Highly Efficient Catalysts for the Formation of Tetrasubstituted Olefins via Ring-Closing Metathesis

Ian C. Stewart ${ }^{1}$, Thay Ung ${ }^{2}$, Alexandre A. Pletnev ${ }^{2}$, Jacob M. Berlin ${ }^{1}$, Robert H. Grubbs ${ }^{1}$, Yann Schrodi* ${ }^{*}$
The Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, and Materia Inc., Pasadena, California 91107
Supporting Information

General information 9
General procedure for the preparation of N, N '-Diaryl oxamides 10
General procedure for the preparation of N, N^{\prime}-Diarylethylenediamine hydrochloride 10
General procedure for the preparation of imidazolinium chloride 10
General procedure for the preparation of catalysts $5 \mathrm{a}-\mathrm{c}$ 11
General procedure for the preparation of catalysts $6 a-c$. 12
General procedure for the RCM of 7 (monitored by GC) 14
General procedure for activity plots of ring-closing metathesis. 18
RCM of Diethyl diallylmalonate (S1) 18
RCM of Diethyl allylmethallylmalonate (S3) 21
RCM of Diethyl dimethallylmalonate (9) 23
General RCM procedure for Table 2. 26
Isolated yield for 10 26
Isolated yield for S5. 27
X-ray diffraction data for 6a 29
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of 5a-c and 6a-c 37

[^0]| hruea | hrequeinit | rem | height andes | fknqukncy yym mehert |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 37412.572 | 297.664 | 3.035 | $2320.953 \quad 18.466 \quad 61.3$ |
| 2 | 27586.535 | 219.485 | 1.8 | |
| 3 | 19003.256 | 151.195 | 13.3 | |
| 4 | 17740.361 | 141.147 | 8.0 | |
| 5 | 17563.440 | 139.739 | 4.0 | Me, |
| 6 | 17397.547 | 138.419 | 23.9 | $\rightleftarrows \mathrm{N} \sim \mathrm{N} \sim$ |
| 7 | 17173.160 | 136.634 | 11.1 74.3 | |
| 8 | 16571.919 | 131.850 | 74.3 98.7 | Me |
| 10 | 16347.532 | 130.065 | 42.3 | Ru= |
| 11 | 16305.819 | 129.733 | 51.3 | 1 |
| 12 | 16218.078 | 129.035 | 57.3 | PCy_{3} |
| 13 | 16194.584 | 128.848 | 114.1 | Cy_{3} |
| 14 | 16124.104 15924.169 | 128.287 126.697 | 88.7 40.3 | 5a |
| 15 16 | 15924.169 6841.774 | 126.697 54.435 | ${ }_{27.1}^{40.3}$ | 5a |
| 17 | 6814.444 | 54.217 | 51.3 | |
| 18 | 6787.595 | 54.004 | 79.0 | |
| 19 | 6760.266 | 53.786 | 65.5 | |
| 20 | 6732.936 | 53.569 | 30.3 | |
| 21 | 4524.068 | 35.995 | 2.3 | |
| 22 | 4462.697 | 35.506 | 2.0 | |
| 23 | 4119.404 | 32.775 | 150.0 | |
| 24 | 4103.582 | 32.649 | 148.6 | |
| 25 | 3785.701 | 30.120 | 4.6 | |
| 26 | 3768.920 | 29.986 | 3.5 | |
| 27 | 3666.795 | 29.174 | 238.8 | |
| 28 | 3655.288 | 29.082 | 275.7 | |
| 29 | 3541.656 | 28.178 | 358.0 | |
| 30 | 3532.067 | 28.102 | 358.9 | |
| 31 | 3456.312 | 27.499 | 9.6 | |
| 32 | 3444.805 | 27.408 | 8.8 | |
| 33 | 3352.749 | 26.675 | 327.6 | |
| 34 | 2447.530 | 19.473 | 34.5 | |

48
References 49
List of Tables
Table S1: RCM of 7 with $5 \mathrm{~mol} \%$ of 1 at $40^{\circ} \mathrm{C}$ 15
Table S2: RCM of 7 with $5 \mathrm{~mol} \%$ of 2 at $40^{\circ} \mathrm{C}$ 15
Table S3: RCM of 7 with $5 \mathrm{~mol} \%$ of 3 at $40^{\circ} \mathrm{C}$ 15
Table S4: RCM of 7 with $5 \mathrm{~mol} \%$ of 4 at $40^{\circ} \mathrm{C}$ 16
Table S5: RCM of 7 with $5 \mathrm{~mol} \%$ of 5 a at $40^{\circ} \mathrm{C}$ 16
Table S6: RCM of 7 with $5 \mathrm{~mol} \%$ of 5 b at $40^{\circ} \mathrm{C}$ 16
Table S7: RCM of 7 with $5 \mathrm{~mol} \%$ of 5 c at $40^{\circ} \mathrm{C}$ 17
Table S8: RCM of 7 with $5 \mathrm{~mol} \%$ of 6 a at $40^{\circ} \mathrm{C}$ 17
Table S9: RCM of 7 with $5 \mathrm{~mol} \%$ of 6 b at $40^{\circ} \mathrm{C}$ 17
Table S10: RCM of 7 with $5 \mathrm{~mol} \%$ of 6 c at $40^{\circ} \mathrm{C}$ 18
Table S11. Crystal Data for 6a 29
Table S12. Structure solution and refinement for $6 a$ 29
Table S13. Atomic Coordinates for 6a 31
Table S14. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $6 a$ 32
Table S15. Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for 6a 32
Table S16. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{4}\right)$ for 6 a 34
List of Figures
Figure S 1 . RCM of S 1 using catalysts 1 and $5 \mathrm{a}\left(1 \mathrm{~mol} \%, 30^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$. 19
Figure S2. RCM of S 1 using catalysts 3 and $6 \mathrm{a}\left(1 \mathrm{~mol} \%, 30^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$). 20
Figure S3. RCM of S 3 using catalysts 1 and $5 \mathrm{a}\left(1 \mathrm{~mol} \%, 30^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$. 21
Figure S4. RCM of S3 using catalysts 3 and $6 \mathrm{a}\left(1 \mathrm{~mol} \%, 30^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ 22
Figure S5. RCM of 9 using catalysts 1 and $5 \mathrm{a}\left(5 \mathrm{~mol} \%, 30^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$). 23
Figure S6. RCM of 9 using catalysts 4 and $6 \mathrm{a}\left(5 \mathrm{~mol} \%, 30^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$). 24

Figure S7. RCM of 9 using catalysts $6 \mathrm{a}\left(2.5 \mathrm{~mol} \%, 60^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$... 25
Figure S8. ORTEP drawing of syn-6a .. 35
Figure S9. ORTEP drawing of anti-6a ... 35
Figure S10. ORTEP drawing of superimposed syn- and anti-6a... 36

GENERAL INFORMATION

NMR spectra were recorded on an Oxford 300 MHz NMR spectrometer running Varian VNMR software. Chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane (TMS) with reference to internal solvent for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra. Chemical shifts are reported in parts per million (ppm) downfield from $\mathrm{H}_{3} \mathrm{PO}_{4}$ for ${ }^{31} \mathrm{P}$ NMR spectra. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), septet (sept), multiplet (m), and broad (br). Analytical thin-layer chromatography (TLC) was performed using silica gel 60 F254 precoated plates (0.25 mm thickness) with a fluorescent indicator. Visualization was performed with standard potassium permanganate stains or UV light. Flash column chromatography of organic compounds was performed using silica gel 60 (230-400 mesh), and flash column chromatography of ruthenium compounds was performed using silica gel 60 (230-400 mesh) from TSI Scientific (Cambridge, MA). All glassware was either oven dried or flame dried, and reactions were done under an atmosphere of argon unless otherwise noted. All organic solvents were dried by passage through solvent purification columns containing activated alumina. All commercial chemicals were used as obtained. Dichloro(phenylmethylene)bis(tricyclo-hexylphosphine) ruthenium complex was prepared according to a literature procedure. ${ }^{\text {i }}$

X-ray crystallographic structures were obtained by Mr. Larry M. Henling and Dr. Mike W. Day of the California Institute of Technology Beckman Institute X-Ray Crystallography Laboratory.

GENERAL PROCEDURE FOR THE PREPARATION OF $\boldsymbol{N}, \boldsymbol{N}$ '-DIARYL OXAMIDES

Oxalyl chloride ($4.36 \mathrm{~mL}, 50 \mathrm{mmol}$) was added dropwise to a stirred solution of aniline (100 mmol, 2 equiv) and base ($100 \mathrm{mmol}, 2$ equiv) in THF $(200 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Triethylamine or aqueous NaOH may be used as bases for this reaction. Upon addition, the reaction was allowed to warm up to room temperature and stirred for 1 h . The reaction mixture was then concentrated in vacuo and diluted with water $(100 \mathrm{~mL})$. The white precipitate was collected by filtration, washed with dilute $\mathrm{HCl}(100 \mathrm{~mL})$, water $(2 \times 100 \mathrm{~mL})$, and dried in vacuo.

GENERAL PROCEDURE FOR THE PREPARATION OF $\boldsymbol{N}, \boldsymbol{N}$ '-DIARYLETHYLENEDIAMINE

HYDROCHLORIDE

Borane-tetrahydrofuran complex (1.0 M solution in THF, $125 \mathrm{~mL}, 6.25$ equiv) was added dropwise with stirring to solid oxamide $(20 \mathrm{mmol})$ at room temperature. The reaction mixture was refluxed overnight, allowed to cool to r.t. and excess borane was quenched by careful, dropwise addition of water until no more gas evolution was observed. The reaction mixture was concentrated in vacuo, extracted with ether and the organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. 2 M HCl in ether ($30 \mathrm{~mL}, 3$ equiv) was then added to the dry organic extracts and the resulting white precipitate was collected by filtration, washed with a small amount of ethanol and dried in vacuo.

GENERAL PROCEDURE FOR THE PREPARATION OF IMIDAZOLINIUM CHLORIDE

Triethyl orthoformate (150 mL) was added to the diamine hydrochloride 3 in a 250 mL r.b. flask. The flask was equipped with a distillation head and heated for about 1 h , during which ethanol distilled over at 78-80 ${ }^{\circ}$ C, followed by about 70 mL of triethyl orthoformate at $135-140{ }^{\circ} \mathrm{C}$. The reaction mixture was then allowed to cool to r.t., diluted with hexanes and the white precipitate was collected by filtration, washed with hexanes and ether and dried in vacuo. The following dihydroimidazolium salts were prepared by this procedure:

1,3-Bis(o-tolyl)-imidazolinium chloride. Obtained in 93% yield as a white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.83(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.21(\mathrm{~d}, 8 \mathrm{H}), 4.64(\mathrm{~s}, 4 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.41 MHz, CDCl_{3}): $\delta 157.48$, 134.37, 133.44, 131.57, 129.82, 127.64, 126.68, 52.89 , 18.12. HR-MS $\left(\mathrm{FAB}^{+}\right)$Calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2}, 251.1548$; found, 251.1557.

1,3-Bis(2-ethylphenyl)-imidazolinium chloride. Obtained in 74% yield as a white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 9.04(1 \mathrm{H}, \mathrm{s}), 7.92(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz})$, 7.47-7.30 (6H, m), $4.64(4 \mathrm{H}, \mathrm{s}), 2.78(4 \mathrm{H}, \mathrm{q}, J=7.8 \mathrm{~Hz}), 1.31(6 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz})$.

1,3-Bis(2-isopropylphenyl)-imidazolinium chloride. Obtained in 84% yield as a white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 6 \mathrm{H})$, $4.73(\mathrm{~s}, 4 \mathrm{H}), 3.06(\mathrm{~m}, 2 \mathrm{H}), 1.29\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.0 \mathrm{~Hz}, 12 \mathrm{H}\right)$.

GENERAL PROCEDURE FOR THE PREPARATION OF CATALYSTS 5A-C

Potassium bis(trimethylsilyl)amide ($1.4 \mathrm{~g}, 7.0 \mathrm{mmol}, 1.23$ equiv) was added to a suspension of the appropriate imidazolinium chloride ($6.7 \mathrm{mmol}, 1.15$ equiv) in toluene (60 mL) under argon. The reaction mixture was stirred at room temperature for 30 min , then dichloro(phenylmethylene)bis(tricyclohexylphosphine) ruthenium complex ($4.7 \mathrm{~g}, 5.7 \mathrm{mmol}$) was added and stirring was continued for 1.5 h at room temperature. The reaction mixture was then concentrated and catalysts 5a-c were purified by column chromatography on silica gel: unreacted dichloro(phenylmethylene)bis(tricyclo-hexylphosphine) ruthenium complex was first eluted with 1:9 EtOAc-hexanes, then 5a-c were eluted with 1:3 EtOAc-hexanes. The catalysts were obtained as brown solids upon drying in vacuo.

5a Catalyst 5a. 5a was prepared according to the above general procedure and was obtained in 66% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 19.61$ (s), 8.70 (br), 7.64 (br), 7.31$6.76(\mathrm{~m}), 6.59(\mathrm{~m}), 6.34(\mathrm{br}), 3.53-3.01(\mathrm{~m}), 2.62(\mathrm{~s}), 2.20-2.04(\mathrm{br}), 1.67-1.06(\mathrm{~m}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 27.87$ (s), $25.15(\mathrm{~s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 18.47$, 19.47, 26.67, $27.50(\mathrm{~d}, J=12 \mathrm{~Hz}), 28.14(\mathrm{~d}, J=10 \mathrm{~Hz}), 29.13(\mathrm{~d}, J=12 \mathrm{~Hz}), 32.71(\mathrm{~d}, J=16$ Hz), 53.78 (br), 126.69, 128.28 (br), 128.84, 129.03, 129.73, 130.06, 131.85, 136.63, 138.42, 139.69, 141.13, 151.19, 219.49 (m), 297.66 (m). HR-MS (FAB^{+}) Calculated for $\mathrm{C}_{42} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{PRu}, 792.2680$; found, 792.2678.

5b Catalyst $\mathbf{5 b} . \mathbf{5 b}$ was prepared according to the above general procedure and was obtained in 60% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 19.59(\mathrm{~s}), 8.74-8.62(\mathrm{~m}), 8.25(\mathrm{br})$, 7.71 (br), 7.34-6.85 (m), 6.67 (br), 6.44 (br), 3.55-3.07 (m), 2.79-2.19 (m), 1.69-0.91 (m), 1.671.06 (m). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 25.75$ (s), 25.04 (s). ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ 13.96, 23.71, 24.44, 26.72, $27.47(\mathrm{~d}, J=12 \mathrm{~Hz}) 28.15(\mathrm{~d}, J=10 \mathrm{~Hz}$), 29.12 (br), 32.73 (d, $J=16 \mathrm{~Hz}$), 54.50 (br), 126.50, 127.86, 128.28, 128.37, 128.98, 129.38, 129.86, 130.21, 131.56 (br), 143.70, 151.13, 220.26 (m), 295.55 (m). HR-MS (FAB ${ }^{+}$) Calculated for $\mathrm{C}_{44} \mathrm{H}_{61} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{PRu}, 820.2993$; found, 920.2951.

Catalyst 5c. 5c was prepared according to the above general procedure and was obtained in 68% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 19.68$ (s), 19.49 (s), 8.93-8.87 (m), 8.30 (b), $7.60(\mathrm{~d}), 7.34-7.12(\mathrm{~m}), 6.97(\mathrm{t}), 6.80(\mathrm{~d}), 6.70-6.44(\mathrm{~m}), 3.85-3.08(\mathrm{~m}), 2.22-2.12(\mathrm{q})$, 2.02-1.91 (q), 1.66-0.97 (m). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 26.33(\mathrm{~s}), 23.92(\mathrm{~s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 23.51,23.60$, 25.67, 25.79, 25.87, $26.68(\mathrm{~d}, J=13 \mathrm{~Hz}$), 27.34, 27.43, $28.12(\mathrm{~d}, ~ J=10 \mathrm{~Hz}), 28.42,28.95(\mathrm{~d}, J=13 \mathrm{~Hz}), 32.72(\mathrm{~d}, J=19 \mathrm{~Hz}), 32.85(\mathrm{~d}, J=16$ $\mathrm{Hz}), 55.33,56.14,126.35,126.72,127.01,127.68,127.91,128.13,128.36,128.80,128.91$, $129.02,129.12,129.77,130.04,130.71,130.83,132.08,138.33,138.53,139.65,139.85,146.23$, 146.23, 146.88, 148.24, 148.30, 151.06, 151.61, 221.51 (d, $J=76 \mathrm{~Hz}$), 296.66 (m). HR-MS (FAB ${ }^{+}$) Calculated for $\mathrm{C}_{46} \mathrm{H}_{65} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{PRu}$, 848.3306; found, 848.3326.

GENERAL PROCEDURE FOR THE PREPARATION OF CATALYSTS 6A-C.

2-Isopropoxy- β-methylstyrene ($0.89 \mathrm{~g}, 5.1 \mathrm{mmol}, 2$ equiv) was added to a solution of catalyst 5 (2.5 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}$). The reaction mixture was refluxed for 1 h , then a 2.0 N solution of HCl in methanol ($1.8 \mathrm{~mL}, 3.6 \mathrm{mmol}, 1.5$ equiv) was added and the mixture was refluxed for another hour, followed by evaporation to dryness in vacuo. The residue was dissolved in a minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and catalyst $\mathbf{6}$ was precipitated by addition of pentane. The solids were collected by filtration and the catalysts purified by column chromatography on silica gel
(eluted with 1:5 EtOAc-hexanes). The catalysts were obtained as green crystalline solids upon drying in vacuo.

Catalyst 6a. 6a was prepared according to the above general procedure and was obtained in 71% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 16.47(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~s}, 1 \mathrm{H}), 7.43$ (br, $8 \mathrm{H}), 6.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 4.97(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{br}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 18.24,19.55,22.11,52.50,54.73,75.42,113.51$, $122.35,122.91,128.06,129.36,130.13,130.50,131.97,138.56$ (m), 142.32, 144.54, 153.00, 210.89, 295.21. HR-MS (FAB^{+}) Calculated for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{OPRu}, 570.0779$; found, 570.0788.

Catalyst 6b. 6b was prepared according to the above general procedure and was obtained in $68 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 16.48(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{br}, 1 \mathrm{H}), 7.53(\mathrm{~m}$, $8 \mathrm{H}), 6.89\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right), 4.95(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 2.93(\mathrm{br}, 4 \mathrm{H}), 1.37(\mathrm{br}$, $12 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 14.22,14.80,24.86,53.17,55.41,75.44,113.54$, 122.26, 122.92, 127.91, 129.91, 130.12, 130.62, 144.47, 153.11, 211.06, 294.93. HR-MS (FAB ${ }^{+}$) Calculated for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{ORu}$, 598.1092; found, 598.1109.

Catalyst 6c. 6c was prepared according to the above general procedure and was obtained in 77% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 16.65$ (s), 16.46 (s), 9.18 (m), 7.90 (d), 7.40-6.93 (m), $6.59(\mathrm{t}), 6.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 4.47(\mathrm{~m}), 3.80-3.32(\mathrm{~m}), 2.66(\mathrm{br}), 1.95-1.12(\mathrm{~m})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 22.14$ (m), 23.22, 24.24, 24.60, 25.77, 26.89, 26.98, 28.80, 29.12, 56.16, 75.33, 113.55, 122.10, 122.44, 122.91, 127.30, 127.67, 127.97, 129.00, 129.31, $129.79,130.13,130.59,140.79$ (m), 144.35, 148.07, 153.16, 211.70, 294.89. HR-MS (FAB ${ }^{+}$) Calculated for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{ORu}, 626.1405$; found, 626.1365.

GENERAL PROCEDURE FOR THE RCM OF 7 (MONITORED BY GC)

A round bottom flask filled with an atmosphere of argon was charged with a degassed solution of dimethyl 2,2-di(2-methylallyl)malonate (7) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$. The catalyst was added as a solid ($5 \mathrm{~mol} \%$) and the flask was equipped with a reflux condenser and a bubbler outlet. The reaction vessel was immerged in an oil bath heated at the desired temperature. The progress of conversion to product was monitored by GC analysis after removing the catalyst by treating the aliquot with a solution of tris(hydroxymethyl)phosphine in isopropanol $(1.0 \mathrm{M})$, heating the quenched mixture at $60^{\circ} \mathrm{C}$ for 1 h , diluting it with water and extracting with ethyl acetate.

The reaction mixtures were analyzed by gas chromatography (GC) using a flame ionization detector (FID). The following conditions and equipment were used:

Column:	Rtx-5, $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ (ID) $\times 0.25 \mu \mathrm{~m}$ film thickness. Manufacturer: Restek
GC and column conditions:	Injector temperature: $250^{\circ} \mathrm{C}$ Detector temperature: $280^{\circ} \mathrm{C}$
Oven temperature:	Starting temperature: $100^{\circ} \mathrm{C}$, hold time: 1 minute. Ramp rate $10^{\circ} \mathrm{C} / \mathrm{min}$ to $250^{\circ} \mathrm{C}$, hold time: 12 minutes. Carrier gas: Helium
Mean gas velocity:	$31.3 \pm 3.5 \% \mathrm{~cm} / \mathrm{sec}$ (calculated)
Split ratio:	$\sim 50: 1$

The product percentages given in Table 1 and Tables S1-S10 were determined by dividing the GC area of the product by the sum of the GC areas of product and substrate. The accuracy of this method was assessed by analyzing mixtures of substrate and product of known ratios. It was established that this method gives product percentages with 95% accuracy (above 80% conversion) and with 90% accuracy (below 80% conversion).
(

Table S1: RCM of 7 with $5 \mathrm{~mol} \%$ of $\mathbf{1}$ at $40^{\circ} \mathrm{C}$

Time (h)	Product (GC\%)
0.5	3.0
1	4.2
3	15.7
18	44.7
24	49.8
42	54.5

Table S2: RCM of 7 with $5 \mathrm{~mol} \%$ of 2 at $40^{\circ} \mathrm{C}$

Time (h)	Product (GC\%)
0.5	4.7
1	9.1
3	22.0
24	40.4
72	40.9

Table S3: RCM of 7 with $5 \mathrm{~mol} \%$ of $\mathbf{3}$ at $40{ }^{\circ} \mathrm{C}$

Time (h)	Product (GC\%)
0.5	0.0
1	0.0
2	0.0
3	0.0
20	0.0
24	0.0

Table S4: RCM of 7 with $5 \mathrm{~mol} \%$ of 4 at $40^{\circ} \mathrm{C}$

Time (h)	Product (GC\%)
0.5	0.0
1	0.0
2	2.6
3	7.0
20	24.2

Table S5: RCM of 7 with $5 \mathrm{~mol} \%$ of $5 \mathbf{a}$ at $40{ }^{\circ} \mathrm{C}$

Time (h)	Product (GC\%)
0.25	80.9
0.5	83.7
0.75	85.4
1	86.4
1.5	87.5
2	86.7
4	86.8

Table S6: RCM of 7 with $5 \mathrm{~mol} \%$ of $5 \mathbf{b}$ at $40^{\circ} \mathrm{C}$

Time (h)	Product (GC\%)
0.25	61.5
0.5	69.9
0.75	70.7
1	70.9
2	70.6
4	72.3
20	72.8

Table S7: RCM of 7 with $5 \mathrm{~mol} \%$ of $5 \mathbf{c}$ at $40^{\circ} \mathrm{C}$

Time (h)	Product (GC\%)
0.25	71.5
0.5	73.0
0.75	73.1
1	74.3
1.5	75.0
2	75.5
4	75.1

Table S8: RCM of 7 with $5 \mathrm{~mol} \%$ of $\mathbf{6 a}$ at $40{ }^{\circ} \mathrm{C}$

Time (h)	Product (GC\%)
0.5	30.6
1	44.7
3	65.1
18	69.9
24	70.0
42	68.8

Table S9: RCM of 7 with $5 \mathrm{~mol} \%$ of $\mathbf{6 b}$ at $40^{\circ} \mathrm{C}$

Time (h)	Product (GC\%)

Time (h)	Product (GC\%)
0.25	0.7
0.50	3.3
0.75	11.8
1	21.5
2	34.7
4	42.9
8	55.9
24	58.6

Table S10: RCM of 7 with $5 \mathrm{~mol} \%$ of $\mathbf{6 c}$ at $40^{\circ} \mathrm{C}$

Time (h)	Product (GC\%)
0.25	0.7
0.50	2.9
0.75	9.3
1	15.6
1.5	24.2
2	27.5
6	32.0
24	32.5

GENERAL PROCEDURE FOR ACTIVITY PLOTS OF RING-CLOSING METATHESIS. ${ }^{\text {ii }}$

RCM OF DIETHYL DIALLYLMALONATE (S1)

An NMR tube with a screw-cap septum top was charged inside a glovebox with catalyst stock solution ($0.002 \mathrm{M}, 0.4 \mathrm{~mL}, 0.80 \mu \mathrm{~mol}, 1.0 \mathrm{~mol} \%$) and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$. The sample was equilibrated at $30^{\circ} \mathrm{C}$ in the NMR probe before $\mathbf{S} 1(19.3 \mu \mathrm{~L}, 19.2 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.1 \mathrm{M})$ was added via syringe. Data points were collected over an appropriate period of time using the

Varian array function. The conversion to $\mathbf{S 2}$ was determined by comparing the ratio of the integrals of the methylene protons in the starting material, $\delta 2.61$ (dt), with those in the product, $\delta 2.98$ (s).

Figure S1. RCM of $\mathbf{S 1}$ using catalysts 1 and $\mathbf{5 a}\left(1 \mathrm{~mol} \%, 30^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S2. RCM of $\mathbf{S} 1$ using catalysts $\mathbf{3}$ and $\mathbf{6 a}\left(1 \mathrm{~mol} \%, 30^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

RCM OF DIETHYL ALLYLMETHALLYLMALONATE (S3)

An NMR tube with a screw-cap septum top was charged inside a glovebox with catalyst stock solution ($0.002 \mathrm{M}, 0.4 \mathrm{~mL}, 0.80 \mu \mathrm{~mol}, 1.0 \mathrm{~mol} \%$) and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$. The sample was equilibrated at $30^{\circ} \mathrm{C}$ in the NMR probe before $\mathbf{S} 3(20.5 \mu \mathrm{~L}, 20.4 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.1 \mathrm{M})$ was added via syringe. Data points were collected over an appropriate period of time using the Varian array function. The conversion to $\mathbf{S 4}$ was determined by comparing the ratio of the integrals of the methylene protons in the starting material, $\delta 2.67(\mathrm{~s}), 2.64(\mathrm{dt})$, with those in the product, $\delta 2.93(\mathrm{~s}), 2.88(\mathrm{~m})$.

Figure S3. RCM of S3 using catalysts $\mathbf{1}$ and $\mathbf{5 a}\left(1 \mathrm{~mol} \%, 30^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S4. RCM of S3 using catalysts $\mathbf{3}$ and $\mathbf{6 a}\left(1 \mathrm{~mol} \%, 30^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

RCM OF DIETHYL DIMETHALLYLMALONATE (9)

An NMR tube with a screw-cap septum top was charged inside a glovebox with catalyst stock solution (0.005 M in $\mathrm{C}_{6} \mathrm{D}_{6}$ or $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 0.8 \mathrm{~mL}, 4.0 \mu \mathrm{~mol}, 5.0 \mathrm{~mol} \%$). The sample was equilibrated at $30^{\circ} \mathrm{C}$ or $60^{\circ} \mathrm{C}$ in the NMR probe before $9(21.6 \mu \mathrm{~L}, 21.5 \mathrm{mg}, 0.080 \mathrm{mmol}, 0.1 \mathrm{M})$ was added via syringe. Data points were collected over an appropriate period of time using the Varian array function. The conversion to $\mathbf{1 0}$ was determined by comparing the ratio of the integrals of the methylene protons in the starting material, $\delta 2.71(\mathrm{~s})$, with those in the product, $\delta 2.89(\mathrm{~s})$.

Figure S5. RCM of $\mathbf{9}$ using catalysts 1 and $\mathbf{5 a}\left(5 \mathrm{~mol} \%, 3{ }^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S6. RCM of $\mathbf{9}$ using catalysts $\mathbf{4}$ and $\mathbf{6 a}\left(5 \mathrm{~mol} \%, 30^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

Figure S7. RCM of 9 using catalysts $\mathbf{6 a}\left(2.5 \mathrm{~mol} \%, 60^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$.

GENERAL RCM PROCEDURE FOR TABLE 2.ii

An NMR tube with a screw-cap septum top was charged inside a glovebox with catalyst stock solution (0.005 M in $\mathrm{C}_{6} \mathrm{D}_{6}, 0.8 \mathrm{~mL}, 4.0 \mu \mathrm{~mol}, 5.0 \mathrm{~mol} \%$). The appropriate substrate (11-18, $0.080 \mathrm{mmol}, 0.1 \mathrm{M}$) was added via syringe and the sample placed in an oil bath regulated at 60 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectra were taken at regular intervals. Conversion was determined by comparing the ratio of the integrals of the signals described below:

The SM methylene signal at 2.99 ppm was compared to the product signal at 3.14 ppm .

ISOLATED YIELD FOR 10.

In an argon-filled glove box, a 20 mL vial equipped with a stir bar was charged with 9 ($472 \mathrm{mg}, 1.76 \mathrm{mmol}$), toluene (17.6 mL), and catalyst $\mathbf{6 a}(50 \mathrm{mg}, 0.088 \mathrm{mmol}, 5 \mathrm{~mol} \%$). The vial was then capped with a septum screw-cap, taken out of the glove box and heated to $60^{\circ} \mathrm{C}$ for 1 hour while stirring and flushing the headspace with argon. The reaction mixture was treated to remove the catalyst: it was poured into a 2.0 M solution of tris(hydroxymethyl)phosphine in isopropanol $(10 \mathrm{~mL})$ and this mixture heated to $60{ }^{\circ} \mathrm{C}$ for 1 hour. The colorless solution was diluted with water $(10 \mathrm{~mL})$ and the organic phase was extracted with diethyl ether ($2 \times 10 \mathrm{~mL}$), dried with magnesium sulfate, filtered and concentrated by rotary evaporation. The residue was purified by flash chromatography using hexanes as eluant before flushing the product with ethyl acetate. The fractions containing the product were combined and the volatiles were removed under vacuum to give $\mathbf{1 0}(422 \mathrm{mg}, 1.75 \mathrm{mmol}, 100 \%$ yield $)$.

The SM methylene signal at 2.72 ppm was compared to the product signal at 2.63 ppm .

ISOLATED YIELD FOR S5.

A 10 mL 2-neck round-bottom flask was outfitted with a reflux condensor and a septum, and flame-dried under vacuum. After cooling to r.t., $6 \mathbf{a}(5.1 \mathrm{mg}, 0.009 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ was added as a solid. Dry degassed benzene (1.8 mL) was added via syringe, followed by $11(52 \mu \mathrm{~L}, 0.185$ mmol) via syringe. The septum was replaced with a ground-glass stopper, and the solution was stirred at $60{ }^{\circ} \mathrm{C}$ for 1 h . The solution was cooled to r.t., and concentrated via rotary evaporation. Column chromatography $\left(\mathrm{SiO}_{2}, 5 \%\right.$ EtOAc:hexanes) afforded S 5 as a colorless oil $(47 \mathrm{mg}$, $0.185,100 \%)$.

The SM methyl group signal at 1.59 ppm was compared to the product signal at 1.50 ppm .

The SM methyl group signal at 3.62 ppm was compared to the product signal at 3.84 ppm .

The SM methylene signal at 3.68 ppm was compared to the product signal at 4.45 ppm .

The SM methylene signal at 3.51 ppm was compared to the product signal at 3.76 ppm .

X-RAY DIFFRACTION DATA FOR 6A

Table S11. Crystal Data for $\mathbf{6 a}{ }^{\mathrm{iv}}$

Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OCl}_{2} \mathrm{Ru}$
Formula weight	570.50
Crystallization Solvent	Benzene/pentane
Crystal Habit	Block
Crystal size	$0.34 \times 0.28 \times 0.14 \mathrm{~mm}^{3}$
Crystal color	Dark green
Type of diffractometer	Bruker SMART 1000
Wavelength	0.71073 Å MoK α
Data Collection Temperature	100(2) K
θ range for 33816 reflections used in lattice determination	2.34 to 41.57°
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=11.5794(3) \AA & \\ \mathrm{b}=13.9350(4) \AA & \beta=105.5780(10)^{\circ} \\ \mathrm{c}=16.6418(5) \AA & \end{array}$
Volume	2586.66(13) \AA^{3}
Z	4
Crystal system	Monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
Density (calculated)	$1.465 \mathrm{Mg} / \mathrm{m}^{3}$
F(000)	1168
θ range for data collection	1.83 to 41.89°
Completeness to $\theta=41.89^{\circ}$	83.1 \%
Index ranges	$-20 \leq \mathrm{h} \leq 20,-25 \leq \mathrm{k} \leq 25,-28 \leq 1 \leq 30$
Data collection scan type	ω scans at 7ϕ settings
Reflections collected	79070
Independent reflections	$14920\left[\mathrm{R}_{\mathrm{int}}=0.0822\right]$
Absorption coefficient	$0.835 \mathrm{~mm}^{-1}$
Absorption correction	None
Max. and min. transmission	0.8921 and 0.7645

Table S12. Structure solution and refinement for 6a

Structure solution program	Bruker XS v6.12
Primary solution method	Direct methods

Secondary solution method
Hydrogen placement
Structure refinement program
Refinement method
Data / restraints / parameters
Treatment of hydrogen atoms
Goodness-of-fit on F^{2}
Final R indices [I $>2 \sigma(\mathrm{I}), 10742$ reflections]
R indices (all data)
Type of weighting scheme used
Weighting scheme used
Max shift/error
Average shift/error
Largest diff. peak and hole

Difference Fourier map
Geometric positions
Bruker XL v6.12
Full matrix least-squares on F^{2}
14920 / 15 / 332
Riding
1.350
$\mathrm{R} 1=0.0348, w \mathrm{R} 2=0.0652$
$R 1=0.0575, w R 2=0.0688$
Sigma
$w=1 / \sigma^{2}\left(\mathrm{Fo}^{2}\right)$
0.002
0.000
1.532 and -1.125 e. \AA^{-3}

Table S13. Atomic Coordinates for $\mathbf{6 a}$

Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{6 a}$. $\mathrm{U}(\mathrm{eq})$ is defined as the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}_{\text {eq }}$	Occ
$\mathrm{Ru}(1)$	2308(1)	7881(1)	4144(1)	13(1)	1
$\mathrm{Cl}(1)$	4001(1)	7354(1)	5170(1)	20(1)	1
$\mathrm{Cl}(2)$	510(1)	7840(1)	3070(1)	21(1)	1
$\mathrm{O}(1)$	1253(1)	7777(1)	5129(1)	19(1)	1
N(1)	3747(1)	7208(1)	3081(1)	21(1)	1
N(2)	3374(1)	8725(1)	2819(1)	18(1)	1
C(1)	3211(1)	7990(1)	3305(1)	15(1)	1
C(2)	4111(2)	7365(1)	2308(1)	30(1)	1
C(3)	4132(1)	8459(1)	2266(1)	26(1)	1
C(4)	3626(1)	6248(1)	3360(1)	24(1)	1
C(5)	4658(2)	5721(1)	3737(1)	31(1)	1
C(6)	4494(2)	4784(1)	3986(1)	40(1)	1
C(7)	3367(2)	4386(1)	3866(1)	42(1)	1
C(8)	2360(2)	4917(1)	3492(1)	38(1)	1
C(9)	2494(2)	5858(1)	3236(1)	28(1)	1
C(10)	5894(2)	6144(1)	3902(1)	40(1)	1
C(11)	3010(2)	9703(1)	2852(1)	16(1)	0.914(2)
C(12)	3802(1)	10388(1)	3313(1)	18(1)	$0.914(2)$
C(13)	3374(1)	11330(1)	3324(1)	21(1)	0.914(2)
C(14)	2222(2)	11579(1)	2878(1)	23(1)	0.914(2)
C(15)	1456(1)	10893(1)	2413(1)	22(1)	0.914(2)
C(16)	1851(1)	9952(1)	2406(1)	20(1)	$0.914(2)$
C(17)	5050(2)	10127(1)	3804(1)	27(1)	0.914(2)
C(11B)	3366(10)	9686(5)	3060(9)	15(4)	0.086(2)
C(12B)	2437(7)	10334(6)	2723(6)	14(2)	0.086(2)
C(13B)	2553(8)	11270(5)	3047(7)	12(2)	0.086(2)
C(14B)	3558(9)	11550(5)	3665(7)	14(3)	0.086(2)
C(15B)	4470(8)	10897(6)	3991(6)	15(3)	0.086(2)
C(16B)	4394(7)	9976(5)	3659(6)	8(2)	0.086(2)
C(17B)	1349(10)	10045(9)	2048(9)	31(4)	0.086(2)
C(18)	2351(1)	9129(1)	4498(1)	15(1)	1
C(19)	1810(1)	9379(1)	5154(1)	14(1)	1
C(20)	1840(1)	10317(1)	5467(1)	19(1)	1
C(21)	1284(1)	10539(1)	6085(1)	22(1)	1
C(22)	697(1)	9816(1)	6398(1)	23(1)	1
C(23)	670(1)	8871(1)	6116(1)	21(1)	1
C(24)	1220(1)	8662(1)	5490(1)	16(1)	1
C(25)	679(1)	6957(1)	5418(1)	23(1)	1
$\mathrm{C}(26)$	1224(2)	6064(1)	5147(1)	30(1)	1
C(27)	-670(1)	7000(1)	5046(1)	33(1)	1

Table S14. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{6 a}$

$\mathrm{Ru}(1)-\mathrm{C}(18)$	$1.8329(11)$	$\mathrm{C}(18)-\mathrm{Ru}(1)-\mathrm{C}(1)$	$100.45(5)$
$\mathrm{Ru}(1)-\mathrm{C}(1)$	$1.9611(11)$	$\mathrm{C}(18)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$78.71(4)$
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.2979(8)$	$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$179.15(4)$
$\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$2.3445(3)$	$\mathrm{C}(18)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$96.76(4)$
$\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$2.3523(3)$	$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$92.38(4)$
		$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$87.76(3)$
	$\mathrm{C}(18)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$102.05(4)$	
	$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$89.65(4)$	
	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$90.49(3)$	
	$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$160.382(12)$	

Table S15. Bond lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$ for $\mathbf{6 a}$

$\mathrm{Ru}(1)-\mathrm{C}(18)$	$1.8329(11)$	$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})$	$1.501(2)$
$\mathrm{Ru}(1)-\mathrm{C}(1)$	$1.9611(11)$	$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	$1.386(2)$
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.2979(8)$	$\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})$	$1.389(2)$
$\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$2.3445(3)$	$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	$1.390(2)$
$\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$2.3523(3)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.4404(15)$
$\mathrm{O}(1)-\mathrm{C}(24)$	$1.3766(14)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.4042(16)$
$\mathrm{O}(1)-\mathrm{C}(25)$	$1.4664(14)$	$\mathrm{C}(19)-\mathrm{C}(24)$	$1.4074(16)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.3550(14)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.3869(17)$
$\mathrm{N}(1)-\mathrm{C}(4)$	$1.4352(16)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.392(2)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.4742(16)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.3952(18)$
$\mathrm{N}(2)-\mathrm{C}(1)$	$1.3503(15)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.3912(16)$
$\mathrm{N}(2)-\mathrm{C}(11 \mathrm{~B})$	$1.399(6)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.5167(19)$
$\mathrm{N}(2)-\mathrm{C}(11)$	$1.4316(16)$	$\mathrm{C}(25)-\mathrm{C}(27)$	$1.519(2)$
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.4794(15)$		
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.526(2)$	$\mathrm{C}(18)-\mathrm{Ru}(1)-\mathrm{C}(1)$	$100.45(5)$
$\mathrm{C}(4)-\mathrm{C}(9)$	$1.383(2)$	$\mathrm{C}(18)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$78.71(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.400(2)$	$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$179.15(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.397(2)$	$\mathrm{C}(18)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$96.76(4)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.503(3)$	$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$92.38(4)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.382(3)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$87.76(3)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.381(3)$	$\mathrm{C}(18)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$102.05(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.400(2)$	$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$89.65(4)$
$\mathrm{C}(11)-\mathrm{C}(16)$	$1.392(2)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$90.49(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.402(2)$	$\mathrm{Cl}(1)-\mathrm{Ru}(1)-\mathrm{Cl}(2)$	$160.382(12)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.4038(19)$	$\mathrm{C}(24)-\mathrm{O}(1)-\mathrm{C}(25)$	$119.21(9)$
$\mathrm{C}(12)-\mathrm{C}(17)$	$1.501(2)$	$\mathrm{C}(24)-\mathrm{O}(1)-\mathrm{Ru}(1)$	$109.69(7)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.386(2)$	$\mathrm{C}(25)-\mathrm{O}(1)-\mathrm{Ru}(1)$	$131.09(7)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.389(2)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	$124.61(10)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.3902(19)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$112.39(10)$
$\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	$1.392(3)$	$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(2)$	$119.80(10)$
$\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	$1.402(2)$	$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(11 \mathrm{~B})$	$122.8(7)$
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	$1.404(2)$	$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(11)$	$127.49(10)$

$\mathrm{C}(11 \mathrm{~B})-\mathrm{N}(2)-\mathrm{C}(11)$	$18.8(3)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$119.42(14)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$112.63(10)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	$120.24(14)$
$\mathrm{C}(11 \mathrm{~B})-\mathrm{N}(2)-\mathrm{C}(3)$	$118.0(8)$	$\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{N}(2)$	$114.4(5)$
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(3)$	$119.52(10)$	$\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	$121.08(18)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	$107.24(10)$	$\mathrm{N}(2)-\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	$124.4(5)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{Ru}(1)$	$132.26(8)$	$\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	$117.48(18)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{Ru}(1)$	$120.34(8)$	$\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})$	$121.73(19)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$101.52(10)$	$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})$	$120.79(19)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	$101.69(10)$	$\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	$121.37(18)$
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(5)$	$121.43(13)$	$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})$	$120.29(18)$
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{N}(1)$	$119.31(12)$	$\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	$119.32(19)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(1)$	$119.25(14)$	$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})$	$120.2(2)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$117.10(17)$	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{Ru}(1)$	$119.54(8)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	$120.72(15)$	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(24)$	$118.62(10)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	$122.14(14)$	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$122.29(11)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$122.04(16)$	$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{C}(18)$	$119.08(10)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$120.02(15)$	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$120.87(12)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$119.32(18)$	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$119.09(12)$
$\mathrm{C}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$121.77(11)$	
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	$120.10(15)$	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	$118.40(12)$
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{N}(2)$	$121.15(12)$	$\mathrm{O}(1)-\mathrm{C}(24)-\mathrm{C}(23)$	$125.86(11)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{N}(2)$	$117.96(13)$	$\mathrm{O}(1)-\mathrm{C}(24)-\mathrm{C}(19)$	$112.93(9)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120.89(15)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(19)$	$121.21(11)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)$	$117.54(14)$	$\mathrm{O}(1)-\mathrm{C}(25)-\mathrm{C}(26)$	$106.31(10)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)$	$121.70(13)$	$\mathrm{O}(1)-\mathrm{C}(25)-\mathrm{C}(27)$	$110.04(11)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$120.73(14)$	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(27)$	$112.08(13)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$121.32(14)$		

Table S16. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{4}\right)$ for $\mathbf{6 a}$

The anisotropic displacement factor exponent takes the form:
$-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Ru}(1)$	167(1)	116(1)	121(1)	0(1)	60(1)	17(1)
$\mathrm{Cl}(1)$	254(2)	225(1)	131(1)	30(1)	55(1)	80(1)
$\mathrm{Cl}(2)$	185(1)	205(1)	218(1)	-50(1)	26(1)	5(1)
$\mathrm{O}(1)$	250(5)	147(4)	205(4)	-14(3)	129(4)	-27(3)
$\mathrm{N}(1)$	341(6)	188(4)	149(5)	31(4)	136(4)	115(4)
$\mathrm{N}(2)$	239(6)	168(4)	164(5)	26(4)	123(4)	52(4)
C(1)	165(5)	155(5)	116(5)	11(4)	32(4)	42(4)
C(2)	483(10)	270(6)	216(7)	51(5)	220(7)	162(6)
C(3)	347(8)	272(6)	226(6)	33(5)	201(6)	75(6)
C(4)	426(8)	186(5)	123(5)	21(4)	113(5)	146(6)
C(5)	498(10)	301(7)	146(6)	44(5)	128(6)	232(7)
C(6)	749(13)	286(7)	191(7)	75(6)	184(8)	319(8)
C(7)	882(15)	184(6)	225(7)	42(5)	191(9)	129(8)
C(8)	682(13)	206(6)	263(8)	-1(6)	131(8)	1(7)
C(9)	473(9)	181(5)	191(6)	8(5)	86(6)	80(6)
C(10)	416(10)	569(11)	260(8)	102(7)	149(7)	271(9)
C(11)	210(9)	159(6)	142(7)	19(4)	96(6)	8(5)
C(12)	179(7)	209(6)	181(6)	27(5)	77(5)	-6(5)
C(13)	238(8)	188(6)	228(7)	4(5)	103(6)	-35(5)
C(14)	261(8)	174(6)	288(8)	16(5)	128(6)	26(6)
C(15)	192(7)	219(6)	254(7)	28(5)	53(6)	47(5)
C(16)	210(7)	196(6)	186(6)	6(5)	68(5)	8(5)
C(17)	216(8)	295(7)	268(8)	27(6)	14(6)	6(6)
C(18)	186(6)	149(4)	146(5)	-7(4)	76(4)	-12(4)
C(19)	158(6)	150(4)	132(5)	-4(4)	49(4)	18(4)
C(20)	222(6)	156(5)	184(6)	-18(4)	62(5)	16(5)
C(21)	275(7)	212(5)	193(6)	-49(5)	78(5)	47(5)
C(22)	237(7)	295(6)	176(6)	-30(5)	91(5)	63(5)
C(23)	214(6)	255(6)	188(6)	-7(5)	108(5)	5(5)
C(24)	155(6)	171(5)	147(5)	-6(4)	52(4)	10(4)
C(25)	278(7)	187(5)	261(6)	22(5)	128(5)	-48(5)
C(26)	381(9)	162(5)	406(9)	-3(6)	171(7)	-41(6)
C(27)	286(8)	301(7)	419(9)	-15(6)	148(7)	-82(6)

Figure S8. ORTEP drawing of syn-6a

Figure S9. ORTEP drawing of anti-6a

Figure S10. ORTEP drawing of superimposed syn- and anti-6a

REFERENCES

[^1]
[^0]: ${ }^{1}$ California Institute of Technology
 ${ }^{2}$ Materia, Inc.

[^1]: ${ }^{\text {i }}$ Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100-110.
 ${ }^{\text {ii }}$ For complete details, see: Ritter, T.; Hejl, A.; Wenzel, A. G.; Funk, T. W.; Grubbs, R. H. Organometallics 2006, 25, 5740-5745.
 ${ }^{\text {iii }}$ For syntheses of the substrates and isolation procedures for S6-S9, see: Berlin, J. M.; Campbell, K.; Ritter, T.; Funk, T. W.; Chlenov, A.; Grubbs, R. H. Org. Lett. In Press. ${ }^{\text {iv }}$ Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 635259.

