
 
 

 

  

 
Abstract—This paper aims at acquiring robust rotation, scale, 

and translation-invariant feature from a space-variant image by 
a fovea sensor.  A proposed model of eccentricity compensator 
corrects deformation that occurs in a log-polar image when the 
fovea sensor is not centered at a target, that is, when eccentricity 
exists.  An image simulator in discrete space remaps a 
compensated log-polar image using this model.  This paper 
proposes Unreliable Feature Omission (UFO) that reduces local 
high frequency noise in the space-variant image using Discrete 
Wavelet Transform.  It discards coefficients when they are 
regarded as unreliable based on digitized errors of the input 
image.  The first simulation mainly tests geometric performance 
of the compensator, in case without noise.  This result shows the 
compensator performs well and its root mean square error 
(RMSE) changes only by up to 2.54[%] in condition of 
eccentricity within 34.08[°].  The second simulation applies 
UFO to the log-polar image remapped by the compensator, 
taking its space-variant resolution into account.  The result 
draws a conclusion that UFO performs better in case with more 
white Gaussian noise (WGN), even if the resolution of the 
compensated log-polar image is not isotropic. 

I. INTRODUCTION 
HE log-polar mapping, inspired by analytic formulation 
of biological study of the primate visual system [1], is a 

method of space-variant imaging that can reduce image data 
size drastically.  Some computational models mapping the 
log-polar image from a uniform-resolution image have been 
reported [2][3].  In order to obtain the log-polar image, 2 
types of actual fovea sensors have been proposed and 
developed.  One is by a special CCD or CMOS log-polar chip, 
where united size of each photosensitive element increases as 
going to periphery [5]-[7].  The other is by a special fovea 
lens, such as a Wide-Angle Foveated (WAF) lens, where a 
projected image is distorted geometrically [8]-[10]. 

One of the most remarkable advantages of the log-polar 
image is to give us rotation and scale-invariant (RS-invariant) 
property [5][10], because its image resolution distributes 
isotropically and changes logarithmically from the image 
center towards the periphery.  Assume a situation where a 
view direction (that is, the optical axis) of the fovea sensor is 
perpendicular to a planar target image (that is, without shear).  
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If the fovea sensor is directed towards the image center of the 
target image accurately, we can obtain the RS-invariant 
feature from the image that is located at different distances 
and rotated about the optical axis.  But if the fovea sensor is 
not centered at the image center correctly, a positional error 
between the optical axis and the image center (that is, so 
called, positional eccentricity) causes geometric deformation 
in the log-polar image and reduces the RS-invariant property 
(see Fig. 1(d) and (f), and also refer to [5]).  We need to 
differentiate the deformation and image distortion.  It should 
be noted that the latter occurs inherently due to space-variant 
sampling by the fovea sensor. 

This paper discusses a method for acquiring rotation, scale, 
and translation-invariant (RST-invariant) feature, robust to 
the eccentricity and noise, from the log-polar image by the 
fovea sensor.  The following 2 points are focused mainly. 

1) Remapping a new log-polar image from the original 
log-polar image by compensating the eccentricity in order 
to increase robustness of geometric RS-invariant property. 

2) Removing unreliable Wavelet Transform coefficients of 
the remapped image by taking space-variant resolution into 
account in order to improve image quality. 

In terms of the first issue, we can see relevant ideas in some 
active visual tracking researches using the log-polar image 
(e.g. image warping technique [11] and a concept of virtual 
retina [12]).  They are characterized as follows:  

(a) Cartesian coordinates have been used for computing 
image motion (that occurs due to active camera motion). 

(b) A remapped log-polar image (or displacement in the 
image) has been computed from the original image using 
the image motion. 

In Cartesian space, translation caused by the positional 
eccentricity can be compensated easily.  This property seems 
to have led to applying the affine model to compute the image 
motion [11][13].  In addition, the log-polar space is 
compatible with representing rotation and scaling [13].  Each 
of these ideas has performed its following correlation process 
well to increase stabilization of visual tracking in the central 
field of view (so-called, the fovea).  However, it seems that 
the above researches have not discussed deeply enough with 
respect to quality of the remapped image (or the computed 
displacement), although it is space-variant.  This problem 
motivates the second issue that pays attention to resolution of 
the log-polar image remapped from the original one, in order 
to estimate reliability of image components.  The resolution 
of the log-polar image is space-variant inherently.  In addition 
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to that, that of the remapped one is anisotropic from the image 
center (see Fig. 1(c) and note the eccentricity gives 
space-variant resolution that is not isotropic, even if the 
deformation is corrected).  Discrete Wavelet Transform 
(DWT) is well known as multi-resolution analysis [15] and it 
has been applied to foveation of the image [16].  The authors 
think this structure is suitable for representing the anisotropic 
log-polar image as mentioned above. 

This paper is organized in the following way.  Chapter II 
proposes a model of eccentricity compensator that corrects 
the deformation in the original log-polar image.  An image 
simulator in discrete space remaps a compensated log-polar 
image by this model.  Chapter III proposes Unreliable Feature 
Omission (UFO), that is, a method for reducing local high 
frequency noise from the space-variant image using Discrete 
Wavelet Transform.  UFO is simulated and discussed by 
adding different 3 kinds of white Gaussian noise to the 
original log-polar image. 

II. ECCENTRICITY COMPENSATOR  

A. Acquisition of Wide-Angle Distorted Foveated Image 
A distorted foveated image DF is computed from a 

Cartesian target image I.  The image DF simulates an input 
image by the fovea sensor.  In the following definitions, it is 
assumed that the image I is on the object plane and is shifted 
with eccentricity θε in the φε-direction.  The θε denotes angle 
between the optical axis of the fovea sensor and the straight 
line from the optical center Oc to the image center O of the 
image I, as in Fig. 2.  The image center O is the origin of 
continuous coordinates (x, y).  Discrete coordinates, (xd, yd), 
of the image I are computed using an element size (δx, δy). 
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A direction (θ, φ), from a point P(x, y) to the optical center 
Oc of the fovea sensor, is expresses as 
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where L is a length from the optical center Oc to the object 
plane, and ε is positional eccentricity on the object plane. 

εθε tanL=   ,                 (3) 

Continuous coordinates (x', y') of the distorted foveated 
image DF are expressed as 
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where r(θ) shows the image height of the fovea sensor versus 
incident angle θ, α1 is magnification of the image, θε  and φε 
denote the direction from the image center O to the optical 
center Oc.  The origin O' of the coordinates (x', y') 
corresponds to the direction (θε , φε) (that is, the image center 
O).  Discrete coordinates, (xd', yd'), of the image DF are 

computed using an element size (δ'x, δ'y). 
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(a) Target image I (of 512x512) 

     
(b) DF (of 128x128) 

     
(c) UDF 

     
(d) CLP (of 128x64) 

     
(e) P1 (of 128x64) 

     
(f) P2 (of 128x64) 

Fig. 1  (a) Target image I, (b) distorted foveated image DF, (c) undistorted 
foveated image UDF, (d) compensated log-polar image CLP, and (e) a polar 
image P1 and (f)the original log-polar image P2 in each eccentricity θε = 0[°], 
18.69[°], and 34.08[°] from the left 
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Fig. 2  Coordinate systems (2 points Q are identical with each other) 

Advanced Wide Angle Foveated (AdWAF) model [10] is 
used as a model of the image DF in this paper.  This model 
uses both Cartesian coordinates and logarithmic coordinates 
in both planar projection and spherical projection.  The field 
of view (FOV) is divided into 4 areas, that is, fovea 
( 00 θθ ≤≤ ), para-fovea ( 10 θθθ ≤≤ ), near-periphery 
( 21 θθθ ≤≤ ), and periphery ( max2 θθθ ≤≤ ).  Figure 3 
compares a simulated AdWAF image and a Cartesian image 
by pinhole camera (PHC) lens model.  In this figure, the 
boundaries of FOV, that is, θ0, θ 1 and θ 2, are 9.826 [°], 
19.107 [°], and 34.715 [°], respectively.  Intensity is changed 
in order to see each boundary intuitively.  The image height 
r(θ) of the AdWAF model is defined in the following. 

         
(a)AdWAF image       (b)Cartesian image 

Fig. 3  Comparison of AdWAF image and Cartesian image 

AdWAF model: 
θtan10max fcrr =       ( 00 θθ ≤≤ ), 

where f1 is a focal length for planar projection. 
{ }111max tanlog dfcrr a += θ  ( 10 θθθ ≤≤ ),     (6) 

where a basis a is defined as )tan/1exp( 01 θfa = .  This 
corresponds to the brightest area in Fig. 3. 

})(log{ 222max dfcrr b += θ   ( 21 θθθ ≤≤ ), 

where f2 is a focal length for spherical projection, and a 
basis b is defined as )/1exp( 22θfb = . 

}{ 323max dfcrr += θ     ( max2 θθθ ≤≤ ), 
where rmax is the maximum image height when θ =θmax, ci 
(i=0, 1, 2, 3) is a scale modification factor for adjusting the 
image height, and di (i=1,2,3) is calculated by continuity of 
the image height and its magnification. 

PHC lens: 
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B.  Geometric Modeling of Compensated Log-polar Image 
As shown in Fig. 1(b), the image DF is distorted highly.  

Continuous coordinates, (x'', y''), of the undistorted foveated 
image UDF are expressed as  
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where α2 is magnification.  The origin O'' of the coordinates 
(x'', y'') corresponds to the image center O.  Discrete 
coordinates, (x''d, y''d), of the image UDF are computed using 
an element size (δ''x, δ''y). 
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Continuous coordinates, (η, ξ), of the compensated 
log-polar image CLP (that is, a remapped log-polar image 
after correcting the deformation caused by the eccentricity) 
are computed from the coordinates (x'', y''). 
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where r0 is a radius from which the log-polar image starts, α3 
is magnification, and  Θ is defined as 
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where L''=α2L.  Discrete coordinates, (ηd, ξ d), of the image 
CLP are computed using an element size (δη, δξ). 
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where the maximum integer of ηd is replaced with 0 (that is, 
the discrete value ηd corresponds to πη 20 <≤ ). 

Cartesian coordinates, (x''', y'''), of a compensated foveated 
image CF are expressed as 
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where α4 is magnification.  Discrete coordinates, ( dd yx ′′′′′′ , ), of 
the image CF are computed using an element size (δ'''x, δ'''y). 
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C.  Image Simulator in Discrete Space 
In discrete space, image simulator of the proposed 

compensator outputs the image CLP using the following 2 
mappings f and fCLP. 

f      : DFI → , 
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where N is the number of points (xdi, ydi) 1{ +′≤′≤′∈ didd xxxSi  
}1+′≤′≤′ didd yyyI  corresponding to each point (x'd, y'd).  Note 

that the N is not constant with respect to each point (x'd, y'd). 

fCLP : CLPDF → , 
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where N is the number of the points (x'di, y'di) ≤≤∈ iddCLPSi ηη{  
}11 +≤≤+ diddd ξξξη I  corresponding to each point (ηd, ξd). 

Some methods for foveation and cortical mapping are 
known [2]-[4].  The mappings f and fCLP denote foveation and 
a kind of cortical mapping, respectively.  The latter can be 
called log-polar remapping.  These mappings formulize how 
the N-multiple points correspond to each point in the 
remapped image in addition to geometric modeling.  It is 
noted that the proposed image simulator computes intensity 
of each point in a different way from the above methods 
[2]-[4], taking the fovea lens into consideration.  This 
mapping way is discussed again in next chapter, with respect 
to digitized errors of the remapped image. 

D.  Performance Test of Geometry 
In the following simulation, a boundary between fovea and 

para-fovea is defined as r0=rmaxc1f1tanθ0 in the AdWAF 
model.  Figure 1(a) shows a target image I of 512x512 
[pixels], and Fig. 1(b) shows the distorted foveated image DF 
of 128x128 [pixels], simulated from the image I using the 
mapping f by eq.(7) where the rmax of the AdWAF model is 36 
[pixels], in 3 cases of eccentricity θε=0 [°], 18.69 [°] and 
34.08 [°] (in condition of δ =δx =δ y and φε =0).  Figure 1(d) 
shows the compensated log-polar image CLP of 128x64 
[pixels] that corresponds to the para-fovea by eq. (6) where 
θ0=9.826 [°] and θ1= 19.107 [°].  In order to test the 
compensator, a polar image P1 (Fig. 1(e)) and the original 
log-polar image P2 (Fig. 1(f)) of 128x64 [pixels] are 
computed from the image DF and compared with the image 
CLP.  The image P1 has polar coordinates (r', φ') around the 

origin O'.  The image P2 has polar coordinates (r(θ), φ) 
around the optical axis.  Their discrete images are represented 
by P1(r'd, φ'd) and P2(rd, φd), respectively.  The compensator 
corrects the deformation of the log-polar image well in each 
eccentricity, although the resolution of the image CLP 
distributes anisotropically.  It should be noted that this 
comparison takes practical use of the fovea sensor by the 
fovea lens and log-polar chip into account.  In order to 
understand effect of the compensator more intuitively, the 
undistorted foveated image (UDF) is also shown in Fig. 1(c).  
Note the right eye of the woman is always located nearly at 
the origin O'' (center) in each image UDF. 

The image CLP is estimated using root mean square error 
(RMSE) from a model log-polar image LP, acquired from the 
image I (Fig.4).  The RMSE E is defined as 

ξη NN
LPCLP

E
⋅
−

=
2

 , 

where Nη and Nξ shows the size of the log-polar image. 

η

ξ

O

 
Fig. 4  A model log-polar image LP and its coordinates 

-20 0 20
0

20

40

60

80

100

Eccentricity  θε  [degrees]

R
M

SE
   E

P1
P2
CLP

 
Fig. 5  RMSE of P1, P2 and CLP versus θε 

Figure 5 compares RMSE of the image P1 (broken line), 
the image P2 (dashed line) and the image CLP (solid line) 
versus the eccentricity θε  (when φε =0).  The RMSE of the 
image CLP is smaller in all incident angles than those of the 
images P1 and P2.  This means that the compensator corrects 
the deformation in the images P1 and P2 well.  However, the 
RMSE of the image CLP increases gradually as the 
eccentricity gets larger, because the intensity of more points 
in the image CLP is computed from lower-resolution part 
(like the periphery) of the image DF (the intensity from the 
lower-resolution part has larger error than higher-resolution 
one).  The RMSE of the image CLP changes by up to 2.54[%], 
in condition of the eccentricity within θε =34.08[°]. 

The log-polar image acquired from a uniform-resolution 
image such as the image I is space-variant inherently, 
however, its resolution changes isotropically.  When a 
low-pass filter is used for such space-variant image in order 
to reduce noise, not only noise but also fine information is 
lost from the original image.  In addition, if the eccentricity 
exists, the resolution of the image CLP is not only 
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space-variant but also anisotropic.  In order to estimate the 
resolution, this paper uses digitized errors, ∆η and ∆ξ, in the 
η and ξ-directions of the image CLP.  They are computed 
from digitized errors, ∆θ and ∆φ, in the radial and tangential 
directions of the image DF (as an input image by the fovea 
sensor), respectively. 
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Fourier-Mellin Transform (FMT) is well known as a 
method for registering RST-invariant feature [18]-[20].  FMT 
reduces the influence of the eccentricity by extracting 
translation-invariant property based on Fourier Transform, 
while its feature is influenced by the anisotropic space-variant 
resolution because the feature is computed from Cartesian 
image (see the image UDF).  On the other hand, the proposed 
compensator computes feature using log-polar geometry as in 
the image CLP.  A method for acquiring feature, more robust 
to the eccentricity and noise, from the anisotropic 
space-variant image is proposed in the next chapter. 

III. UNRELIABLE FEATURE OMISSION 

A. Definition for Space-variant Image 
If the image CLP is up-sampled from the low-resolution 

part of the image DF not fulfilling the sampling theorem, alias 
occurs as noise.  This noise appears in components more than 
some frequency.  Unreliable Feature Omission (UFO) 
discards such components using Discrete Wavelet Transform 
(DWT), because it is suitable for local noise reduction from 
the space-variant image.  UFO is applicable also for the 
anisotropic space-variant resolution caused by the 
eccentricity, mentioned in the previous chapter.  UFO is 
defined as follows: 

1) Define DWT of the image CLP as ω.  Its coefficient is 
expressed as c

ikj ,ω , where j is resolution level and c 
denotes diagonal, horizontal and vertical components as d, 
h, and v, respectively 

2) If points in the image, corresponding to each coefficient 
c

ikj ,ω , fulfill conditions ΞΗ ∧ , Η and Ξ in each case of 
c=d, h and v, respectively, discard the coefficient (set it as 
zero) as to determine a matrix υ of wavelet coefficients. 

111

111

2
4

)
2

2
,

2
(:

2
4

)
2

2
,

2
(:

−−−

−−−

⋅
>+

⋅
+

⋅

>+
⋅

+
⋅

j
f

jj

j
f

jj

MN
n

Nl
m

Nk

M
n

Nl
m

Nk

ξξη

ξη

ξ∆Ξ

π
η∆Η

 , 

where Mf is a parameter regulating accuracy of the 
digitized error in sub-pixel order.  The m and n are integer 
determined by the resolution level j. 
3) Define an image U by Invert Discrete Wavelet 
Transform (IWDT) of the υ. 

B. Performance Test of Compensated Log-polar Image 

The image CLP is expressed as CLPeDF CLPfa+  when 
white Gaussian noise (WGN) e is added to the image DF.  
Figure 6 shows the RMSE of the image before UFO (by a 
broken line), the image U after UFO (by a solid line) versus 
the eccentricity θε (when φε =0).  The RMSE is computed 
from the model log-polar image LP.  This simulation uses 
Haar wavelet for UFO in conditions of Nη =2Nξ =128, and Mf 
=1.0.  Circle, triangle and square show cases when the WGN 
is 0, 5 and 10[%], respectively.  The RMSE is computed as an 
average of 100 times repetition. 

In each case of the WGN, the RMSE increases gradually as 
the eccentricity gets larger.  It is noted that the RMSE after 
UFO increases more gently than that before UFO.  This 
means UFO performs better for removing unreliable DWT 
coefficients as the image CLP is remapped from the 
lower-resolution part of the image DF.  When the WGN is 5 
and 10[%], UFO increases quality of the image CLP by 
reducing local noise (UFO works better in case with more 
noise), even if the space-variant resolution is not isotropic.  
However, when the WGN is 0[%], the RMSE after UFO is 
slightly larger than that before UFO.  The high level 
coefficients, removed by UFO, seem to include not only noise 
but also a part of the original signal.  The following 2 reasons 
are guessed.  One is that the distribution of the errors ∆η and 
∆ξ is not approximated sufficiently to a dyadic pyramid.  The 
other is that actual errors of ∆η and ∆ξ are smaller than 
estimated errors by eq. (9), because the image CLP uses a sort 
of moving average when it is remapped from the image DF as 
by eq. (8).  Figure 7 compares with the RMSE when the 
regulating parameter Mf = 1.5.  The RMSE by Mf =1.5 is 
much closer to that before UFO than that by Mf =1.0.  This 
result is consistent with the above guess. 
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Fig. 6  RMSE before and after UFO 
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Fig. 7  RMSE when the regulating parameter MF is changed 
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(a)CLP with 0% WGN before UFO 

     
(b)CLP with 0% WGN after UFO 

     
(c)CLP with 5% WGN before UFO 

     
(d)CLP with 5% WGN after UFO 

     
(e)CLP with 10% WGN before UFO 

     
(f)CLP with 10% WGN after UFO 
Fig. 8  CLP before and after UFO 

when θε = 0[°], 18.69[°], and 34.08[°] from the left 

     
Fig. 9  CF when θε = 0[°], 18.69[°], and 34.08[°] from the left 

IV. CONCLUSION 
In the first simulation, it has been demonstrated that the 

eccentricity compensator performs well for correcting the 
deformation using log-polar geometry.  The RMSE of the 
image CLP changes by up to 2.54[%], in condition of the 
eccentricity within θε =34.08[°].  In the second simulation, it 
has been demonstrated that UFO performs better in case with 
more white Gaussian noise (WGN), even if the resolution of 
the image CLP is not isotropic.  As future works, each of 
these methods will be extended to the affine model and 
different type of wavelet, respectively.  Such improvements 
lead to more practical use and better performance. 

Lastly, a mapping f'CF from the image DF to the 
compensated foveated image CF is defined as eq. (10). 

f'CF     : CFDF → , 
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where N is the number of the points (x'di, y'di) ≤′≤′′∈ iddCF xxSi ({  
)}1()1 +′≤′≤′+′ diddd yyyx I  corresponding to each point ( dd yx ′′′′′′ , ). 

Figure 9 shows the image CF by eq. (10).  The resolution 
distributes more anisotropically as the eccentricity gets larger.  
This mapping denotes a combination of the fovea sensor and 
the eccentricity compensator. 
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