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ABSTRACT

A shell map [7] is a bijective mapping between shell space (the
space between a base surface and its offset) and texture space. It
can be used to generate small-scale features on surfaces using a va-
riety of modeling techniques. In this paper, we present an efficient
algorithm, which reduces distortion by construction, for the offset
surface generation of triangular meshes. The basic idea is to inde-
pendently offset each triangle of the base mesh, and then stitch them
up by solving a Poisson equation. We then introduce the details for
computation of a stretch metric, which measures the distortion of
shell maps. Our results show a substantial improvement compared
to previous results.

Keywords: Shell Maps, Offset Surface, Volumetric Texture, Geo-
metric Texture Mapping.

1 INTRODUCTION

Geometric details are often used in computer graphics to enhance
the visual richness of a 3D surface. In these types of graphical rep-
resentations, a base surface efficiently models the basic shape of an
object, while volumetric texture or other types of geometric details
are embedded in a thin layer of three dimensional space above the
base surface, called a shell space (see Figure 1). The shell space
is often constructed as the space between the base surface and an
offset surface, created by moving each point along the normal di-
rection of the original surface by a constant (or variable) distance.

Mapping 3D geometric textures onto a base surface requires
a 3D parameterization between the shell space and the texture
space. Such mappings have been implicitly used since the late
80's [4, 5, 1]. Recently, Porumbescu et al. [7] introduced a bijec-
tive mapping between shell space and texture space, called a shell
map. Given a base surface S, an offset surface SO that has the same
structure as S is generated using the method of Cohen et al. [2].
Utilizing the identical structures of S and SO, the shell space is tiled
with prisms (see Figure 2), each of which has a corresponding prism
in the texture space. Splitting these prisms into tetrahedra, they es-
tablish direct correspondences between tetrahedra in the shell space
and tetrahedra in the texture space. The shell map is then defined
using the barycentric coordinates of the corresponding tetrahedra.
A shell map supports any types of objects that can be placed in tex-
ture space, such as geometric objects, procedural volume textures,
scalar height fields, or other objects. The mapping is bijective, al-
lowing the use of both feed-forward rendering applications [10] and
ray-tracing applications.

In this paper, we study the distortion of shell maps, which is
inevitable like that of the planar parameterization of arbitrary sur-
faces.
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1.1 Related Work
Shell map distortion comes from its two main building blocks: off-
set surface generation and parameterization of the base/offset sur-
face. While a variety of tools have been developed to parameterize
arbitrary surfaces (see the survey in [3]), only a few methods have
been proposed to generate the offset surface in computer graphics.

In [2], Cohen et al. proposed to move the vertices along their
normals by a given distance in positive and negative directions to
construct the simplification envelope to control the global error in
level of detail approximation. They introduced an iterative way of
moving each vertex with adaptive step sizes along the normal in
order to deal with self-intersection.

Peng et al. [6] proposed the use of an extended distancefunction
gradient to move the surface without creating intersections. Com-
pared with this method, the thickness of envelopes in [2] is very
low in regions of concavities, and the shape of the surface of the
envelope tends to be undesirable in such areas.

Zhou et al. [11] adopted the idea of tetrahedralizing the shell
space presented in Porumbescu et al. [7]. They added an optimiza-
tion of the shell mapping based on a stretch metric, since low dis-
tortion is crucial in their synthesis of geometric texture. They kept
the shell space and the parameterization of the base mesh as is,
only changing the parameterization of the offset mesh to reduce the
stretch of the shell map. As a result, they need to store two separate
sets of texture coordinates: one for the base mesh, and the other
for the offset mesh. Moreover, as we will demonstrate, fixing the
height of each vertex of the offset surface in the texture space is
quite restrictive.

1.2 Overview
Despite a few attempts to generate uniform offset surfaces, it re-
mains an open problem to compute an optimal offset surface which
reduces the geometric distortion of the shell map. We propose a
simple method that combines construction of the offset surface and
minimization of distortion. To provide additional degrees of free-
dom in order to allow for low-distortion maps, we let the offset dis-
tance fluctuate over the surface (i.e., we do not restrict the location
to be exactly at a given distance to the original mesh). Our results
confirm the necessity of introducing these vertical degrees of free-
dom. Furthermore, our technique is efficient in both computational
time and memory storage.

The basic idea of our approach is to treat the shell space as a set
of prisms, each of which is the space between a triangle of the base
mesh and its offset. We first allow the prisms to be detached so that
they are all right triangular prisms, and then assemble them using
linear least squares optimization. In our case, the gradient fields
are stored on tetrahedra, thus, we use the three dimensional discrete
differential operators and the Poisson equation developed in Tong
et al. [9].

Later in this paper, we discuss the stretch metric as proposed in
Zhou et al. [II] in great detail, as it is crucial for comparison of
the quality of our results and that of the previous methods. We also
show that optimization guided by this measure can help to lower
the distortion of the shell space produced by other methods as well.
Nevertheless, our results without additional optimization already
show a substantial improvement even when compared to the previ-
ous results with this optimization.
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Figure 1: The shell space is the region between a base surface and
its offset surface. A shell map is a one-to-one function between tex-
ture space and shell space [Porumbescu et al. 2005].

2 POISSON OFFSET SURFACE GENERATION
In this section, we introduce the method for the construction of the
low distortion offset surface simply by solving a Poisson equation
on a thin layer upon the tetrahedral mesh.

2.1 Setup of the Problem
Given a base surface S, our goal is to generate a low distortion offset
surface S' with the following properties, similar to those considered
in [7]:

* S' must have the same connectivity as the base surface.

* The mapping from the texture space (a thin layer of rectan-
gular space containing volumetric texture, geometric texture,
etc.) to the shell space (the layer between S' and S) should be
of low distortion.

A triangle of the base surface and its corresponding triangle of
the offset surface form a prism P (see Figure 2). Each prism P in the
shell space has a corresponding right triangular prism Pt in texture
space. In order to get a low distortion mapping, the prisms in the
shell space should be similar to the right triangular prisms.

2.2 Decompose and Assemble
First, we move each triangle along its normal by a specified dis-
tance. Thus, the shell space is composed of right triangular prisms,
but they are disjoint (see Figure 3(b)), i.e., the location of points in
the adjacent triangles on the offset surface are discontinuous on the
common edges. Therefore, we take the gradients of the coordinates
of the points in the right triangular prisms as guidance vector fields
to be used in a Poisson equation to solve for the position of each
vertex on the offset surface. Since the gradients in a tetrahedron
can be computed more easily than in a triangular prism, we split
each prism into three tetrahedra as done in [7].

Our method is based on the discrete Poisson equation, which can
be expressed as

Div(Vf) Div(w) (1)

where f is the unknown scalar field function, and w is a guidance
vector field.

The definition of the scalar field f in the domain considered (i.e.,
the shell space) is piecewise linear:

f(x) fi Oii(x) (2)

where fi is a coordinate of a vertex vi on either the base surface or
the offset surface, and 4i is a piecewise linear basis function valued
1 at the vertex vi and 0 at all other vertices.

The discrete gradient of the shell scalar function f is evaluated
as

Vf(x) Efiv4i(x)
i
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Figure 2: Prisms in shell space correspond to prisms in texture space
[Porumbescu et al. 2005].
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Figure 3: (a) Base mesh. (b) Each triangle is moved along its normal,
and the shell space is composed of disjoint right triangular prisms. (c)
Our algorithm assembles the prisms to obtain the offset surface.

The discrete divergence of w at vertex vi is defined as

(4)(Divw)(vi) =TVkikW(Tk)lk
Tk CN(i)

where Oik is the function 4i restricted to a tetrahedron Tk in the
disjoint shell space, ITkl is the volume of the tetrahedron Tk, and
w(Tk) = ifi/kVoi(x) is the guidance vector field precomputed us-
ing the right triangular prism, with fi4k being the coordinate cor-
responding to vi seen from the tetrahedron Tk of the disjoint shell
space.

Finally, we conclude as follows:

Div(Vf) Div(w) X

L V4ik*(EfjV4j(x)) Tk
TkCN(i) i

(5)EL VOik*W(Tk)lTk
Tk CN(i)

2.3 Final Linear System
With the boundary conditions specified, Equation (5) written for
each vertex of the coordinates of the base mesh leads to a large,
sparse linear system

Af b (6)
where A is a matrix representing the Laplacian operator, f is fi as-
sembled in a vector, and b is the divergence of w.

The solution to Equation (6) is

f= (ATA)-ATb. (7)

Since vi(i 1 ... n) are the base surface vertices, we assign the
base surface vertices coordinates to fi. vi(i n + 1 ... 2n) are the
offset surface vertices, and we denote their coordinates also by fi,
which are the unknowns. Thus, we can obtain them through the
linear system above (A is a 2n x n matrix, and b is a vector with
2n components). The system is solved three times to get x, y, and z
coordinates for each vertex on the offset surface.

offset surface



We denote the three singular values of the Jacobian J=
[fu,fv,fw] by F1,F2, and F3 respectively. Geometrically, they rep-
resent the principal stretches, and their squares are the eigenvalues
of the Cauchy deformation tensor JKJ. Thus, we can express the L2
stretch norm over a tetrahedron T as

L2(T) = (F2 +F2 +F2)
(9)
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Figure 4: The unique affine mapping between two tetrahedra.

2.4 Extension to Multi-Layer Shell Space

When additional memory storage is allowed, the linear system
above can be directly extended to the construction of a multi-layer
shell space. In that case, each triangle in the base mesh creates a

series of (k) right prisms, vertically piled up, which are then used to
compute the guidance field in each tetrahedron in the shell space.

The exact same method can be applied, leading to a final system
with now kn unknowns.

2.5 Preventing Self-intersection

The offset surface solved from Equation (7) may still contain self-
intersections. For applications with overlapping (e.g., fur or hair)
or self-intersecting structures, a bijective mapping is not always re-

quired. For most other applications, preventing self-intersection of
the offset surface is necessary to create a bijective mapping. We use

the technique from [2] to avoid self intersection in our algorithm,
and the following is the basic idea of [2].

First, an attempt is made to displace each triangle the full off-
set distance specified by the user along the normal direction. Then
the offset surface is solved using Equation (7). Using an octree
data structure, the algorithm efficiently detects whether each trian-
gle displacement leads to self-intersection. If it does, the algorithm
rejects the displacement and begins an adaptive stepping procedure
at a fraction of the user-specified offset distance. This procedure
terminates if no triangles can be moved. Thus, most of the vertices
reach the full offset distance in the end, while the ones in regions of
big concavity go as far as possible.

3 SHELL TEXTURE SPACE OPTIMIZATION
Although we have generated a low distortion offset surface, the dis-
tortion cannot be entirely eliminated. Thus, we propose using the
Tetrahedron Stretch Metric [11] to measure the distortion in the
mapping between the shell space and the texture space. Moreover,
we may use the same metric to further optimize the texture space.

3.1 Tetrahedron Stretch Metric

Given a tetrahedron T with its coordinates ql q2, q3, q4, and the
corresponding texture coordinates PI, P2, P3, p4, we use barycentric
coordinates to define the unique affine mapping f(p) f(u, v, w)
q as follows:

f(P)

< P,P2,P4,P3 > q,+ < P,P3,P4,PI > q2
+ < P,P4,P2,PI > q3+ < P,PI,P2,P3 > q4J

< PT,P2,P3,P4 >

where < a, b, c, d > denotes the volume of the tetrahedron abcd.
The Jacobian of the mapping function f is [fu, fv, fw]. Since the

mapping is affine, partial derivatives of f are all constant. They
can be straightforwardly computed see Appendix A for detailed
formulas.

The overall norm for the entire mesh shell space M
be given as

L2 (M) LL2T 2V L V(Ti)
VTiCM TiCM

{Tj} can

(10)

where V(Ti) is the volume of the shell tetrahedron Ti. The L2 norm

measures the overall distortion of the whole map between the shell
space and the texture space. We normalize the stretch values in
order to make the lower bound of the L2 norm 1.0 for any parame-

terization by multiplying it with the factor

ALV'(Ti)/ L (Ti)
;TiM TiM

where V' (Ti) is the volume of the texture space tetrahedron Ti.

3.2 Texture Space Optimization
We now consider the problem of minimizing the total L2 norm of
the whole shell texture map. To this purpose, we use an optimiza-
tion algorithm based on Sander et al. [8] to optimize the texture
space.

First, we obtain an initial parameterization using the Iso-charts
technique [12] for the base surface, which provides a low distor-
tion multi-chart parameterization. After that, the texture space is
constructed by the initial parameterization, and composed of right
triangular prisms. To apply our tetrahedron stretch metric, we split
each prism into tetrahedra both in the texture space and in the shell
space in a consistent way using the method described in [7]. Then
we perform several optimization iterations for each chart of the tex-
ture space.

To preserve the parameterization of the base mesh, we only ad-
just the upper level vertices in the texture space, which correspond
to the offset surface vertices in the shell space. For each itera-
tion, we sort these vertices by their L2 stretches in decreasing or-

der. Then we process each vertex in turn. For each vertex, we ran-

domly choose several directions, and perform binary search along
the chosen direction within a specified distance. Each vertex can

only move on the upper plane of the texture space, and the bound-
ary vertices of each chart are fixed to keep the mapping free of
foldovers.

4 EXPERIMENTAL RESULTS
We have implemented the algorithm described above on a 3.2GHz
Pentium 4 workstation with 1GB memory. We have also imple-
mented two previous methods (Cohen et al. [2]; Peng et al. [6]) for
comparison.

Figure 5 shows the offset surfaces for the bunny model. The
offset height is set to 10% of the diagonal length of the model's
bounding box. From the values of the L2 stretch of the shell map,
our algorithm achieves the lowest distortion. We also calculate the
average distance between the offset surface and base surface. For
each vertex in the offset/base surface, its shortest distance to the
base/offset surface is computed. Then the average distance can be

P3

P4

q2



[Cohen et al. 1996] [Peng et al. 2004]

L2 = 1.5384
Avg Dist: 34.46374

L2 = 1.3686
Avg Dist: 37.36883

our algorithm

L2 = 1.2359
Avg Dist: 38.55600 L2 = 3.0978 L2 = 1.9479

Figure 5: Comparison of offset surfaces generated by three different
methods.

L2 = 1.5462 L2 = 1.2435

[Cohen et al. 1996] [Peng et al. 2004]

L2 = 1.5328
Avg Dist: 34.09851

L2 = 1.3868
Avg Dist: 35.61834

our algorithm

L2 = 1.1 792
Avg Dist: 35.64700

[Cohen et al. 1996] [Peng et al. 2004] our algorithm
Figure 8: The offset surface distortion of the shell map.

Figure 6: Comparison of offset surfaces generated by three different
methods.

[Cohen et al. 1996] [Peng et al. 2004]

L2 = 1.5934
Avg Dist: 15.07453

L2 = 1.3689
Avg Dist: 15.19287

our algorithm

L2 = 1.2601
Avg Dist: 15.81458

Figure 7: Comparison of offset surfaces generated by three different
methods.

calculated as the average value of all these distances. Not surpris-
ingly, the average distances from the three algorithms are almost
the same. It takes our algorithm around 5 seconds to compute the
offset surface for the bunny model with 10k vertices.

Figures 6 and 7 show the offset surfaces for the tweety and gar-
goyle models respectively. As demonstrated by these examples, the
thickness of the shell space generated by [2] is very small in the
regions of concavities, since each vertex is moved strictly along its
normal direction independently. On the other hand, [6] moves each
vertex along the gradient direction of a global distance function.
Therefore it produces a smoother offset surface. Our algorithm can

produce not only a smoother offset surface but also a lower distor-
tion shell map.

Figure 8 shows the offset surface distortion of the shell map us-

ing a regular checkerboard pattern, while Figure 9 shows a cut in
the shell space for inspection of the inner distortion. In these fig-

L = 1.5462 L = 1.2435 L = 1.2084

[Cohen et al. 1996] [Peng et al. 2004] our algorithm
Figure 9: The inner distortion of the shell map.

ures, we also show both the stretches before and after shell texture
space optimization for all three methods. The offset surface from
our method before optimization has already obtained a perceivably
lower distortion shell map both by visual comparison and by the L2
stretch. After using the texture space optimization, the results from
[2] and [6] are also improved.

Mapping geometric textures onto a surface also clearly illustrates
the advantage of our low distortion offset surface and the texture
space optimization. In Figures 10 and 11, we use the bunny and the
gargoyle as the base meshes, and map the lion and feline meshes
from the texture space to the shell space. The objects mapped using
the shell maps of [2] and [6] are severely distorted.

L2 = 1.3142

L2 = 1.2084

L2 = 3.0978 L2 = 1.9479 L2 = 1.3142



5 CONCLUSION
In this paper, we present an efficient triangular mesh offset algo-
rithm, which reduces the distortion of the corresponding shell map.
The basic idea is to stitch up independently offset triangles of the
base mesh by solving a Poisson equation. A substantial improve-
ment to the quality of shell maps can be achieved, as demonstrated
by our results. We believe that our low-distortion shell mapping
should be valuable in a large number of applications.
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ql (X2y4 -X2Y3 -X4Y2
+X4y3 +X3Y2 -X3y4)

+q2(X3y4 -X3Yl -X4Y3
+X4Y1 +XY3 -xly4)
+q3 (X4Y2 -X4Y -X2Y4
+X2Y1 +XY4 -XlY2)

+q4(XIy2 -XlY3 -X2Y
df +X2y3 +X3y1-X3y2)
dw 6V

where (u,v,w), (x,YI,zI), (X2, Y2,Z2), (X3,y3,Z3), and (X4,y4,Z4) are the coordinates
of P, P1, P2, P3, and p4 respectively; and V is the volume < P1, P2, P3, P4 >:

V =< P1,P2,P3,P4
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A JACOBIAN OF SHELL MAP

ql (Y2Z4 -Y2Z3 -Y4Z2
+Y4Z3 +Y3Z2 -Y3Z4)

+q2(Y3Z4 -Y3Z1 -Y4Z3
+Y4Z1 +Y1Z3 -Y1Z4)
+q3 (Y4Z2 -Y4Z1 -Y2Z4

+Y2Z1 +Yi Z4- YiZ2)
+q4 (Y1Z2- Yi Z3 -Y2Z1

f +Y2Z3 +Y3Z1 -Y3Z2)
du 6V

ql (-X2Z4 +X2Z3 +X4Z2
-X4Z3 -X3Z2 +X3Z4)

+q2(-X3Z4 +X3Z1 +X4Z3
-X4Z1 -XZ3 +X1Z4)

+q3 (-X4Z2 + X4Z1 + X2Z4

-X2Z1 -X1Z4 +X1Z2)

+q4(-XlZ2 +XlZ3 +X2Z
df -X2Z3 -X3Z +X3Z2)
dv 6V

XI Yi Z1 1
X2 Y2 Z2 1
X3 Y3 Z3
X4 Y4 Z4 1
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Before Optimization

,ohen et al. 1996]

(b) [Peng et al. 2004]

(c) our algorithm

Figure 10: Mapping a Lion mesh onto a Bunny surface.

Before Optimization After Optimization

(a) [Cohen et al. 1996]

(b) [Peng et al. 2004]

(c) our algorithm

Figure 11: Mapping two Feline meshes onto a Gargoyle surface.

After Optimization


