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Abstract— This paper describes nonlinear control of a two
degree of freedom mechanical system which models a bird
perched on a branch or cable. The primary contribution is
the implementation, in a controlled laboratory experiment, of
the recently developed L1 adaptive control approach. This
technique, which allows fast adaptation with guaranteed sta-
bility margins, has been proposed for use in a variety of
more sophisticated applications. Experimental results for this
simple mechanical control system provide further motivation
to pursue those applications. The system being considered is
a variation of Spong’s “Acrobot”, a classic example of an
underactuated mechanical control system. In addition to the L1

controller, a swing-up controller based on Spong’s original work
on collocated partial feedback linearization is implemented with
switching logic.

I. INTRODUCTION

This paper describes modelling and control design for a

mechanical system which resembles a bird perched on a

branch or a cable. A primary function of the tail in birds is to

provide flight stability [16], [17]. The tail may also provide a

mechanism for active balance when a bird is perched [10]. In

this capacity, the tail provides a counter-moment in response

to any disturbance moments. As modeled in this paper, the

system is similar to a planar double pendulum, modified to

incorporate aerodynamic effects. As a mechanical system,

the model is underactuated – it is assumed that the bird may

use its tail muscles to exert a moment on its tail feathers,

and the surrounding fluid, but that its feet can not exert any

moment about the perch.

While the role of tail feathers in birds is of biological

interest [10], the proposed model is also of interest to

control designers as a variation of the now classic “Acrobot”

described in [13]. As a simple mechanical control system, it

exhibits some interesting features which challenge a number

of existing nonlinear control methods. Since the system is

underactuated, many standard nonlinear control techniques,

such as backstepping or input-state linearization, are not

directly applicable. The system structure is not amenable to

the approach described in [11], nor may the structure be

transformed into the desired form through feedback, as de-

scribed in [15]. Energy shaping methods have been proposed

for controlling underactuated mechanical systems [1], [18],

but the feedback equivalence conditions can be difficult to
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verify. Symmetries in the dynamics can simplify the analysis

of feedback equivalence, but the system considered here

exhibits no overall symmetry. Still, the dynamic structure is

special in the sense that the kinetic energy depends only on

the actuated variable and the potential energy depends only

on the unactuated one. It may be that a simplified procedure

for kinetic and potential energy shaping could be defined,

as was done in [7] for a class of systems that includes the

Acrobot example.

This paper is primarily concerned with experimentally

demonstrating a new robust control approach, the “L1 adap-

tive control” technique [2], [3]. This new technique provides

fast, online parameter adaptation for improved tracking with

guaranteed stability margins. To bring the system state into

a local neighborhood of the desired equilibrium, the energy-

based “collocated partial feedback linearization” method

presented in [14] is also applied, with switching logic to

shift to the L1 controller when appropriate. (With regard

to the “perched bird” analogy, the authors are admittedly

unaware of any fowl which are able, or so inclined, to swing

themselves to an upright position.)

Section II describes the model of the system and Sec-

tion III reviews both the L1 adaptive control method and the

energy-based method used for swing-up. Section IV presents

the results of simulations and experiments. Section V pro-

vides conclusions.

II. DYNAMIC MODEL

Consider a bird perched on a branch or a telephone line

as depicted in Figure 1(a). It is assumed that the bird’s feet

exert no moment about the perch.

µ Á

Point mass: M

Added mass: m
Added inertia: J

L l
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Fig. 1. (a) A bird perched on a wire (b) The two-link pendulum model of
the perched bird.
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To move its tail through the surrounding air, the bird must

exert a moment τ ′ which results in a counter-moment that

may help it to remain upright. In our model, we will assume

that the air is quiescent; the bird must generate the stabilizing

torque in still air. We model the bird as a simple inverted

pendulum with an additional link as shown in Fig. 1(b). The

inverted pendulum models the body and the massless legs

whereas the additional link models the tail feathers. The body

of the bird is modelled as a point mass M . The tail feathers

are modelled as a massless flat plate. Though it has no actual

mass, the plate induces added mass and added inertia, which

account for the energy necessary to accelerate the air around

the tail feathers as they move. Added mass is directional.

While there is added mass in the direction normal to the

flat plate, call it m, there is no added mass in tangential

directions. We denote the added inertia of the disk about its

center by J . To obtain an analytical expression for the added

mass and added inertia of the tail feathers, we assume that

the flat plate is actually an extremely oblate spheroid (i.e., a

very thin pancake shape). In this case, according to [8],

m ≈ 5ρ

(

4

3
πr3

)

and J ≈
13ρ

2

(

8

15
πr5

)

, (1)

where ρ is the density of the fluid and r is the radius of

the circular flat plate. The Lagrangian for this system is the

kinetic energy minus the potential energy:

L′ =
1

2

(

θ̇

φ̇

)⊤ (

M ′
11 M ′

12

M ′
21 M ′

22

)(

θ̇

φ̇

)

− V ′(θ, φ),

where

M ′
11 = ML2 + J + m(l − L cos φ)2,

M ′
12 = M ′

21 = − (J + ml(l − L cos φ)) ,

M ′
22 = J + ml2,

V ′(θ, φ) = −MgL(1 − cos θ).

(The “prime” denotes a dimensional quantity; all terms are

non-dimensionalized presently.) The second term in M ′
22 is

the inertia due to the added mass of the disk about the point

mass M . From equation (1), we get J = 13
25

mr2. Thus, we

have

J + ml2 = ml2
(

13

25

(r

l

)2

+ 1

)

.

We will assume that 13
25

(

r
l

)2
≪ 1 so that the added inertia

J is negligible compared with the effect of added mass

acting with a moment arm of length l. Define the following

dimensionless parameters:

µ =
m

M
, λ =

l

L
, and T =

√

g

L
t.

Then the nondimensional Lagrangian is

L =
1

2

(

θ̇

φ̇

)⊤ (

M11 M12

M21 M22

)(

θ̇

φ̇

)

− V (θ, φ),

where overdots now (and in the rest of the paper) represent

differentiation with respect to T and where

M11(φ) = 1 + µ(λ − cos φ)2,

M12(φ) = −µλ(λ − cos φ),

M22(φ) = µλ2,

V (θ) = −(1 − cos θ).

Ignoring all external moments except for the nondimensional

input τ and the potential flow effect, which is accounted for

in the kinetic energy, the Euler-Lagrange equations are

d

dt

∂L

∂θ̇
−

∂L

∂θ
= 0,

d

dt

∂L

∂φ̇
−

∂L

∂φ
= τ

More explicitly, the equations of motion can be written
(

M11 M12

M21 M22

)(

θ̈

φ̈

)

+

(

C11 C12

C21 C22

)(

θ̇

φ̇

)

−

(

sin θ

0

)

=

(

0
τ

)

,

where the “Coriolis and centripetal” matrix elements are

C11(φ, θ̇, φ̇) = µ(λ − cos φ) sin φφ̇,

C12(φ, θ̇, φ̇) = µ(λ − cos φ) sin φθ̇ − µλ sin φφ̇,

C21(φ, θ̇, φ̇) = −µ(λ − cos φ) sin φθ̇,

C22(φ, θ̇, φ̇) = 0.

III. CONTROL DESIGN

This section describes, in general terms, the L1 adaptive

control method and the energy-based swing-up method. See

the references for additional details.

A. L1 Adaptive Control

The most common control approach for nonlinear systems,

when applicable, is to linearize the equations about an

operating point or trajectory and control the system using a

linear control method. Although the linear approximation is

locally valid, there is typically model parameter uncertainty;

the true state matrix differs from the one that is available to

the control designer. The inherent robustness of linear control

allows for some degree of model parameter uncertainty.

Adaptive control provides additional robustness to parameter

uncertainty.

The perched bird model clearly includes parameter uncer-

tainty. The unsteady fluid effects are modelled, for example,

in terms of inviscid potential flow using approximate values

for added mass and added inertia. Because this experiment is

intended to motivate more sophisticated applications of the

L1 technique, we intentionally introduce additional paramet-

ric uncertainty.

A common adaptive control technique is Model Reference

Adaptive Control (MRAC) in which the controller attempts

to drive the true state to that of an ideal reference system

despite parametric uncertainty [12]. In this approach, the
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control parameters are varied based on measurements. The

rate at which these control parameters vary is defined by

the adaptation gains which can, in principle, be chosen

arbitrarily large to yield fast convergence. In reality, raising

the adaptation gains leads to high-frequency control signals

and a loss of robustness. Recently, Cao and Hovakimyan

[2], [3] have developed a novel adaptive control method

called L1 adaptive control. The L1 approach allows for

fast parameter adaptation, providing asymptotic tracking of

a reference input with a well-behaved control signal and

guaranteed robustness margins [4], [5].

Consider the SISO, linear time-invariant system

ẋ(t) = Ax(t) + Bu(t)

y(t) = CT x(t)

where A contains uncertain parameters but B and C are

known. (The L1 setting is actually more general; see [2].)

Suppose that the uncertainty in A can be characterized by a

vector of unknown constant parameters θ as follows:

A = A0 − BθT . (2)

In this case, the standard matching assumptions from direct

MRAC theory are automatically satisfied. Although θ is

unknown, its value is assumed to lie in a known compact

set Θ.

Partition the control input u(t) into a linear and an adaptive

part u(t) = ul(t) + ua(t). The linear controller can be

designed for the nominal system (defined by A0) using LQR

theory, for example, to obtain a closed-loop Hurwitz state

matrix Am = A0 − BKT .

Define the following state predictor:

˙̂x(t) = Amx̂(t) + B
(

ua(t) − θ̂
T
(t)x(t)

)

(3)

ŷ(t) = CT x̂(t),

where x̂(t), ŷ(t) and θ̂(t) are estimates of x(t), y(t) and

θ, respectively. The control objective is to make the system

output y(t) track an arbitrary, smooth reference signal r(t).
Consider the adaptive control law

ua(s) = Cf (s) (r̄(s) + kgr(s)) (4)

where Cf (s) is a low-pass filter with unity DC gain and the

constant kg is a feed-forward gain that ensures asymptotic

tracking for step input. (All signals in (4) are expressed in the

Laplace domain.) The signal r̄(s) is the Laplace transform

of

r̄(t) = θ̂
T
(t)x(t) (5)

The L1 adaptive controller (4) reduces MRAC when

Cf (s) = 1. The adaptation law is

˙̂
θ(t) = ΓxProj

(

x(t)x̃T (t)PB, θ̂(t)
)

, (6)

where Γx term is the matrix of adaptive gains and

Proj(y, θ̂(t)) is the projection operator [9], which ensures

that the adaptive parameters remain bounded. In the argu-

ment of the projection operator, x̃(t) = x̂(t) − x(t) is the

state error and P is the symmetric, positive definite solution

of the Lyapunov equation

AT
mP + PAm = −Q,

where Q is any symmetric, positive definite matrix.

To summarize, the adaptive component ua is given in (4)

and (5), along with the predictor dynamics (3) and the

adaptation law (6).

Define the positive definite Lyapunov-function candidate

V (x̃, θ̃) = x̃T P x̃ + θ̃
T
Γ
−1
x θ̃,

where θ̃ = θ̂−θ is the estimation error. It is straight forward

to show that

V̇ (x̃, θ̃) ≤ −x̃T Qx̃ ≤ 0.

This suggests that the error dynamics converge, however

one cannot deduce stability from this result directly. It must

also be shown that the predictor state remains bounded. The

boundedness of the predictor state and asymptotic conver-

gence of the error to zero are shown in [2] provided one

additional condition is satisfied – the low-pass filter Cf (s)
must be constructed to meet the L1 stability criterion:

‖Ḡ(s)‖L1
θmax ≤ 1 (7)

where ‖Ḡ(s)‖L1
is the L1 gain of

Ḡ(s) = (sI − Am)−1B (Cf (s) − 1) ,

where

θmax = max
θ∈Θ

n
∑

i=1

|θi|.

The following result follows from the results in [2].

Proposition 3.1: Assume that the L1 stability criterion (7)

holds. Then the control law (4) together with adaptation

law (6) and predictor (3) ensures that limt→∞ x̃(t) = 0.

B. Collocated Partial Feedback Linearization

Although underactuated systems are generally not input-

state linearizable, Spong [13] applied a partial linearization

method called collocated partial feedback linearization to

swing up the Acrobot. Consider the class of two degree of

freedom (DOF) underactuated mechanical systems described

by the equations1

M11q̈1 + M12q̈2 + C1 + G1 = 0, (8)

M21q̈1 + M22q̈2 + C2 + G2 = τ, (9)

where q1 and q2 are the generalized coordinates. The terms

Ci and Gi represent Coriolis-centripetal and gravity effects,

1Though we only consider a two-DOF system, any underactuated n-DOF
system can be be partitioned in this lower underactuated form.

WeA01.4

21



respectively. (To simplify notation, the dependence of Mij ,

Ci, and Gi on the state is not indicated explicitly.) The class

of systems (8-9) describes the perched bird model described

in Section II, with (q1, q2) = (θ, φ) and G2 = 0. Since the

generalized inertia matrix is positive definite, M11 6= 0 and

equation (8) can be rewritten as

q̈1 = −M−1
11 (M12q̈2 + C1 + G1) . (10)

Substituting (10) into (9),

M̃22q̈2 + C̃2 + G̃2 = τ, (11)

where

M̃22 = M22 − M21M
−1
11 M12,

C̃2 = C2 − M21M
−1
11 C1,

G̃2 = G2 − M21M
−1
11 G1.

By defining the input

τ = M̃22u + C̃2 + G̃2 (12)

the equations of motion (8-9) become

M11q̈1 + C1 + G1 = −M12u, (13)

q̈2 = u, (14)

where the directly actuated subsystem has been rendered

linear. Considering only the q2 subsystem, for the moment,

any linear control design technique may be applied to drive

q2 to zero. For example, choosing static state feedback

u = −K1q2 − K2q̇2 + ū

with K1 > 0 and K2 > 0 and ū = 0 stabilizes the q2

subsystem.

The essential problem is to choose ū to drive the complete

system to a desired state. In the similar setting of input-

output linearization, one investigates the zero-dynamics to

ensure that they are asymptotically stable. For collocated

partial feedback linearization, the zero-dynamics are often

unstable and choosing ū appropriately is a nontrivial task.

We use an energy based technique, similar to the one used to

stabilize the Acrobot in [14], to bring the system state within

the region of attraction of the locally stabilizing controller

discussed in Section III-A.

To perform the swing-up maneuver, the controller must

increase the total energy of the system

E =
1

2

(

q̇1

q̇2

)T (

M11 M12

M21 M22

) (

q̇1

q̇2

)

+ V (q1, q2)

¿from its minimum value. Let Eeq represent the energy of the

system at the desired equilibrium. Let ū = K3q̇1(E−Eeq) =
K3q̇1Ẽ so that

u = −K1q2 − K2q̇2 + K3q̇1Ẽ. (15)

With appropriately chosen gains, this approach provides

convergence of the system state to a constant-energy level

set [14]. When the trajectory passes through the region

of attraction of the L1 local controller, the control law is

switched to asymptotically stabilize the desired equilibrium.

Specifically, the switch occurs at the boundary of the com-

pact set Ωc = {x | |E − Eeq| ≤ ǫ} where ǫ may be

computed from Lyapunov analysis or from experiments. If

the system can be shown to switch only once, a dwell-time

condition is satisfied which ensures asymptotic convergence

to the desired equilibrium [6].

IV. RESULTS FROM SIMULATION AND EXPERIMENT

Section IV-A describes simulations using the local adap-

tive controller while Section IV-B incorporates the energy

based swing-up controller, as well. Section IV-C discusses

an experimental application.

A. Local L1 Adaptive Control

Because the objective is stabilization (regulation), the

feedforward term kgr(s) in (4) may be disregarded. The

equations of motion, linearized about the origin, are

A0 =









0 0 1 0
0 0 0 1
1 0 0 0

λ−1
λ

0 0 0









, B =









0
0

λ−1
λ

(

λ−1
λ

)2
+ 1

µλ2









.

For the simulation, as well as the experimental apparatus

discussed in Section IV-C, the nominal parameter values are

λ = 4 and µ = 0.211.

An LQR controller was designed using the state and control

penalty matrices

QLQR =









100 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1









, RLQR = 1000.

In addition, an L1 controller was designed with the pa-

rameter adaptation gain matrix Γx = 30000 · I and a simple

first-order low-pass filter

Cf (s) =
ωc

s + ωc

.

Recall that the filter bandwidth ωc must be chosen such that

the system satisfies the L1 stability criterion (7). The L1

gain of Ḡ(s) may be computed numerically for different

choices of ωc. In order to illustrate the effectiveness of the L1

controller, the known state matrix was perturbed according

to (2) with θT = −0.45
[

1 1 1 1
]T

and θmax was

chosen larger than ‖θ‖1. (This is a rather large perturbation,

given that the equations of motion are nondimensional.)

Checking condition (7), one finds that ωc = 3 is acceptable.

The initial state for simulations was
[

θ, φ, θ̇, φ̇
]

=

[0.1, 0.1, 0, 0]. Three cases were compared: (1) the LQR

controller applied to the nominal system with state matrix
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Fig. 2. Simulation results for the L1 controller.

A0, (2) the LQR controller applied to the perturbed system

with state matrix A = A0 − BθT , and (3) the LQR/L1

controller applied to the perturbed system. The results are

shown in Figure 2. In the figure, it is clear that the L1

controller yields much better performance than the LQR

controller with the given model uncertainties. In fact, for a

similar uncertainty with slightly larger magnitude, the LQR

controller fails entirely to stabilize the system, while the L1

controller’s performance is almost indistinguishable from the

LQR controller’s performance for the nominal system. The

control signal for the L1 controller is also shown in Figure 2

to illustrate that there are no high frequency oscillations, as

one might otherwise expect with such a large adaptation gain.

B. Energy Based Swing-up Control

To bring the system into the region of attraction of the

LQR/L1 controller, return to the original system equations

and define τ according to (12). Specifically, let

τ =
1

1 + µ(λ − cos φ)2

[(

2µ2λ (λ − cos φ)
2
sin φθ̇φ̇

)

−µ(λ − cos φ)
(

1 + µ(λ − cos φ)2
)

sinφθ̇2

−µλ(λ − cos φ)
(

sin θ + µλ sin φφ̇2
)

+ uλ2µ
]

.

Then the original system is transformed through feedback

into the system described by equations (13), (14):

θ̈ =
1

1 + µ(λ − cos φ)2
(µλ(λ − cos φ)u + sin θ

−2µ (λ − cos φ) sinφθ̇φ̇ + λµ sin φφ̇2
)

φ̈ = u.

Now, define u according to (15). Including an actuator torque

magnitude limit in the model, the following control gains

were derived through iterative simulation:

K1 = 0.1, K2 = 0.1, and K3 = −1.
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Fig. 3. Simulation results for the swing-up/L1 controller.

Fig. 4. Photo of the experimental apparatus.

Starting from the downward-hanging equilibrium point

corresponding to (θ, φ) = (π, π), the energy based controller

discussed in Section III-B brings the system within a compact

set Ωc as discussed at the end of that section. The system then

switches to the local L1 adaptive controller, as presented in

Section IV-A. At the instant the switch occurs, the predictor

is initialized with the current system states and the adaptive

parameters are set to zero. The results, shown in Figure 3,

clearly illustrate convergence to the upright equilibrium.

C. Experimental Results

An experimental implementation of the system considered

in this paper is shown in Figure 4. The “body” is a DC motor

that drives the “tail,” a hollow carbon-fiber rod with a large

foam disk. The experiment is controlled by a PC running

real-time code with a sampling frequency of 5 kHz. This

high sampling frequency is necessary in order to implement a

large adaptation gain for fast adaptation. In experiments, both

the swing-up and L1 controllers provided good performance,

as indicated in Figures 5 and 6.

V. CONCLUSIONS

The recently developed L1 adaptive control algorithm

was implemented experimentally for a novel underactuated
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Fig. 5. Experimental results for the swing-up/L1 controller.
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Fig. 6. Time history of the control input.

mechanical system inspired by a bird perched on a branch

or a cable. Recognizing the similarity between the system

considered here and the classic Acrobot, the local adaptive

controller was combined with a swing-up controller that

was originally proposed for the Acrobot. An energy-based

switching criterion was used to transfer the system from the

swing-up controller to the local L1 adaptive controller. In

simulation, the controller exhibited excellent performance in

the face of large model parameter uncertainty. The controller

also performed quite well when implemented in a benchtop

control experiment. The experimental performance of the

L1 adaptive controller, in particular, further recommends

its application in more sophisticated problems of greater

engineering significance.
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