = Π1(Π2 + Π1)
−1Π1

=
[
IN − Π2(Π2 + Π1)

−1
]
Π1

= Π1 − Π2 + Π2(Π2 + Π1)
−1Π2.

(27)

Using Lemma 3, it can be easily seen that f is a convex

function of Π1.

The following two lemmas relate stability region of

scenario 3 to those of scenario 1 and 2.

Lemma 5: The stability region of scenario 1 includes

that of scenario 3: µave,c,scenario 1 ≥ µave,c,scenario 3, where

µave,c represents the maximum tolerable average probability

of packet loss for stability.

Proof: Consider a special case of scenario 1, where

R = 0. Let scenario 1 and scenario 3 have the same packet
drop threshold. Let P1[k] and P3[k] represent the estimation
error covariance matrices of scenario 1 with R = 0 and
scenario 3 respectively. Using Eq. 3 with R = 0, we will
have:

E(P1[k + 1]) = µaveAE(P1[k])AT + Q. (28)

Consider S1[k] as it was defined in Section II-D. We will
have

σ2
z [k] < S1[k] ⇒ σ2

z [k] + CP3[k]CT
< S1[k] + CP3[k]CT .

(29)

Using Lemma 2a,

AP3[k]CT
(
σ2

z [k] + CP3[k]CT
)−1

CP3[k]AT 4

AP3[k]CT
(
S1[k] + CP3[k]CT

)−1
CP3[k]AT .

(30)

Therefore,

P3[k + 1] < AP3[k]AT−
AP3[k]CT

(
S1[k] + CP3[k]CT

)−1
CP3[k]AT + Q ⇒

E(P3[k + 1]) < µaveAE(P3[k])AT + Q,
(31)

which results in the following:

if E(P3[k]) < E(P1[k]) ⇒ E(P3[k + 1]) < E(P1[k + 1]).
(32)

Therefore the stability region of scenario 1 includes that of

scenario 3.

Lemma 6: The stability region of scenario 3 includes that

of scenario 2: µave,c,scenario 3 ≥ µave,c,scenario 2.

Proof: Let P2[k] represent the estimation error covari-
ance of scenario 2 for an R 6= 0, where no knowledge of R
is available in the estimator for scenario 2 (see footnote of

Section III, part A). Using Eq. 6, E(P2[k + 1]) will be as
follows:

E(P2[k +1]) = µaveAE(P2[k])AT +Q+AC−1ΣC−1T AT ,

(33)

where Σ = σ2
n,aveIN +(1−µave)R. Let P3[k] represent the

estimation error covariance of scenario 3, as indicated by Eq.

24. We will have

E(P3[k + 1]|P3[k]) = µaveE(P3[k + 1]|P3[k], Υ[k] ≤ ΥT )
+(1 − µave)E(P3[k + 1]|P3[k], Υ[k] > ΥT ).

(34)

Using Lemma 3, it can be easily confirmed that P3[k + 1]
is a concave function of σ2

z [k] in Eq. 24. Therefore, using
conditional Jensen’s inequality, we will have,

E(P3[k + 1]|P3[k], Υ[k] > ΥT ) 4 AP3[k]AT + Q−
AP3[k]CT

(
E(σ2

z [k]|Υ[k] > ΥT ) + CP3[k]CT
)−1

CP3[k]AT .
(35)

Therefore,

E(P3[k + 1]|P3[k]) 4 AP3[k]AT + Q− (1−µave)f(P3[k]),
(36)

where f : R
N×N → R

N×N is as follows: f(P3[k]) =

AP3[k]
(
C−1

E(σ2
z [k]|Υ[k] > ΥT )C−1T + P3[k]

)−1
P3[k]AT .

It can be seen, using Lemma 4, that f is a convex function

of P3[k]. Therefore by applying Jensen’s inequality,

E(P3[k + 1]) 4 AE(P3[k])AT + Q − (1 − µave)AE(P3[k])CT

×
[
E(σ2

z [k]|Υ[k] > ΥT ) + CE(P3[k])CT
]−1

CE(P3[k])AT .
(37)

Noting that E(σ2
z(Υ[k])|Υ[k] > ΥT ) = Σ

1−µave
, it can be

confirmed, after a few lines of derivations using Eq. 33 and

37, that

if E(P3[k]) 4 E(P2[k]) ⇒ E(P3[k+1]) 4 E(P2[k+1]).
(38)

Therefore the stability region of scenario 3 includes that of

scenario 2.

Theorem 2: Consider the system model described in Section

II. Consider a receiver that is equipped with a packet drop

mechanism described by Eq. 1 but can support a cross-

layer path. Then the estimation will be stable as long as

the following holds: µave,scenario 3 < ρ−2
max.

Proof: Lemma 5 and 6 showed that

µave,c,scenario 2 ≤ µave,c,scenario 3 ≤ µave,c,scenario 1. (39)

Noting that scenario 1 and 2 have the same stability regions

proves Theorem 2.

Theorem 2 shows that availability of a cross-layer path

does not impact the stability region. This suggests, similar

to scenario 2, that keeping all the packets will maximize the

stability range.

2) Optimum Performance
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Theorem 3: Consider a receiver that is equipped with a

packet drop mechanism described by Eq. 1 but can support

a cross-layer path. Keeping all the packets, i.e. ΥT = 0, will
minimize the average estimation error covariance.

Proof: Let P [k] represent the estimation error covari-
ance of a receiver that is equipped with a cross-layer path,

as indicated by Eq. 24. P [k] can be written as follows using
the same formulation utilized in the derivation of Eq. 27:

P [k +1] = Q+AΠ[k]AT −AΠ[k](P [k]+Π[k])−1Π[k]AT ,

(40)

where Π[k] = C−1σ2
z [k]C−1T . Let P1 and P2 represent

estimation error covariance matrices of two estimators using

ΥT1 and ΥT2, where ΥT1 < ΥT2. Then for any received

Signal to Noise Ratio at time step k, Υ[k], we will have

σ2
z,1(Υ[k]) 4 σ2

z,2(Υ[k]) and Π1[k] 4 Π2[k], (41)

where σ2
z,1 and σ2

z,2 are as defined in Eq. 25 for these two

estimators. Assume that P1[0] = P2[0]. It is easy to see that
P1[1] 4 P2[1] for any Υ[0]. Using Lemma 2, the following

can be easily confirmed for any given Υ[0], Υ[1], . . . , Υ[k].

if P1[k] 4 P2[k] ⇒
−(P1[k] + Π1[k])−1 4 −(P2[k] + Π2[k])−1 ⇒

Π1[k] (P1[k] + Π1[k])
−1

Π1[k] <

Π2[k] (P2[k] + Π2[k])
−1

Π2[k]
⇒ P1[k + 1] 4 P2[k + 1].

(42)

This shows that using a lower threshold will result in a

lower estimation error covariance. Therefore, keeping all the

packets, i.e. ΥT = 0, will minimize the estimation error
covariance (and its average over the distribution of Υ).
We can see that keeping all the packets not only prevents

instability but also minimizes estimation error covariance in

the presence of a cross-layer path.

To see the impact of a cross-layer path, Fig. 2 shows

spectral norm of the average estimation error covariance

after 300 time steps for the system parameters of Fig. 1 and

for both scenario 2 and 3. By comparing the corresponding

curves for these cases, it can be seen that a cross-layer

path can improve the performance considerably even when

compared to operating at the optimum ΥT of scenario 2.

Furthermore, it can be seen that keeping more packets will

reduce the norm of the estimation error covariance for

scenario 3. In general, scenario 3 is more robust to the

changes in ΥT due to the availability of a cross-layer path,

as can be seen from Fig. 2. Finally, the stability condition is

confirmed to be the same as predicted by Theorem 2.

IV. SUMMARY AND FURTHER EXTENSIONS

In this paper, we derived new design paradigms for es-

timating a multiple-input multiple-output dynamical system

over mobile communication channels. We modeled the im-

pact of the stochastic communication noise on the estimation

process. We proved that in order to maximize the stability

range, the receiver should keep all the packets independent

of the quality of the link or availability of a cross-layer

path. In the presence of a cross-layer path, this design will
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Fig. 2. Effect of a cross-layer path: compare scenario 2 and 3

also optimize the performance. However, in the absence of

such a path, we proved that packet drop should be designed

to balance information loss and communication noise in

order to optimize the performance. The results can be easily

extended to scenarios with multiple sensors by replacing

Signal to Noise Ratio by Signal to Interference and Noise

Ratio. Furthermore, the proposed design strategies should be

applicable when considering the performance of a controller.

Proving this analytically is among possible extensions of this

work.
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