HYDROGEOLOGIC EVALUATION OF SELECTED

STRATIFIED-DRIFT DEPOSITS IN CONNECTICUT

By Stephen J. Grady and Elinor H. Handman

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 83-4010

Prepared in cooperation with the MIDSTATE REGIONAL PLANNING AGENCY,

CONNECTICUT

Hartford, Connecticut

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information, write to:

Chief, Connecticut Office U.S. Geological Survey, WRD 450 Main Street, Room 525 Hartford, Connecticut 06103 Copies of this report can be purchased from:

Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Denver, Colorado 80225 (Telephone: (303) 234-5888)

CONTENTS

Page

Abstract	1
Introduction.	2
Purpose and scope.	2
Location.	3
Acknowledgments.	3
Methods.	3
Glastonbury area Geologic and hydrologic data Hydrogeologic evaluation Water quality	5 5 7
Haddam area	10
Geologic and hydrologic data	10
Hydrogeologic evaluation	10
Water quality	13
Simsbury area	14
Geologic and hydrologic data	14
Hydrogeologic evaluation	14
Water quality	17
Willimantic River area	18
Geologic and hydrologic data	18
Hydrogeologic evaluation	18
Water quality	22
Bladens River area	23
Geologic and hydrologic data	23
Hydrogeologic evaluation	23
Water quality	26
Summary and conclusions	26
Glossary	28
References	31

ILLUSTRATIONS

.

Figure		Page
1.	Map showing general locations of study areas	4
2.	Map showing location of wells and test holes, seismic profiles, and extent of stratified-drift deposits in the Glastonbury area	6
3.	Seismic-refraction profiles in the Glastonbury area	8
4.	Map showing location of wells and test holes, seismic profiles, and extent of stratified-drift deposits in the Haddam area	11
5.	Seismic-refraction profile in the Haddam area	12
6.	Map showing location of wells and test holes, seismic profiles, and extent of stratified-drift deposits in the Simsbury area	15
7.	Seismic-refraction profiles in the Simsbury area	16
8.	Map showing location of wells and test holes, seismic profiles, and extent of stratified-drift deposits in the Willimantic River area	19
9.	Seismic-refraction profiles in the Willimantic River area	20
10.	Map showing location of wells and test holes, seismic profiles, and extent of stratified-drift deposits in the Bladens River area	24
11.	Seismic-refraction profiles in the Bladens River area	25

TABLES

Page

1.	Logs of test holes and wells	35
2.	Inorganic and bacteriological analyses of water from selected wells	
3.	Organic analyses of water from selected wells	51

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM OF UNITS (SI)

Inch-pound units	Multiplied <u>by</u>	Are converted to SI units
	Length	
foot (ft) mile (mi)	3.408 x 10 ⁻¹ 1.609	meter (m) kilometer (km)
	Flow	
gallon per minute (gal/min)	6.309×10^{-2}	liter per second (L/s)

HYDROGEOLOGIC EVALUATION OF SELECTED

STRATIFIED-DRIFT DEPOSITS IN CONNECTICUT

By Stephen J. Grady and Elinor H. Handman

ABSTRACT

Stratified-drift deposits in five areas of Connecticut were evaluated to provide hydrogeologic information on the water-yielding potential and waterquality characteristics of the deposits. Data from wells and test holes, seismic-refraction profiles, and chemical analyses of ground water provide information on saturated thickness, grain-size characteristics, and water quality.

The thickness of saturated, coarse-grained stratified drift at some locations in all five study areas is sufficient to potentially yield moderate to possibly very large quantities of water (50 to 2,000 gallons per minute) to individual wells. However, saturated thickness and grain size of sediments differ considerably over short distances and some sites are unsuitable for developing moderate to very large quantities of water from wells.

The most extensive coarse-grained stratified-drift deposits occur in the towns of Glastonbury, Haddam, and Simsbury; these areas probably have the best potential for development of large quantities of water. Saturated thickness exceeds 150 feet in parts of the Glastonbury and Haddam areas and exceeds 100 feet in parts of the Simsbury and Willimantic areas, but in most other places it is less than 100 feet.

Stratified-drift deposits in all five areas are hydraulically connected to surface-water bodies. Additional water may be obtained from aquifers through induced infiltration from surface-water bodies. The best potential for induced recharge exists along the Connecticut River in Glastonbury and Haddam and along the Willimantic River in Coventry.

Water in the stratified-drift aquifers is generally of good chemical quality and has low concentrations of dissolved solids (43 to 208 milligrams per liter). The major water-quality problem is excessive iron (0.64 to 20 milligrams per liter) and manganese (0.1 to 10 milligrams per liter), particularly in samples from Coventry, Mansfield, and Tolland. Low concentrations of phenols (0.001 to 0.004 milligrams per liter) were detected in three samples and arsenic (0.018 milligrams per liter) was also detected in one sample.

INTRODUCTION

Connecticut is developing water-supply plans under State Statute 25-5b and water-quality management plans under Section 208 of the Federal Water Pollution Control Act Amendments of 1972 (Public Law 92-500). Water-quality management of major aquifers now used or anticipated for use as public-water supplies has been recommended by the Connecticut Areawide Waste Treatment Management Planning Board (1979).

The major aquifers in Connecticut are primarily stratified-drift deposits that:

- (1) are areally extensive or hydraulically connected to a stream or lake that can supply large quantities of induced recharge,
- (2) have a saturated thickness greater than 40 feet,
- (3) are composed dominantly of sand- and gravel-size sediment.

Such deposits commonly yield moderate to very large quantities of water (50 to 2,000 gal/min) to individual wells. A general discussion of the availability of ground water in stratified-drift deposits in specific parts of the State is contained in the recent series of Connecticut Water Resources Bulletins (for example, Ryder and others, 1981; Mazzaferro and others, 1979).

Some stratified-drift deposits are inferred to be major aquifers mainly on the basis of their large areal extent or proximity to a potential source of induced recharge. However, little hydrologic information is available to substantiate these inferences, particularly about the saturated thickness and grain-size characteristics of the deposits. The lack of information on many stratified-drift deposits located in areas where public water supply is insufficient to meet projected needs has impeded programs for water-resources planning and water-quality management.

Purpose and Scope

The purpose of this investigation was to estimate the water-yielding potential and water-quality characteristics of stratified-drift deposits in five areas of Connecticut. The objectives were to determine for each area (1) the thickness and grain-size characteristics of materials in the saturated zone, (2) the probable range of well yields based on saturated thickness, grain size, and other hydrogeologic characteristics, such as areal extent and proximity to potential sources of induced recharge, and (3) the existing ground-water quality with respect to State and federal drinking-water standards. This study was a reconnaissance-level appraisal rather than a detailed quantitative appraisal, therefore only a minimum amount of new information was collected.

2

ł

The five areas selected for evaluation were inferred to be major aquifers composed of saturated, coarse-grained stratified drift, as shown on the State's ground-water availability map (Meade, 1978). They were selected on the basis of (1) a projected need for additional public water supplies, (2) little existing hydrogeologic data, and (3) no known ground-water contamination. Information on the water-yielding potential and water quality of these aquifers is intended to provide guidance for development of plans for water supply and water-quality management.

Location

The general locations of the five study areas are shown in figure 1. Three of the areas are named for the towns in which they are largely or completely located: the Glastonbury, Haddam, and Simsbury areas. The remaining two areas include parts of several towns; the Willimantic River area includes Coventry, Mansfield, Tolland, and Willington, and the Bladens River area includes Bethany, Seymour, and Woodbridge. Each of the five areas is described in a separate section of this report.

Acknowledgments

The U.S. Geological Survey, in cooperation with the Midstate Regional Planning Agency, collected and analyzed the data on which this report is based. Appreciation is extended to private citizens and public officials who allowed access to property to conduct seismic surveys and test borings.

Methods

Seismic-refraction profiles in each of the study areas provided information on the saturated thickness of stratified drift, and aided in selecting sites for subsequent test borings. Seismic profiles at 16 sites totaled approximately 17,800 linear feet. The locations of the seismic profile lines are shown in figures 2, 4, 6, 8, and 10, and the profiles, interpreted from field data using techniques described by Scott and others (1972), are shown in figures 3, 5, 7, 9, and 11.

Test borings were made by the U.S. Geological Survey to determine the thickness and grain-size characteristics of the aquifer materials. Test borings at 28 sites in the five areas penetrated a total of 1,517 vertical feet. Additional hydrogeologic data were compiled from existing wells and test holes. The locations of all wells and test holes are shown in figures 2, 4, 6, 8, and 10, and their logs are in table 1. (An explanation of well and test hole identification numbers is included in the headnotes to table 1.)

Ground-water from 10 wells was analyzed in the field for specific conductance, pH, and fecal coliform and fecal streptococci bacteria. Samples were collected and analyzed for selected inorganic and organic constituents by the U.S. Geological Survey laboratory. Results of the analyses are shown in tables 2 and 3.

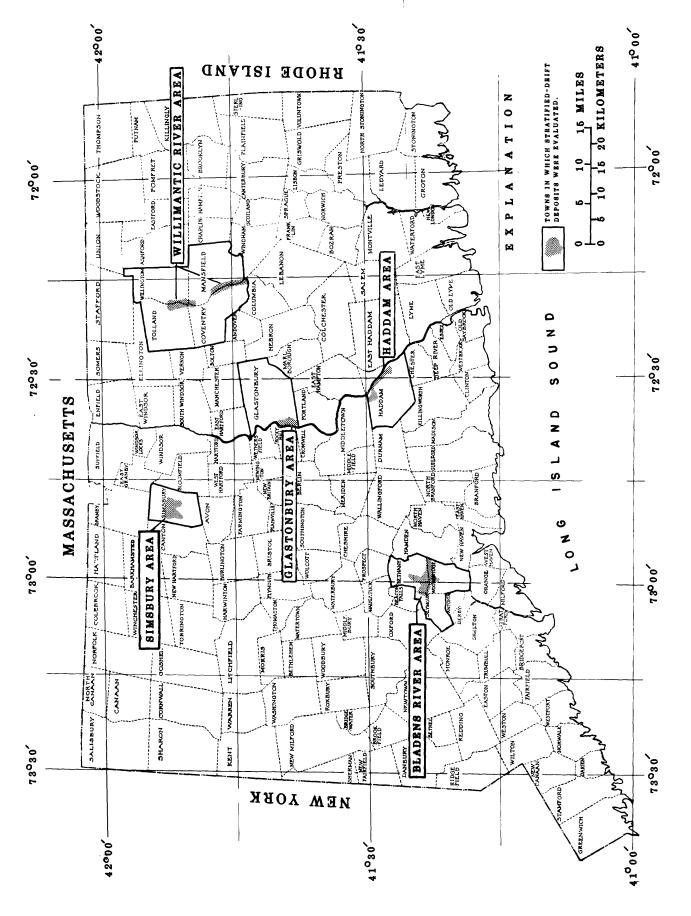


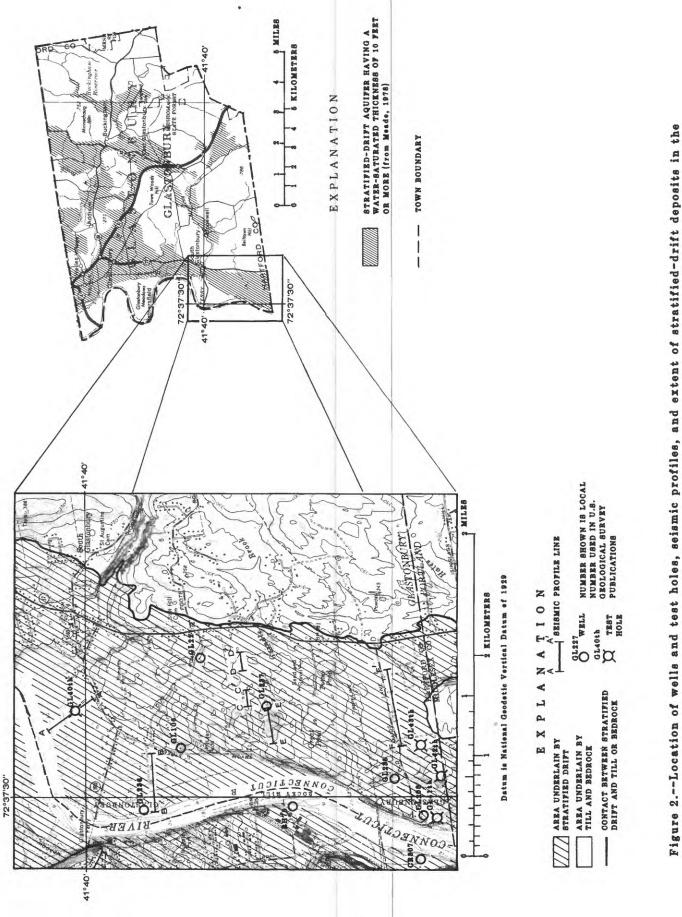
Figure 1.--General locations of study areas.

ł

GLASTONBURY AREA

Stratified drift underlies an extensive area in southwestern Glastonbury. The study area is about 6,000 feet wide and 13,000 feet long, and is bounded on the west by the Connecticut River and on the east by the till and bedrock uplands that parallel, and are almost coincident with Connecticut Route 17. The area extends from near Roaring Brook in the north to the Glastonbury-Portland town line in the south. (See fig. 2.)

Geologic and Hydrologic Data


The Glastonbury area is in the upper Connecticut River basin. The hydrology of the basin has been described by Ryder and others (1981). The surficial geology has been mapped by Deane (1967) and Langer (1977), and the distribution and texture of unconsolidated materials directly below the land surface have been described by Langer (1976) and Langer and others (1976). Contour maps of the bedrock surface have also been prepared by Ryder and Handman (1973, 1974). Drillers' logs for wells GL 106, 208, and 227 (Ryder and Weiss, 1971) indicated that as much as 200 feet of stratified drift was present. However, little subsurface data were available prior to this study on the texture, saturated thickness, and water-yielding characteristics of the aquifer.

Substantially more data were available for the stratified drift on the west side of the Connecticut River in the towns of Cromwell and Rocky Hill. Numerous wells and test holes in that area penetrate dominantly coarse-grained stratified drift, and several wells produce large quantities of water. A public-supply well in Cromwell (CR 307) penetrates 145 feet of sand and gravel and was tested at 900 gallons per minute (Ryder and Weiss, 1971, p. 8). Further north in Rocky Hill, a collector well (RH 78) near the Connecticut River reportedly yielded 4,200 gallons per minute (Ryder and Weiss, 1971, p. 14). Additional hydrogeologic data were needed to determine whether the stratified-drift deposits on the east side of the river are capable of yielding large quantities of water to wells.

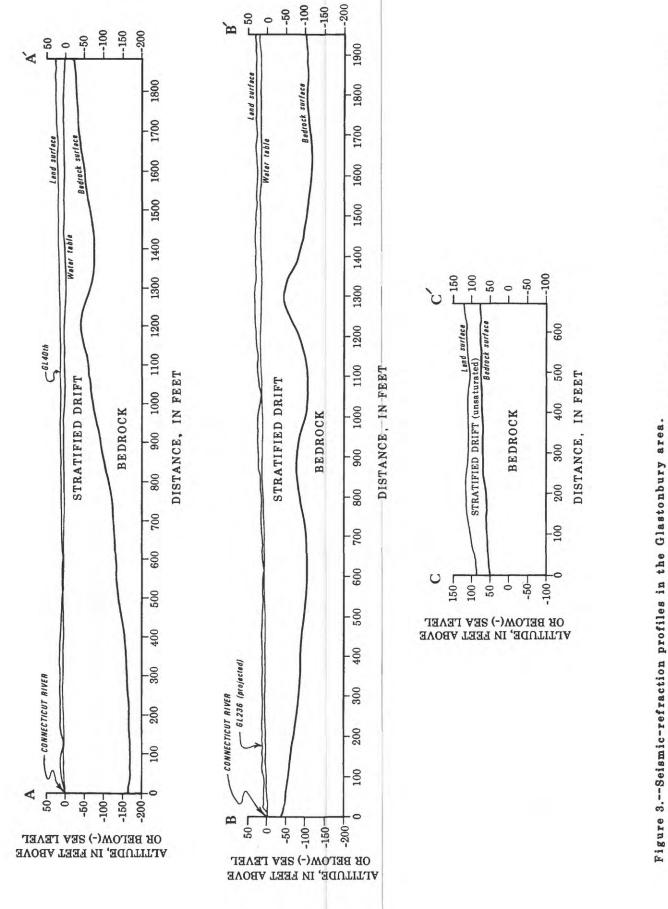
For this study, six seismic profiles, A-A', B-B', C-C', D-D', E-E', and F-F', and four test borings, GL 40th, 235, 236, and 237, were completed. Data from test holes GL 41th, 42th, 43th (table 1) bored in 1975 by Clarence Welti and Associates for the town of Glastonbury were also used in evaluating the hydrogeologic conditions. (See locations in fig. 2.)

Hydrogeologic Evaluation

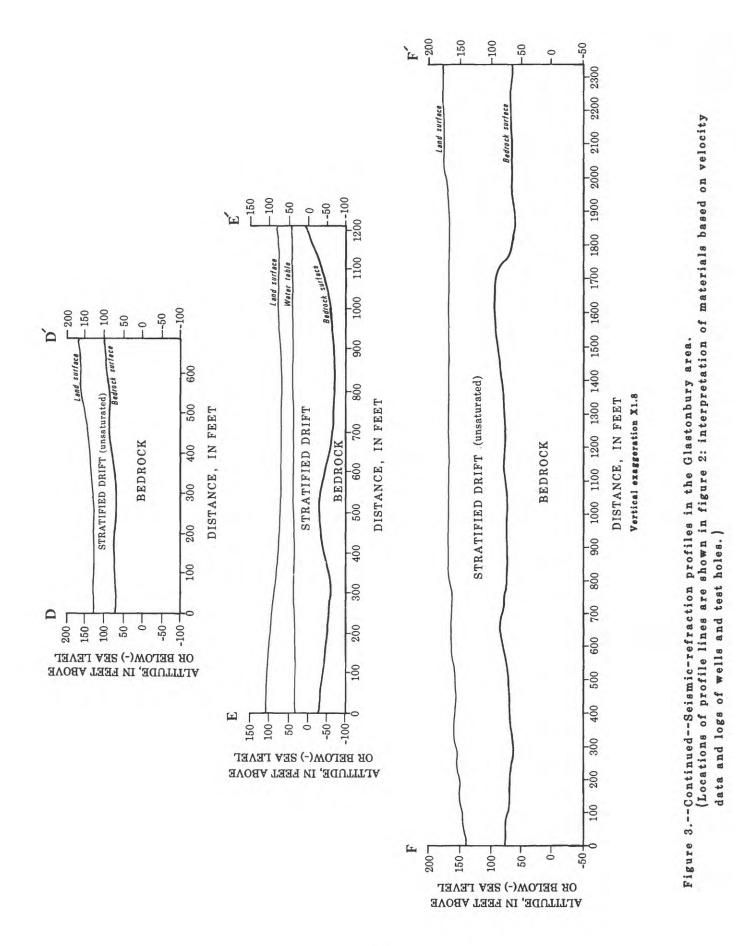
A thick section of saturated stratified drift underlies the northern part of the Glastonbury area. Seismic profiles A-A' and B-B' (see fig. 3) show about 20 to 165 feet of saturated stratified drift, but much of this material may be fine-grained. The log of GL 40th, for example, indicates that stratified drift at the site is dominantly fine to medium sand, silt, and clay. Fine-grained materials are also reported in the driller's log of GL 106, 3,700

6

Glastonbury area.


feet to the south. However, GL 236, located between GL 40th and GL 106, but only 150 feet from the Connecticut River, penetrated 65 feet of dominantly coarse-grained stratified drift. The log of GL 236 shows moderately wellsorted, fine to very coarse sand in the upper part of the saturated zone. From 48 to 74 feet below land surface, the well penetrated 17 feet of poorly sorted sand and gravel and 9 feet of till. A well at or near this site may be capable of yielding several hundred gallons per minute by inducing recharge from the adjacent Connecticut River. Wells located farther from the river and in fine-grained material would probably have smaller yields.

In the east-central part of the Glastonbury area, the stratified drift is generally less than 100 feet thick, as shown in seismic profiles C-C' and D-D' (fig. 3) and the log of well GL 227. The seismic data are interpreted as indicating that the materials are unsaturated or very thinly saturated. Consequently, wells in this area are unlikely to yield significant quantities of water. However, further to the west, seismic profile E-E' (fig. 3) shows that the saturated thickness increases to as much as 100 feet. Well GL 237, near the east end of profile line E-E', penetrated only 15 feet of saturated strattified drift but the material is mostly coarse-grained. If coarse-grained large quantities of water could be developed through induced recharge.


In the southern part of the Glastonbury area, 150 feet or more of saturated stratified drift occurs near GL 208 and GL 41th and extends beneath the Connecticut River to the vicinity of CR 307. The log of CR 307 shows finegrained material to a depth of 70 feet below land surface, overlying 75 feet or more of coarse sand and gravel. Test hole GL 41th penetrated 188 feet of mostly fine to coarse sand interlayered with silt and clay. Well GL 235, 2,000 feet northeast of GL 41th, penetrated 57 feet of similar materials (layered fine to coarse sand, silt and clay) before ending in sand and gravel at 82 feet below land surface. Saturated thickness of the stratified drift near GL 235 is at least 40 feet, however it decreases to the east. Although the stratified drift along profile F-F' is as much as 100 feet thick in places, the seismic data are interpreted as indicating that it is thinly saturated or unsaturated. Test holes GL 42th and 43th reportedly did not reach the water table although drilled to about 100 feet below land surface. Therefore, in the southern part of the Glastonbury area, moderate to large well yields could most likely be obtained only in the area within approximately 1,500 feet of the Connecticut River. Wells located farther from the river would probably yield only small to moderate quantities of water, due to limited aquifer saturated thickness.

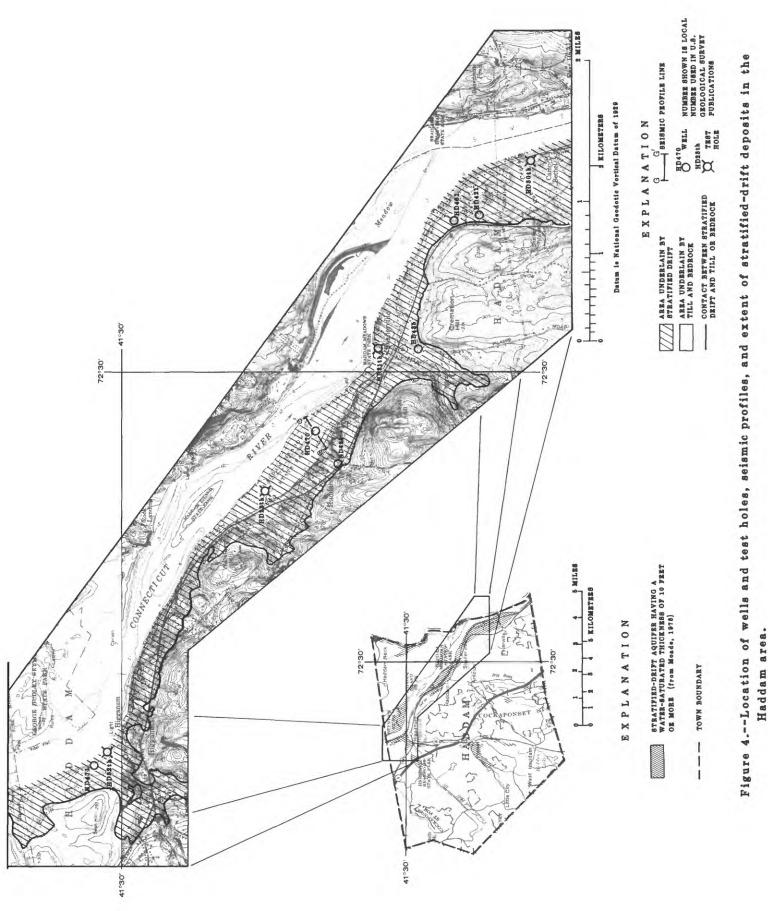
Water Quality

One well in the Glastonbury area, GL 236, was sampled and the chemical analysis is reported in tables 2 and 3. The sample contained a low concentration of dissolved solids (208 mg/L) and only manganese (0.3 mg/L) exceeded Federal drinking-water standards (U.S. Environmental Protection Agency, 1977). However, because only one well was sampled, data are insufficient to adequately assess the quality of water in this aquifer.

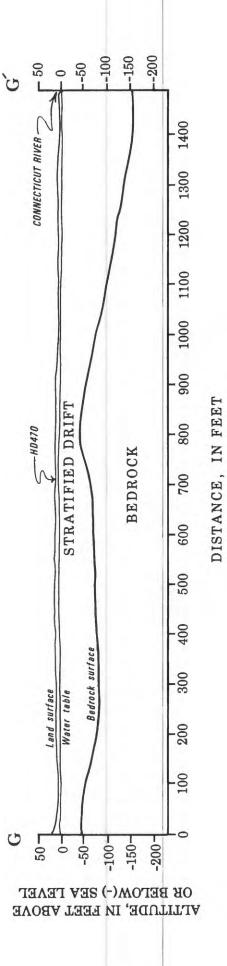
(Locations of profile lines are shown in figure 2: interpretation of materials based on velocity data and logs of wells and test holes.)

HADDAM AREA

A narrow band of stratified drift underlies most of the west side of the Connecticut River in the Town of Haddam. The area included in this investigation extends from 1 mile north of the village of Higganum southward along the river for approximately 7 miles to Camp Bethel (see fig. 4). The stratified drift in the Haddam area is bounded on the east by the Connecticut River and on the west by till-and-bedrock uplands. The width of area underlain by stratified drift varies from a few hundred feet to as much as 4,500 feet.


Geologic and Hydrologic Data

The Haddam area is in the lower Connecticut River basin and the hydrology of this basin is described by Weiss and others, 1982. The surficial geology has been mapped by Tharin (1973), O'Leary (1977) and Flint (1978a). The distribution and texture of unconsolidated materials directly below the land surface in part of the area has been described by O'Leary (1973). Few subsurface data were available prior to this study. Drillers' logs for a few domesticsupply wells, HD 421, 428, 435, and 461, all in the southern half of the Haddam area, showed as much as 125 feet of stratified drift, however, these logs provided no information on grain-size characteristics or saturated thickness. One U.S. Geological Survey test hole, HD 23th, penetrated 100 feet of saturated sand and gravel above till (Bingham and others, 1975, p. 38). Additional subsurface data collected for this study include one seismic-refraction profile, G-G', and five test borings, HD 30th, 31th, 32th, 470, and 471. (See locations in fig. 4.)


Hydrogeologic Evaluation

In the northern part of the Haddam area, near the village of Higganum, two test borings penetrated about 40 feet of saturated stratified drift before refusal in till. At well HD 471 the sediments are mostly medium to coarse sand and gravel, but HD 32th, 700 feet to the southeast, penetrated dominantly fine-grained sediments (fine to very fine sand, silt, and clay). A well at or near HD 471 may be capable of yielding moderate to large amounts of water because the stratified drift is relatively thick, saturated, and coarse-grained, and the potential for inducing recharge from the Connecticut River is high. However, where the sediments are dominantly fine grained, as at HD 32th, potential well yields may be considerably smaller.

In the central part of the study area, near the village of Haddam, seismic profile G-G' (fig. 5) shows from 50 to 150 feet of saturated stratified drift. Logs of HD 23th and 470 (table 1) show that the material is dominantly coarse grained. Properly constructed wells in the area near the Connecticut River have the potential of yielding moderate to large quantities of water.

8 N N 8 U

(Location of profile line shown in figure 4: interpretation of materials based on velocity data Figure 5.--Seismic-refraction profile in the Haddam area. and logs of wells and test holes. Farther south in the vicinity of Mill Creek, HD 31th penetrated 6 feet of saturated, medium to fine sand and ended on boulders at 17 feet below land surface. Well HD 435, approximately 1600 feet to the south, reportedly penetrated only 26 feet of stratified drift. The total saturated thickness and lithology of the stratified drift in this locale is not known. Additional test holes that penetrate the entire section of stratified drift are necessary for estimating the potential yield of wells.

In the southern part of the Haddam area near Camp Bethel, logs for HD 30th, 421, and 461 show that the stratified drift is generally more than 90 feet thick. The saturated thickness of these deposits, however, is much less because most of the material underlies a terrace where the water table is relatively deep. Test hole HD 30th, for example, penetrated 68 feet of unsaturated sand and gravel and only 25 feet of saturated stratified drift. This hole ended in sand above the base of the aquifer, indicating that some additional saturated materials may be present. The logs show that the material is mostly coarse-grained, and if saturated thickness is sufficient, particularly in the area adjacent to the Connecticut River, moderate to large quantities of water could be developed. Additional borings in this area are necessary to determine total saturated thickness and grain-size characteristics.

Water Quality

The analysis of a sample of water from well HD 470 is reported in tables 2 and 3. The only parameter analyzed that did not meet State or federal drinkingwater standards was pH, which at 6.0 was slightly below the recommended range (Connecticut General Assembly, 1975; U.S. Environmental Protection Agency, 1977). Although the water is of good chemical quality and contains a low concentration of dissolved solids (83 mg/L), a complete assessment of groundwater quality in the study area would require additional samples from more wells.

Handman and Bingham (1980, p. 37) report ground-water contamination in the stratified-drift aquifer just south of the study area. Water from wells HD 467 and 468 (not shown in figure 4), approximately 2,000 feet south of Camp Bethel, contained excessive concentrations of sodium (450 mg/L), chloride (730 mg/L), cadmium (0.047 mg/L), and chromium (0.36 mg/L). Additional information on the configuration of the water table and the hydrologic properties of the aquifer is necessary to evaluate what effects this contamination could have on ground-water quality in the southern part of the Haddam area.

SIMSBURY AREA

A large part of the town of Simsbury is underlain by stratified drift inferred to be coarse-grained, saturated, and capable of yielding moderate to large quantities of water to wells (Meade, 1978). This study is limited to stratified-drift deposits in south-central Simsbury. The study area is bounded by West Mountain Road on the west, Connecticut Route 10 on the east, Farms Village Road on the north, and Wildwood Road and Stratton Brook Road, east of Connecticut Route 167, on the south (see fig. 6).

Geologic and Hydrologic Data

The Simsbury area is in the Farmington River basin. The surficial geology has been mapped by Schnabel (1962) and Randall (1970). The distribution and texture of unconsolidated materials directly below the land surface have been described by Radway and Schnabel (1976). Contour maps of the bedrock surface have also been prepared by Handman and Ryder (1973).

Numerous wells and test holes had been constructed prior to this study in the area north and west of Stratton Brook. Drillers' logs for wells SI 81, 230, 233, 285, and 299, and test holes SI 9th and 24th (table 1) indicate that the stratified drift in that area is dominantly coarse grained and the saturated thickness is greater than 70 feet. However, little subsurface data were available for the deposits south and east of the Stratton Brook, particularly in the vicinity of Hazel Meadow Pond and Second Brook. Two seismic-refraction profiles, H-H' and I-I', and six additional test borings, SI 45th, 46th, 47th, 313, 314, and 315, were completed for this study; their locations are shown in figure 6.

Hydrogeologic Evaluation

The contour map of the bedrock surface by Handman and Ryder (1973) and data from wells and test holes indicate that a buried bedrock valley underlies Stratton Brook. The altitude of the bedrock surface is lower than 180 feet and may be as low as 150 feet in places. This bedrock valley is filled with 100 to 150 feet or more of dominantly coarse-grained stratified drift. It extends for at least 2 miles from Wildwood Road to the vicinity of wells SI 230 and 285, northeast of Stratton Brook Road, and is about one-half mile wide. The stratified-drift deposits filling the bedrock valley are capable of yielding moderate to large quantities of water, as demonstrated by yields of 100 to 710 gal/min reported for wells SI 81, 230, 233, and 285 (Hopkins and Handman, 1975, p. 18-20).

The possibility that the bedrock valley described above may extend beneath the Hazel Meadow Pond-Second Brook area, as indicated by Handman and Ryder (1973), was investigated by seismic-refraction profiles along lines H-H' and I-I' and test borings SI 45th, 46th, 47th, and 314. Seismic profile I-I' (fig. 7) shows a narrow depression in the bedrock surface south of Second

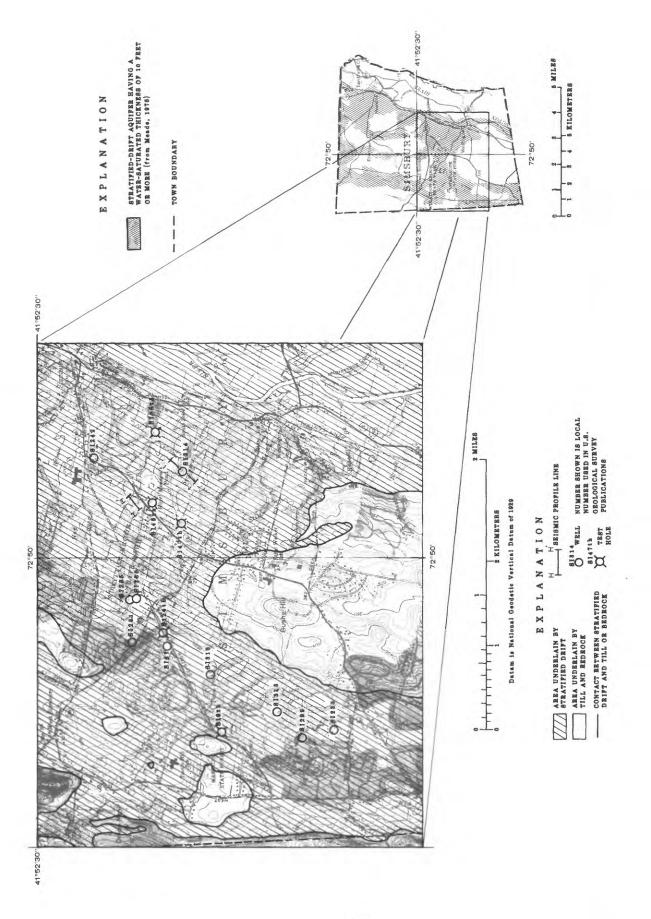
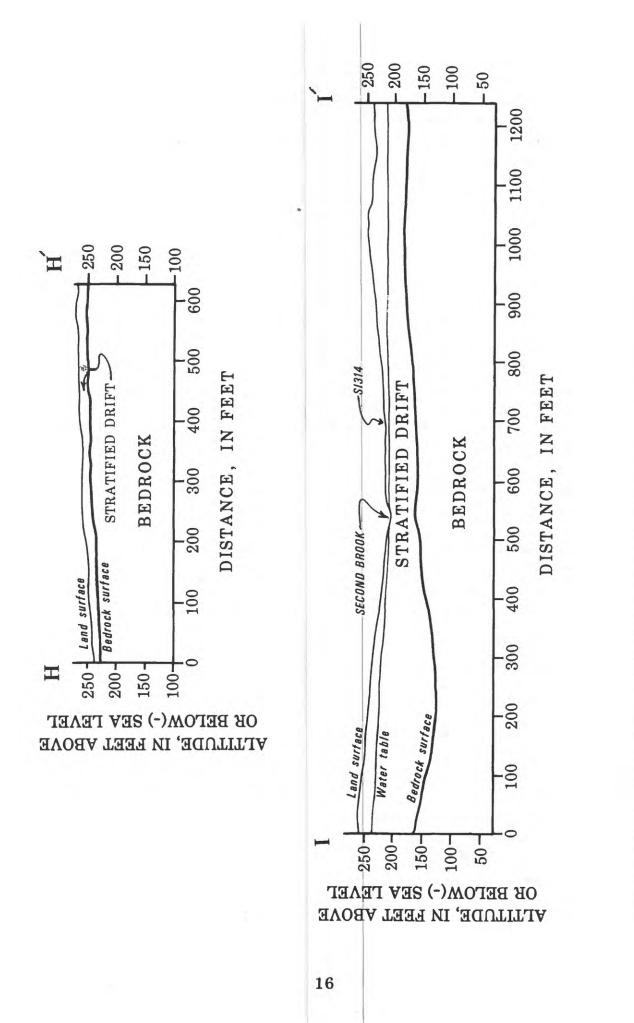



Figure 6.--Location of wells and test holes, seismic profiles, and the extent of stratified-drift deposits in the Simsbury area.

(Location of profile lines shown in figure 6: interpretation of materials based on velocity Figure 7.--Seismic-refraction profiles in the Simsbury area. data and logs of wells and test holes.) Brook extending to an altitude of about 125 feet. The stratified drift filling the depression is greater than 100 feet thick and mostly saturated. The thickness of the stratified drift, however, decreases north of Second Brook. Bedrock occurs at 60 feet or less below land surface at SI 45 and 314. Test holes SI 46th and 47th penetrated less than 30 feet of stratified drift, and seismic profile H-H' (fig. 7) shows only a thin layer of stratified drift. Additional data are needed to determine whether the narrow depression in the bedrock surface south of Second Brook is continuous with the buried valley beneath Stratton Brook or whether they are separated by a bedrock ridge, and if it continues to the southeast toward the Farmington River.

The stratified drift penetrated at SI 45th, 46th, and 47th is mostly finegrained or a poorly-sorted mixture of coarse and fine material. Well SI 314 penetrated 25 feet of well sorted, coarse sand overlying 21 feet of fine sand, silt, and till. Because the stratified drift is thinly saturated and mostly fine-grained, it is unlikely that wells in the Hazel Meadow Pond-Second Brook area would yield more than small to moderate quantities of water. However, moderate to large quantities may be possible south of Second Brook if the bedrock depression is continuous over a large areal extent and filled with coarse-grained stratified drift.

Water Quality

Water from three wells in the Simsbury area, SI 313, 314, and 315, was sampled. Chemical analyses of the samples (tables 2 and 3) indicate that water in the stratified-drift aquifer is of good chemical quality and is suitable for public supply, irrigation, and industrial uses. All three samples contained low concentrations of dissolved solids (43-88 mg/L). The only chemical constituent analyzed that exceeded Federal drinking-water standards (U.S. Environmental Protection Agency, 1977) was manganese (0.1 mg/L in SI 314). A pH of 6.1 for water from SI 314 is also slightly below the recommended range (Connecticut General Assembly, 1975; U.S. Environmental Protection Agency, 1977).

Also, low concentrations of phenols (4 ug/L in SI 313; 1 ug/L in SI 315) were detected. The presence of phenols in water may cause an aesthetic problem because conventional water treatment can produce chlorinated phenol compounds which have a persistent odor-producing effect.

17

WILLIMANTIC RIVER AREA

Stratified drift underlies much of the Willimantic River valley in northeastern Connecticut. Two separate areas of the valley underlain by stratified drift were evaluated in this study (fig. 8). The northern area extends from 2.75 miles north of, to 1 mile south of, the Tolland-Coventry and Willington-Mansfield town lines. The southern area extends for 3 miles south of the village of Eagleville. Stratified-drift deposits in the northern area are greater than 1 mile wide in places, whereas in the southern area, the deposits are generally less than a half mile wide.

Geologic and Hydrologic Data

The Willimantic River area is in the Shetucket River basin, and the hydrology of this basin is described by M. P. Thomas and others (1967). The surficial geology in parts of the study area has been mapped by Frankel (1968) and Pease (1975). Little subsurface information was available prior to this study. A U.S. Geological Survey test hole, CV 9th, in the southern area, penetrated 109 feet of mostly very fine to fine sand (C. E. Thomas, Jr., and others, 1967, p. 21). M. P. Thomas and others (1967) indicate that saturated, coarse-grained stratified drift is as much as 80 feet thick in places, and that large sustained yields are possible from these deposits.

Additional subsurface data collected for this study include three seismic profiles, J-J', K-K', and L-L', and four test borings, MS 38, TO 1th, TO 7, and WG 1, in the northern area, and two seismic profiles, M-M' and N-N', and four test borings, CV 19th, 35, 36, and 37, in the southern area. Locations of seismic profiles and test borings are shown in figure 8.

Hydrogeologic Evaluation

In the northern area TO 1th, MS 38, TO 7, and WG 1 penetrated mostly coarsegrained stratified drift consisting of generally poorly-sorted, fine to coarse sand and gravel. However, all four borings end on boulders or bedrock at depths between 24 to 38 feet below land surface. The thickness of the stratified drift in seismic profiles J-J', K-K', and L-L' (fig. 9) is 50 feet or less, and the saturated thickness is generally less than 40 feet. Consequently, wells in the northern area would probably yield only small to moderate quantities of water.

In the southern area, both fine- and coarse-grained stratified drift is present. Wells CV 35 and 36 penetrated mostly medium to coarse sand and gravel, whereas logs of CV 9th, 19th and 37 show dominantly fine to medium sand. Test hole CV 9th reached refusal at 109 feet below land surface, and wells CV 36 and 37 each ended in stratified drift at 97 feet below land surface. The saturated thickness of the aquifer at these wells is at least 80 feet. Saturated stratified drift is as much as 120 feet thick in places along seismic profiles N-N' and M-M' (fig. 9). Both profiles show that the stratified drift thins abruptly near the Willimantic River, and that the maximum saturated thickness probably

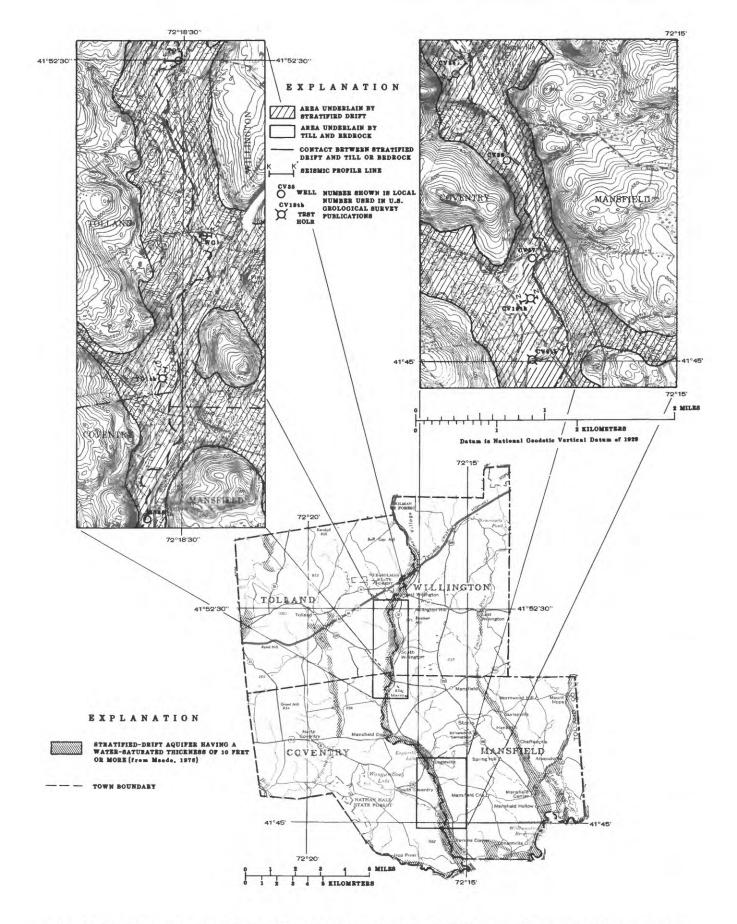
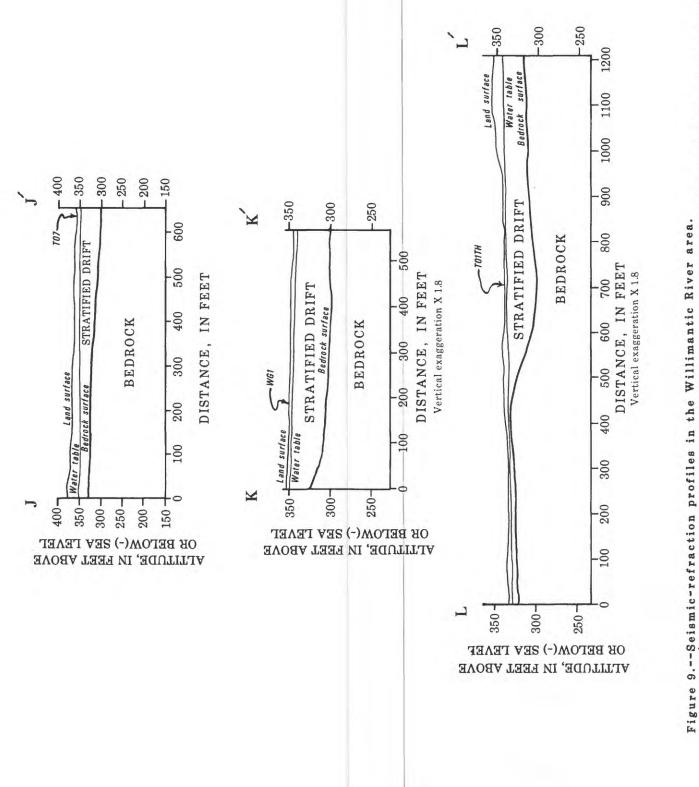
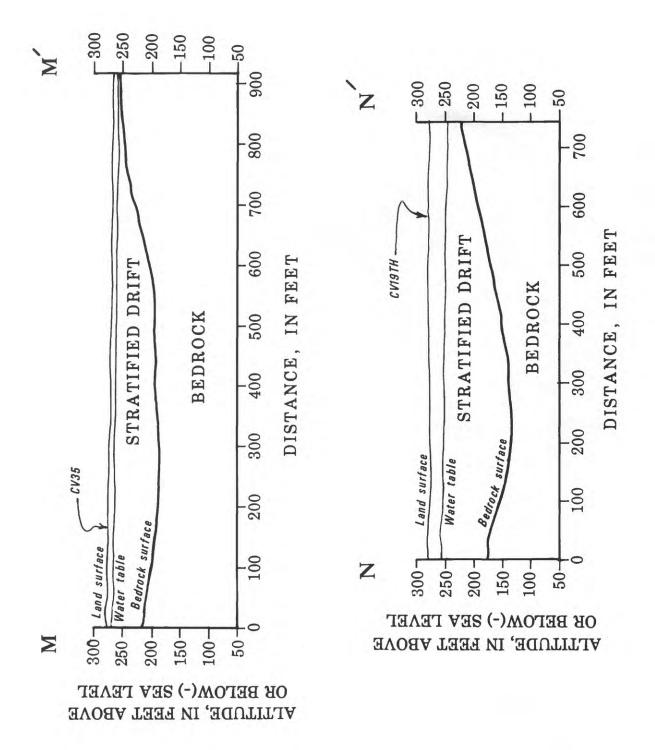




Figure 8.--Location of wells and test holes, seismic profiles, and extent of stratifieddrift deposits in the Willimantic River area.

(Location of profile lines shown in figure 8: interpretation of materials based on velocity data and logs of wells and test holes.)

(Location of profile lines shown in figure 8: interpretation of materials based on velocity Figure 9.-Continued--Seismic-refraction profiles in the Willimantic River area. data and logs of wells and test holes.) occurs 500 to 600 feet west of the river. The best sites for developing wells capable of yielding moderate to large quantities of water are in the vicinity of CV 35 and 36 where the stratified drift is primarily coarse-grained, the saturated thickness is greater than 80 feet, and the potential for inducing infiltration from the Willimantic River is high.

Water Quality

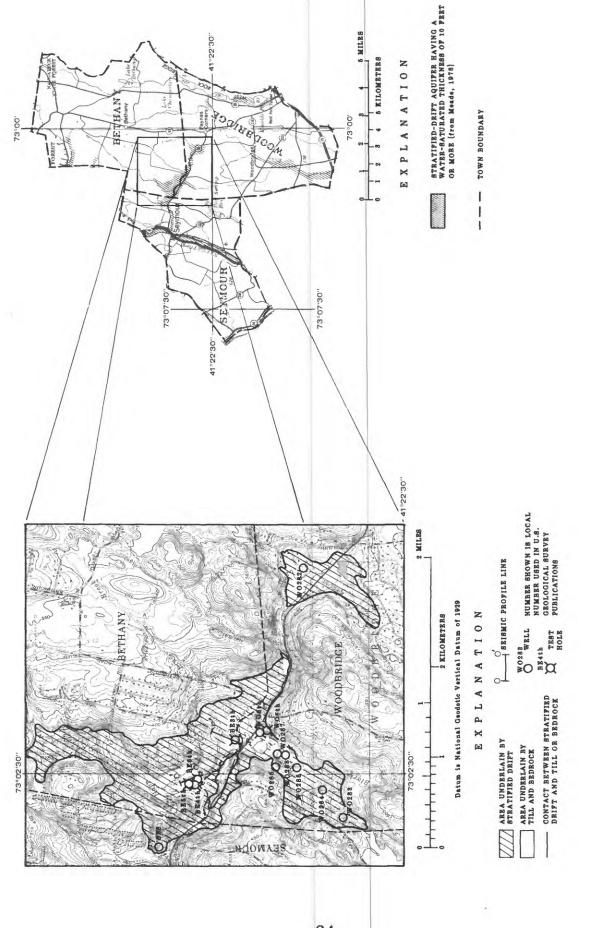
Chemical analyses of samples from two wells in the northern area, MS 38 and TO 7, and one well in the southern area, CV 37, (tables 2 and 3) indicate that water in the stratified-drift aquifer contains low concentrations of dissolved solids (79-116 mg/L). However high concentrations of iron (20 mg/L in CV 37; 3 mg/L in MS 38) and manganese (10 mg/L in MS 38; 3 mg/L in TO 7; 0.3 mg/L in CV 37) were measured. M. P. Thomas and others (1967, p. 72) indicate that ground water in this part of the Shetucket River basin commonly contains moderate to excessive concentrations of iron and manganese. Probable sources or iron- and manganese-bearing ground water in this area are solution of minerals in the bedrock and stratified drift which contains oxides, sulfides, and carbonates of iron. Iron and manganese in water are objectionable for food and textile processing at concentrations exceeding about 0.3 mg/L and 0.05 mg/L, respectively. Most iron-bearing waters, when treated by aeration and filtration, are satisfactory for domestic use.

The pH of water from TO 7 (5.9) is below the range recommended for drinking water (Connecticut General Assembly, 1975; U.S. Environmental Protection Agency, 1977). Also, low but detectable concentrations of arsenic (0.018 mg/L in CV 37) and phenols (2 ug/L in TO 7) were observed. Additional sampling would be necessary to determine the extent and source of arsenic and phenols in the aquifer.

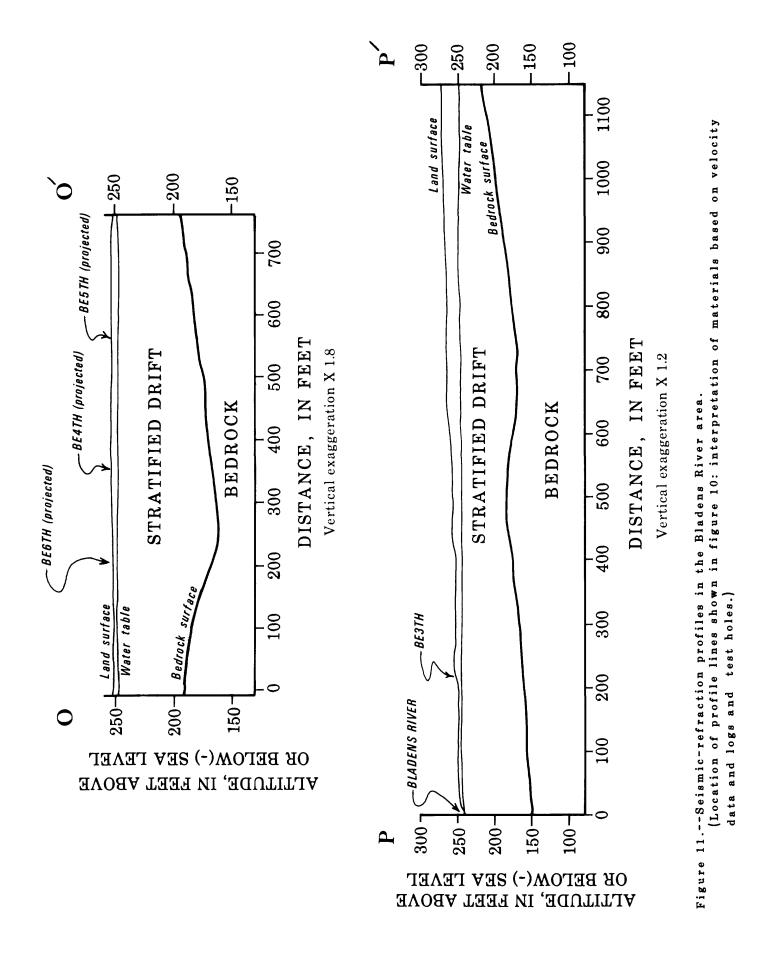
BLADENS RIVER AREA

Stratified drift underlies parts of the towns of Seymour, Bethany, and Woodbridge. This study is limited to two discontinuous deposits of stratified drift in the Bladens River valley (fig. 10). The larger of the two deposits extends for approximately 8,500 feet along the Bladens River and is connected to stratified-drift deposits underlying its tributaries, Hopp Brook and Black Brook. A second, smaller deposit of stratified drift in upper Bladens River valley underlies an area approximately 2,500 feet long and 1,500 feet wide.

Geologic and Hydrologic Data


The Bladens River area is in the lower Housatonic River basin and the hydrology of this basin is described by Wilson and others (1974). The surficial geology was mapped by Flint (1978b). Some subsurface data were available prior to this study from logs of test borings BE 4th, 5th, and 6th and WO 283, 284, 285, 286, 287, and 288 (table 1). To supplement this information, two seismic-refraction profiles, O-O' and P-P', and five test borings, BE 3th, SE 8, WO 5th, 6th, and 282, were made. Locations of seismic profiles and test borings are shown in figure 10.

Hydrogeologic Evaluation


In the western part of the Bladens River area, near the contact between stratified drift and till or bedrock, well SE 8 penetrated only 25 feet of saturated stratified drift. The material at this site is dominantly fine to medium sand with some interlayered silt and clay. Wells near SE 8 would probably yield only small to medium quantities of water.

In the area just east of where Hopp Brook enters the Bladens River, seismic profile 0-0' (fig. 11) shows 50 to approximately 100 feet of stratified drift. However, test holes BE 4th, 5th, and 6th, located within a few hundred feet of profile 0-0', reportedly end on bedrock at 35 to 67 feet below land surface. Although the logs of these borings (table 1) show dominantly poorly sorted, coarse-grained material, BE 6th penetrated 27 feet of silt and clay and the bottom 20 feet of material in both BE 5th and 6th may be till. However, these sediments are largely saturated, adjacent to a potential source of induced recharge, and may be sufficiently permeable to yield moderate to possibly large quantities of water to wells. Additional information on the distribution of fine- and coarse-grained material in this part of the Bladens River area is needed to better estimate potential well yields.

In the area north of the Bladens River at Black Brook, 60 to 80 feet of saturated stratified drift is indicated in the log of BE 3th (table 1) and seismic profile P-P' (fig. 11). However, most of the material is fine to very fine sand, silt, and clay. It is unlikely that more than small quantities of water could be obtained at this locality.

In the Black Brook valley, test borings WO 285, 286, 287 and 288 reached refusal in till at depths of less than 38 feet below land surface. The stratified drift penetrated by these borings was thinly saturated or unsaturated and consists of layers of fine- and coarse-grained material. Wells WO 283 and 284 penetrated a somewhat thicker section of stratified drift, with as much as 58 feet of saturated thickness at WO 283. Logs of WO 283 and 284 show mostly coarse-grained stratified drift, however in WO 284, it is generally poorly sorted and includes layers of silt and clay. Therefore, it is unlikely that wells in the Black Brook valley area would yield more than small to moderate quantities of water.

Well WO 282 is the only source of subsurface data for the small deposit of stratified drift in the upper Bladens River valley. The well penetrated mostly fine to coarse sand before refusal on bedrock at 58 feet below land surface. The saturated thickness at WO 282 is 51 feet. The available data are insufficient to allow estimation of the probable range of well yields from this aquifer.

Water Quality

Water from two wells in the Bladens River area, SE 8 and WO 282, was sampled. Chemical analyses (tables 2 and 3) indicate that the water contains low concentration of dissolved solids (64-115 mg/L). Only iron (0.64 mg/L in SE 8) and manganese (0.3 mg/L in SE 8 and WO 282) equaled or exceeded Federal drinking-water standards (U.S. Environmental Protection Agency, 1977). Values of pH (5.6 to 5.8) were slightly below the recommended range (Connecticut General Assembly, 1975; U.S. Environmental Protection Agency, 1977).

SUMMARY AND CONCLUSIONS

Stratified-drift deposits in five areas of Connecticut were investigated in order to provide hydrogeologic information for State and local water-supply planning and water-quality management. The deposits were selected for study because they were inferred to be major aquifers composed of coarse-grained material with suitable hydrologic characteristics for supplying moderate to very large quantities of water, and are located in communities where additional water supplies are needed. Data obtained from logs of test holes and wells, seismic-refraction profiles, and chemical analyses of ground water were used to interpret the water-yielding potential and water-quality characteristics of stratified-drift aquifers in each area and provide the basis for the following conclusions.

 There is sufficient thickness of saturated, coarse-grained stratified drift at some locations in all five areas to potentially yield at least 50 to possibly 2,000 gal/min to individual wells.

- (2) The saturated thickness and grain-size characteristics differ greatly over short distances, and some sites are unsuitable for developing moderate to very large quantities of water from wells. However, hydraulic continuity exists between most sites within each study area. Therefore, for purposes of development and management, each aquifer can be considered as a single unit.
- (3) The Glastonbury, Haddam, and Simsbury areas have the most extensive coarsegrained deposits and therefore have the greatest potential for development of large quantities of ground water.
- (4) The maximum saturated thickness of stratified drift exceeds 150 feet at some locations in the Glastonbury area, but most areas contain less than 100 feet of saturated stratified drift.
- (5) Additional water may be obtained from aquifers in all five areas by induced infiltration from surface-water bodies. The best potential for induced recharge is along the Connecticut River in the Glastonbury and Haddam areas, and in the southern part of the Willimantic River area in Coventry.
- (6) Water in the stratified-drift aquifers is generally of good chemical quality and meets most State and Federal drinking-water standards (Connecticut General Assembly, 1975; U.S. Environmental Protection Agency, 1975; 1977). Dissolved solids range from 43 to 208 mg/L. The major water-quality problem is excessive iron, 0.64 to 20 mg/L, and manganese, 0.1 to 10 mg/L, in some wells, particularly in the Willimantic River and Bladens River areas. Additional sampling would be necessary to determine the extent and source of phenols and arsenic detected in some water samples from the Simsbury and Willimantic River areas.

This study provides a preliminary evaluation of the potential of stratified-drift deposits in five selected areas of Connecticut to yield large quantities of potable water. The hydrogeologic and water-quality data collected are minimal and allow only a qualitative evaluation of each aquifer. However, these limited data are sufficient to indicate the great variability of grain-size characteristics and saturated thickness of the stratified-drift deposits, both areally and with depth. More detailed, quantitative studies would be required for thorough evaluations of ground-water availability and quality at each site prior to development.

GLOSSARY

- Aquifer: A geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable materials to yield significant quantities of water to wells and springs. In this report, the term refers to stratified-drift deposits known or inferred to be capable of yielding moderate to very large amounts of water to individual wells.
- Bacteria: Microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Fecal coliform bacteria are bacteria that are present in the intestines or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms which produce blue colonies within 24 hours when incubated at $44.5^{\circ} \pm 0.2^{\circ}$. Celsius on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample.

Fecal streptococcal bacteria are bacteria found also in intestines of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms which produce red or pink colonies within 48 hours at $35^{\circ} \pm 1.0^{\circ}$ Celsius on KF medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample.

- Bedrock: Solid rock, commonly called "ledge," that forms the Earth's crust. It is locally exposed at the surface but more commonly in Connecticut is buried beneath a few inches to more than 400 feet of unconsolidated deposits.
- Color unit: Color unit is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.
- Dissolved: Refers to that material in a representative water sample which passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.
- Dissolved solids: The residue from a clear sample of water after evaporation and drying for one hour at 180° Celsius; consists primarily of dissolved mineral constituents, but may also contain organic matter and water of crystallization.

1

- Gravel: Unconsolidated rock debris composed principally of particles larger than 2 millimeters in diameter.
- Ground water: Water in the saturated zone.
- Induced infiltration: The process by which water in a stream or lake moves into an aquifer by establishing a hydraulic gradient from the surfacewater body toward a pumping well or wells.
- Induced recharge: The amount of water entering an aquifer from an adjacent surface-water body by the process of induced infiltration.
- Methylene blue active substance (MBAS): A measure of apparent detergents, as indicated by the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.
- Micrograms per liter (ug/L): A unit for expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.
- Milligrams per liter (mg/L): A unit for expressing the concentration of chemical constituents in solution as mass (milligrams) per unit volume (liter) of water.
- National Geodetic Vertical Datum of 1929 (NGVD of 1929): A geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called "mean sea level." NGVD of 1929 is referred to as sea level in this report.
- Organochlorine compounds: Widely used synthetic organic compounds that are toxic and persistent in the environment. These include aldrin, chlordane, DDT, lindane, toxaphene, and others.
- pH: The negative logarithm (base 10) of the hydrogen-ion concentration. A pH of 7.0 indicates neutrality; values below 7.0 denote acidity, those above 7.0 denote alkalinity.
- Phenols: A class of aromatic organic compounds in which one or more hydroxyl groups are attached directly to the benzene ring. Commonly a toxic organic compound obtained from coal tar or derivative of benzene.
- Polychlorinated biphenyls (PCB); Polychlorinated napthalenes (PCN): Industrial chemicals that are mixtures of chlorinated biphenyl or napthalene compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.
- Recharge: Water that is added to the saturated zone. Recharge may be natural or artificial, depending upon the source of the water and the process that allows it to infiltrate to an aquifer.

Saturated thickness: Thickness of an aquifer below the water table.

- Saturated zone: The subsurface zone in which all interconnected spaces are filled with water. The water table is the upper limit of this zone. Water in the saturated zone is under pressure equal to or greater than atmospheric.
- Specific conductance, of water: A measure of the ability of water to conduct an electric current; expressed in micromhos per centimeter at 25°C. It is related to the type and concentration of ions in solution and serves as an approximate measure of the dissolved-solids contents of the water.
- Stratified drift: A predominantly sorted sediment laid down by or in bodies of meltwater from a glacier; includes gravel, sand, silt, or clay deposited in layers of similar grain size.
- Till: A nonsorted, nonstratified sediment deposited directly by a glacier and composed of boulders, gravel, sand, silt, and clay mixed in various proportions. It is sometimes referred to by New England well drillers as "hardpan".

Total (as used in tables of chemical analyses):

"Total recoverable" is the amount of a given constituent that is in solution after a representative water-supended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

"Total" is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituents's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total". (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)

- Volatile organics: Synthetic organic compounds that include hydrocarbon or halogenated hydrocarbon molecules, commonly industrial solvents and degreasers.
- Water table: The surface in an unconfined water body at which the pressure is atmospheric. It is defined by the levels at which water stands in wells that penetrate the water body just far enough to hold standing water. In wells penetrating to greater depths, the water level will stand above or below the water table if an upward or downward component of ground-water flow exists.

30

REFERENCES

- Bingham, J. W., Paine, F. D., and Weiss, L. A., 1975, Hydrogeologic data for the lower Connecticut River basin, Connecticut: Connecticut Water Resources Bulletin No. 30, 59 p.
- Connecticut Areawide Waste Treatment Management Planning Board, 1979, A guide to ground-water and aquifer protection - final report, 47 p.
- Connecticut General Assembly, 1975, Standards for quality of public drinking water: Public act no. 75-513, section 19-13-B102.
- Deane, R. E., 1967, The surficial geology of the Hartford South quadrangle: Connecticut Geological and Natural History Survey Quadrangle Report 20, 43 p.
- Flint, R. F., 1978a, The surficial geology of the Haddam quadrangle: Connecticut Geological and Natural History Survey Quadrangle Report 36, 27 p.
- ____1978b, The surficial geology of the Naugatuck quadrangle: Connecticut Geological and Natural History Survey Quadrangle Report 35, 23 p.
- Frankel, L., 1968, Preliminary map of the surficial geology of the South Coventry quadrangle: unpublished, on file: Connecticut Geological and Natural History Survey.
- Handman, E. H., and Bingham, J. W., 1980, Effects of selected sources of contamination on ground-water quality at seven sites in Connecticut: U.S. Geological Survey Water Resources Investigations Open-file Report 79-1596, 63 p.
- Handman, E. H., and Ryder, R. B., 1973, Contour map of the bedrock surface, Avon quadrangle, Connecticut: U.S. Geological Survey Miscellaneous Field Studies Map MF-514A.
- Hopkins, H. T., and Handman, E. H., 1975, Hydrogeologic data for the Farmington River basin, Connecticut: Connecticut Water Resources Bulletin No. 28, 49 p.
- Langer, W. H., 1976, Map showing unconsolidated materials, Glastonbury quadrangle, Connecticut: U.S. Geological Survey Miscellaneous Field Studies Map MF-561D.
- 1977, Surficial geology map of the Glastonbury quadrangle, Hartford and Middlesex counties, Connecticut: U.S. Geological Survey Geologic Quadrangle Map GQ-1354.
- Langer, W. H., Recny, C. J., and Koza, D. M., 1976, Map showing unconsolidated materials, Hartford South quadrangle, Connecticut: U.S. Geological Survey Miscellaneous Field Studies Map MF-487F.

- Mazzaferro, D. L., Handman, E. H., and Thomas, M. P., 1979, Water resources inventory of Connecticut, part 8, Quinnipiac River basin: Connecticut Water Resources Bulletin No. 27, 88 p.
- Meade, D. B., 1978, Ground-water availability in Connecticut: Connecticut Geological and Natural History Survey, Natural Resources Atlas Series Map, scale 1:125,000.
- O'Leary, D. W., 1973, Map showing unconsolidated materials, Deep River quad rangle, Connecticut: U.S. Geological Survey Miscellaneous Field Studies Map MF-524A.
- _____1977, Surficial geologic map of the Deep River quadrangle, Connecticut: U.S. Geological Survey Geologic Quadrangle Map GQ-1370.
- Pease, M. H., Jr., 1975, Surficial geologic map of the Stafford Springs quadrangle, Connecticut: U.S. Geological Survey Geologic Quadrangle Map GQ-1216.
- Radway, J. A., and Schnabel, R. W., 1976, Map showing unconsolidated materials, Avon quadrangle, Connecticut: U.S. Geological Survey Miscellaneous Field Studies Map MF-514C.
- Randall, A. D., 1970, Surficial geologic map of the Tariffville quadrangle, Connecticut-Massachusetts: U.S. Geological Survey Geologic Quadrangle Map GQ-798.
- Ryder, R. B., and Handman, E. H., 1973, Contour map of the bedrock surface, Hartford South quadrangle, Connecticut: U.S. Geological Survey Miscellaneous Field Studies Map MF-487A.
- _____1974, Contour map of the bedrock surface, Glastonbury quadrangle, Connecticut: U.S. Geological Survey Miscellaneous Field Studies Map MF-561B.
- Ryder, R. B., Thomas, M. P., and Weiss, L. A., 1981, Water resources inventory of Connecticut, part 7, upper Connecticut River basin: Connecticut Water Resources Bulletin No. 24, 84 p.
- Ryder, R. B., and Weiss, L. A., 1971, Hydrogeologic data for the upper Connecticut River basin, Connecticut: Connecticut Water Resources Bulletin No. 25, 54 p.
- Schnabel, R. W., 1962, Surficial geology of the Avon quadrangle, Connecticut: U.S. Geological Survey Geologic Quadrangle Map GQ-147.
- Scott, J. H., Tibbetts, B. L., and Burdick, R. G., 1972, Computer analysis of seismic-refraction data: U.S. Bureau of Mines Report of Investigations, RI 7595, 95 p.
- Tharin, J. C., 1973, Preliminary map of the surficial geology of the Middle Haddam quadrangle, unpublished, on file: Connecticut Geological and Natural History Survey.

- Thomas, C. E., Jr., Bednar, G. A., Thomas, M. P., and Wilson, W. E., 1967, Hydrogeologic data for the Shetucket River basin, Connecticut: Connecticut Water Resources Bulletin No. 12, 48 p.
- Thomas, M. P., Bednar, G. A., Thomas, C. E., Jr., and Wilson, W. E., 1967, Water resources inventory of Connecticut, part 2, Shetucket River basin: Connecticut Water Resources Bulletin No. 11, 96 p.
- U.S. Environmental Protection Agency, 1975, National interim primary drinking water regulations: Federal Register, v. 40, no. 248, Wednesday, December 24, 1975, Part IV, p. 59566-59587.

_____1977, National secondary drinking water regulations: Federal Register, v. 42, no. 62, Thursday, March 31, 1977, Part I, p. 17143-17147.

- Weiss, L. A., Bingham, J. W., and Thomas, M. P., 1983, Water resources inventory of Connecticut, part 10, lower Connecticut River basin: Connecticut Water Resources Bulletin No. 31, 85 p.
- Wilson, W. E., Burke, E. J., and Thomas, C. E., Jr., 1974, Water resources inventory of Connecticut, part 5, lower Housatonic River basin: Connecticut Water Resources Bulletin No. 19, 79 p.

TABLES

Entries include identification number, location number, owner, year drilled, altitude, depth to water (if applicable), source of log, and description of earth materials penetrated.

Grain size chart

Grain size (milli- meters)	Wentworth grade scale U.S. Geological Survey logs	Grain size (inches)	Actual grain size
256	Boulders (gravel)	10.08 -	
64	Cobbles (gravel)	1 2.52 -	
32 16	Very coarse Pebbles Coarse grave (gravel) Medium grave	$\frac{\text{grave1}}{21}$ 1.260 -	
8 4	Fine gravel Granules - very	0.315-	\$ 74 ⁵ 9 ¹⁰
2	fine gravel Very coarse sand	0.079-	
0.5	Coarse sand	0.039-	
0.25	Medium sand	0.019-	
0.125	Fine sand	0.0049-	
0.063	Very fine sand	0.0025-	
0.004	Silt	0.0002-	
	Clay		

- Identification number: U.S. Geological Survey number assigned to each site. The letter prefix denotes the town in which it is located followed by a sequential number. The test holes are identified by the "th" suffix.
- Location number: Latitude and longitude of testhole or well site. Number after decimal point is a sequential number used to identify closely spaced wells and test holes.
- Altitude: Land-surface datum (LSD) in feet above sea level, which is approximately equal to the National Geodetic Vertical Datum of 1929. Altitudes are estimated from topographic maps with 10-feet contour intervals.
- Depth to water: Measurement generally made shortly after completion of test hole or well and may not represent static conditions. Expressed in feet below land surface.
- Source of log: U.S. Geological Survey, drilling contractor, or others, as indicated.
- Description of earth materials: Logs of test holes and wells are based on the appropriate grain-size classification shown in the chart to the right.
- Terms used in logs of test holes and wells:
 - Sand and gravel--Sorted stratified sediment varying in size from boulders to very fine sand.
 - "Poorly sorted" --Indicates approximately equal amounts, by weight, of all grain sizes present in sample.
 - Till--A predominantly non-sorted, non-stratified sediment deposited directly by a glacier and composed of boulders, gravel, sand, silt, and clay.
 - End of hole-Depth of bottom of test hole or well in which bedrock or refusal was not reached.
 - Refusal--Depth at which the drill equipment could not penetrate farther.
 - Percentage of weight of individual components in the sample:

Trace	0 - 10
Little	10 - 20
Some	20 - 35
· · and · ·	35 - 50

Terms in parantheses on logs described by the U.S. Geological Survey are interpretations or observations by hydrologiats based on field examination of cuttings and samples.

Terms in all other logs are those used by drillers, however, some are rearrenged for uniformity of presentation.

Town of Bethany

<u>BE 3 th</u> . 4	12331N07	30213.1.	Jon D	avison
and Paul	Rieur.	Drilled	1980.	Altitude
260 ft.	Depth t	o water 1	2 ft.	Log by
U.S. Geo	logical	Survey.		

	Depth			
	below LSD			Thick-
	in	fee	et	ness
Materials	From	1	То	(feet)
Sand, fine to coarse,				
and cobble gravel	0	-	2	2
Sand, medium, brown; som	е			
fine sand; little very				
fine sand	2	-	15	13
Sand, very fine to fine,				
silt and clay, layered,				
orange to brown	15	-	38	23
Silt and clay, gray,				
layered; some very fine				
to fine sand layers	38	-	62	24
Sand, fine; little clay;				
silt and very fine sand				
in layers	62	-	74	12
Sand, medium to very				
coarse, tan-brown; some				
fine gravel and fine				
sand	74	-	81	7
Sand and gravel, very				
poorly sorted (till)	81	-	88	7
Refusal (bedrock)	at	88		

BE 4 th. 412346N0730234.1. Joseph Kriz. Drilled 1967. Altitude 240 ft. Log by S. B. Church Co.

	Depth			
	below LSD	Thick-		
	<u>in feet</u>	ness		
<u>Materials</u>	From To	(feet)		
Boulders	0 - 10	10		
Gravel (hardpan)	10 - 20	10		
Sand, coarse	20 - 25	5		
Sand, medium	25 - 30	5		
Sand, coarse, and gravel	30 - 35.	5 5.5		
Ledge	at 35.5			

BE	5	th.	412348	N0730234.1.	Joseph	Kriz.
I	r	illed	1967.	Altitude	240 ft.	Log
1	эy	S. B	. Chur	ch Co.		

by S. B. Church Co.		
	Depth	
	below LSD	Thick-
	<u>in feet</u>	ness
Materials	From To	(feet)
Cobbles	0 - 15	15
Sand and gravel, very		
dirty	15 - 25	10
Hardpan	25 - 45	20
Ledge	at 45	

BE 6 th.	412345N	0730231.1.	Jo	seph	Kriz.
Drilled		Altitude	245	ft.	Log

by	s.	B.	Church	Co.

	Depth			
	below LSD	Thick-		
	<u>in feet</u>	ness		
Materials	From To	(feet)		
Boulders	0 - 18	18		
Silt and clay	18 - 45	27		
Sand, medium	45 - 48	3		
Hardpan, gravel	48 - 67.	5 19.5		
Ledge	at 67.5			

Town of Cromwell

CR 307. 413810N0723758.1 District, Water Depart 1969. Altitude 15 ft. 7 ft. Log by Water Ex Development Corp. (pre in Ryder and Weiss, 19	ment. Dri Depth to planation viously pu	lled water and blished
	Depth	
	below LSD	Thick-
	<u>in feet</u>	ness
Materials	From To	(feet)
Sand, very fine, brown, and silt Sand, very fine to coars	0 - 70 e,	70
brown; some gravel and silt Sand, medium to coarse,	70 - 90	20
brown; some gravel End of hole	90 -145 at 145	55

Town of Coventry

<u>CV 9 th</u> . 414501N0721618. Survey. Drilled 1963. Log by U.S. Geological	Altitu	ıde	270 ^{ft}
viously published in T	homas, (С.Е.	, Jr.,
and others, 1967, p. 2	1).		
	Depti	n	
	below I	LSD	Thick-
	<u>in fee</u>	et	ness
Materials	From	To	(feet)
Sand, very fine to fine,			
silty, overyling medium			
to coarse sand	0 -	89	89
Sand and gravel	89 -	109	20
Refusal	at 10	9	

-

Town of Coventry - continued

CV 19 th. 414525N0721619.1. St. Mary's
Church. Drilled 1980. Altitude 285
ft. Depth to water 27 ft. Log by
U.S. Geological Survey.

	De	ptl	n	
	belo	w 1	LSD	Thick-
	in	fe	et	ness
Materials	From	1	То	(feet)
Topsoil, sandy; some				
silt	0	-	2	2
Sand, fine to coarse,				
and gravel, brown;				
trace very coarse sand.	2	-	7	5
Sand, coarse, brown; some	9			
very coarse sand; little	2			
fine to medium sand;				
trace fine gravel	7	-	22	15
Sand, fine to medium,				
tan; little coarse sand;	;			
trace very coarse sand				
to fine gravel	22	-	47	25
End of hole (augers				
sand-locked)	at	47		

CV 35. 414656N0721659.1. Town of Coventry. Drilled 1980. Altitude 275 ft. Depth to water 6.5 ft. Log by U.S. Geological Survey.

	Dep	ptł	1	
	below	a I	SD	Thick-
	in f	Eee	et.	ness
<u>Materials</u>	From		То	(feet)
Topsoil, brown, sandy	0	-	1	1
Sand, coarse, tan; some				
medium to very coarse				
<pre>sand; trace gravel;</pre>				
trace fine sand	1	-	6	5
Sand and gravel, poorly				
sorted	6	-	41	35
End of hole	at	41	L	

ical Survey.
Depth
below LSD Thick-
<u>in feet</u> ness
Materials From To (feet)
Topsoil, dark brown 0 - 0.5 0.5
Sand, coarse to very coarse, and cobble
gravel, yellow-brown5- 3 2.5
Sand, medium; some coarse
<pre>sand; little fine gravel; trace very fine to fine sand 3 - 32 29 Sand, medium to coarse;</pre>
some very coarse sand to fine gravel, layered; little fine to medium
sand
Sand, fine to coarse; little gravel; trace
silt 62 - 92 30
Sand, medium to very coarse, and gravel; little fine sand; trace very fine sand

CV 37. 414541N0721618.1. Mathew Moriarity. Drilled 1980. Altitude 280 ft. Depth to water 9.5 ft. Log by U.S. Geological Survey.

	Dept	h	
	below	LSD	Thick-
	in fe	et	ness
Materials	From	То	(feet)
Gravel	0 –	5	5
Sand, fine to medium;			
little silt to very find	е		
sand; occasional thin			
layers of silt and clay	5 -	77	72
Sand, medium, gray; litt	le		
coarse sand; layers of			
very fine to fine sand.	77 -	97	20
End of hole	at 97		

Town of Glastonbury

<u>GL 40 th</u> . 414003N0723653.1. Alec	Gondek.
Drilled 1980. Altitude 20 ft.	Depth
to water 15 ft. Log by U.S. Geo	-
Survey.	

	De	ptl	1	
	belo	w I	LSD	Thick-
	in	fee	et	ness
<u>Materials</u>	From	1	To	(feet)
Topsoil, brown	0	-	2	2
Gravel, coarse	2	-	6	4
Sand, medium to very				
coarse, and fine gravel,				
layered	6	-	12	6
Sand, coarse, and cobble				
gravel; silt and clay;				
poorly sorted	12	-	17	5
Silt and clay, brown;				
little fine to medium				
sand	17	-	47	30
Silt; layers of fine to				
coarse gravel	47		52	5
Silt and clay; some				
coarse sand and gravel				
layers	52		62	10
Sand, fine to medium,				
brown; trace very fine				
sand, silt and clay	62	-	82	20
Till	82	-	89	7
Refusal	at	89		

<u>GL 41 th</u> . 413804N0723739 Glastonbury. Drilled ft. Depth to water 36 Clarence Welti Assoc.,	1976. ft.	Al Lo		
	De	pth		
	belo			Thick-
1	in			
Materials	From			(feet)
Topsoil		-		1
Sand and silt	1	-	5	4
Sand, fine to coarse	5	-	14	9
Sand, fine to coarse;				
little fine to coarse				
gravel; some cobbles	14	-	35	21
Sand, fine to coarse;				
little fine to coarse				
gravel; trace silt	35	-	38	3
Sand, fine to coarse;				
trace fine gravel	38	-	44	6
Silt, red	44	-	46	2
Sand, fine to coarse,				
and fine gravel	46	-	66	20
Sand, fine to coarse;				
little fine to medium				
gravel; trace silt	66	-	75	9
Sand, fine; trace silt,				
1ayered	75	-	90	15
Silt and sand	90	-1	35	45
Sand, fine to coarse;				
little fine to coarse				
gravel; layers of fine				
sand, silt and clay	135	-1	.40	5
Sand, fine to coarse;				
little fine gravel and				
silt; trace cobbles;				
layers fine sand and				
silt	140	-1	88	48
Hardpan, and basalt				
cobbles	188	-1	95	7
Basalt, siltstone, and				
fine sandstone	1 9 5	-1	.99	4

I

Town of Glastonbury - continued

<u>GL 42 th</u>	. 413803N0723721.1. Town of
Glasto	onbury. Drilled 1975. Altitude
166 ft	Log by Clarence Welti Assoc.,
Inc.	

	Dep	th	
	below	LSD	Thick-
	in f	eet	ness
Materials	From	То	(feet)
Topsoil	0	- 0.	5 0.5
Gravel, fine to coarse;			
some fine to coarse sand	1;		
trace cobbles	• 5	- 5.	
Sand, fine	5.5	- 11	5.5
Sand, fine to coarse;			
trace fine to coarse			
gravel	11	- 20	9
Silt, and fine sand	20	- 25	5
Sand, fine	25	- 30	5
Sand, fine; little silt			
and fine sand in lenses	30	- 40	10
Silt; some fine sand;			
trace sandstone			
fragments	40	- 50	10
Sand, fine to medium;			
little silt; trace shale			
fragments	50	- 70	20
Sand, fine to medium,			
cemented; some fine to			
coarse gravel and			
cobbles; trace boulders			
(till?)	70	- 80	10
Sand, fine, and silt;			
some fine to coarse			
gravel; little cobbles;			
trace boulders (till)		-101	21
End of hole	at l	01	

<u>GL 43 th</u>. 413810N0723708.1. Town of Glastonbury. Drilled 1975. Altitude 166 ft. Log by Clarence Welti Assoc., Inc.

	Dept	h	
	below	LSD	Thick-
	<u>in fe</u>	et	ness
<u>Materials</u>	From	То	(feet)
Topsoil	0 -	0.	3 0.3
Sand, fine, and silt	•3-	3	2.7
Sand, fine to coarse;			
some fine to coarse gravel and cobbles	3 -	5	2
Sand, fine to medium; trace fine to coarse	Ū	•	-
grave1	5 -	18	13
Sand, fine; trace fine sand and silt in layers	18 -	81	63
Sand, fine; trace silt; trace clay in layers End of hole	81 - at 10		21

<u>GL 106</u> . 413928N0723709.1	• Jo	hn	
Quagliaroli. Drilled	1954.	Alti	tude
55 ft. Log by Paganet			
Co. (previously publis			
Weiss, 1971, p. 24).			
	De	pth	
	belo	w LSD	Thick-
	in	feet	ness
Materials			(feet)
Sand, hard, red			93
Sand, fine, and silt		-123	30
Rock, red		-400	
<u>GL 208</u> . 413809N0723738.1	• Co	nsolid	ated
Cigar Corp. Drilled 1	959.	Altit	ude
50 ft. Log by I. W. T			
published in Ryder and	Weis	s, 197	1,
p. 24).			•
	De	pth	
	D	pen	
		w LSD	Thick-
	belo	w LSD	
Materials	belo in	w LSD feet	ness
<u>Materials</u> Subsoil and sand	belo <u>in</u> From	w LSD	
	belo <u>in</u> From 0	w LSD feet To - 80	ness (feet)
Subsoil and sand Gravel	belo <u>in</u> From 0 80	w LSD feet To - 80 - 82	ness (feet) 80 2
Subsoil and sand Gravel Sand	belo <u>in</u> From 0 80 82	w LSD feet To - 80 - 82 -200	ness (feet) 80 2 118
Subsoil and sand Gravel	belo <u>in</u> From 0 80 82	w LSD feet To - 80 - 82	ness (feet) 80 2 118
Subsoil and sand Gravel Sand	belo <u>in</u> From 0 80 82	w LSD feet To - 80 - 82 -200	ness (feet) 80 2 118
Subsoil and sand Gravel Sand Brownstone	belo <u>in</u> From 0 80 82 200	w LSD feet - 80 - 82 -200 -330	ness (feet) 80 2 118 130
Subsoil and sand Gravel. Sand. Brownstone. GL 227. 413922N0723629.1	belo <u>in</u> From 0 80 82 200 . Jo	w LSD feet - 80 - 82 -200 -330 seph C	ness (feet) 80 2 118 130 1emens.
Subsoil and sand Gravel Sand Brownstone <u>GL 227</u> . 413922N0723629.1 Drilled 1957. Altitud	belo <u>in</u> From 0 80 82 200 • Jo e 150	w LSD feet - 80 - 82 -200 -330 seph C ft.	ness (feet) 80 2 118 130 lemens. Log by
Subsoil and sand Gravel Sand Brownstone GL 227. 413922N0723629.1 Drilled 1957. Altitud I. W. Taylor (previous	belo <u>in</u> From 0 80 82 200 • Jo e 150 ly pu	w LSD <u>feet</u> - 80 - 82 -200 -330 seph C ft. blishe	ness (feet) 80 2 118 130 lemens. Log by d in
Subsoil and sand Gravel Sand Brownstone <u>GL 227</u> . 413922N0723629.1 Drilled 1957. Altitud	belo <u>in</u> From 80 82 200 • Jo e 150 ly pu p. 2	w LSD <u>feet</u> - 80 - 82 -200 -330 seph C ft. blishe 5).	ness (feet) 80 2 118 130 lemens. Log by d in
Subsoil and sand Gravel Sand Brownstone GL 227. 413922N0723629.1 Drilled 1957. Altitud I. W. Taylor (previous	belo <u>in</u> From 80 82 200 • Jo e 150 ly pu <u>p• 2</u> De	w LSD <u>feet</u> <u>70</u> - 80 - 82 -200 -330 seph C ft. blishe 5). pth	ness (feet) 80 2 118 130 lemens. Log by d in
Subsoil and sand Gravel Sand Brownstone GL 227. 413922N0723629.1 Drilled 1957. Altitud I. W. Taylor (previous	belo <u>in</u> <u>From</u> 80 82 200 • Jo e 150 ly pu <u>p• 2</u> De belo	w LSD <u>feet</u> <u>70</u> - 80 - 200 -330 seph C ft. blishe <u>5).</u> pth w LSD	ness (feet) 80 2 118 130 lemens. Log by d in Thick-
Subsoil and sand Gravel Sand Brownstone <u>GL 227</u> . 413922N0723629.1 Drilled 1957. Altitud I. W. Taylor (previous Ryder and Weiss, 1971,	belo <u>in</u> From 80 82 200 • Jo e 150 ly pu <u>p• 2</u> De belo in	<pre>w LSD feet To - 80 - 82 -200 -330 seph C ft. blishe 5). pth w LSD feet</pre>	ness (feet) 80 2 118 130 lemens. Log by d in Thick- ness
Subsoil and sand Gravel Sand Brownstone <u>GL 227</u> . 413922N0723629.1 Drilled 1957. Altitud I. W. Taylor (previous Ryder and Weiss, 1971, Materials	belo <u>in</u> From 80 82 200 • Jo e 150 ly pu p• 2 De belo <u>in</u> From	w LSD <u>feet</u> <u>To</u> <u>-</u> 80 <u>-</u> 200 <u>-</u> 330 seph C ft. blishe <u>5</u>). pth w LSD <u>feet</u> <u>To</u>	ness (feet) 80 2 118 130 lemens. Log by d in Thick- ness (feet)
Subsoil and sand Gravel Sand Brownstone <u>GL 227</u> . 413922N0723629.1 Drilled 1957. Altitud I. W. Taylor (previous Ryder and Weiss, 1971,	belo <u>in</u> From 80 82 200 • Jo e 150 ly pu p• 2 De belo <u>in</u> From 0	<pre>w LSD feet To - 80 - 82 -200 -330 seph C ft. blishe 5). pth w LSD feet</pre>	ness (feet) 80 2 118 130 lemens. Log by d in Thick- ness (feet) 85

1

Town of Glastonbury - continued

<u>GL 235</u>. 413819N0723722.1. Consolidated Cigar Corp. Drilled 1980. Altitude 50 ft. Depth to water 39.45 ft. Log by U.S. Geological Survey.

	Dep	oth	ı	
	below	a I	LSD	Thick-
	<u>in</u>	fee	et	ness
Materials	From		То	(feet)
Sand, very fine to fine,				
and gravel, red; some				
silt; little medium to				
very coarse sand	0	-	5	5
Sand, very fine to				
medium, red, changes to				
brown at 8 feet	5	-	12	7
Silt, red; clay; very				
fine to fine sand; trace	3			
gravel; layered,	12	-	55	43
Sand, very fine to coarse	≥,			
and gravel; little silt	55	-	60	5
Sand, medium to coarse,				
and very fine to fine				
gravel; trace fine sand	;			
trace clay	60	-	82.	5 22.5
End of hole (augers				
sand-locked)	at	82	2.5	

GL 236. 413941N0723735.1. Alec Gondek. Drilled 1980. Altitude 15 ft. Depth to water 10.03 ft. Log by U.S. Geological Survey.

logicul burvey.	Da	pth	
		•	The deale
		w LSD	
	<u>in</u>	feet	ness
<u>Materials</u>	From	To	(feet)
Silt, and fine sand,			
brown	. 0	- 27	27
Sand, fine to very			
coarse	27	- 38	11
Sand, fine to very			
coarse, brown; little			
very fine gravel	38	- 39	1
Sand, fine to very			
coarse, red	39	- 47	8
Sand, very fine to very			
coarse; some silt;			
little very fine gravel	47	- 48	1
Sand, fine to very coars			-
red, poorly sorted;	,.,		
little silt and gravel.	48	- 63	15
Gravel, poorly sorted;	0	0.5	15
• •	63	- 65	n
some clay (till?)			2
Till	65	- 74	9
Refusal - (bedrock or			
boulder)	, at	74	

<u>GL 237</u> . 413901N0723651.1. Drilled 1980. Altitude to water 31.5 ft. Log ical Survey.	100) £t	:• D	epth
	De	epth	1	
	belo	w I	SD	Thick-
	in	fee	t	ness
Materials	From	a	То	(feet)
Silt and medium sand	0	-	2	2
Silt and medium sand;				
some medium gravel	2	-	7	5
Sand, fine to medium, red	l;			
trace coarse sand and				
gravel, silt, and very				
fine sand	7	-	12	5
Sand, fine to medium, red	l;			
some coarse sand and fin	e			
to coarse gravel; trace				
silt and very fine sand	12	-	17	5
Sand, medium to coarse,				
red; trace fine sand and	L			
fine to medium gravel	17	-	22	5
Sand, medium to very				
coarse, red; little				
gravel; trace fine sand	22	-	32	10
Sand, coarse to very				
coarse, red; little				
fine gravel; trace				
medium sand	32	-	47	15
Till	47	-	53.5	6.5
Refusal	at	53.	5	

Town of Haddam

)	<u>HD 23 th</u> . 412907N0723100.1. State of
	Connecticut. Drilled 1972. Altitude
	12 ft. Depth to water 5 ft. Log by
	U.S. Geological Survey (previously
	published in Bingham and others, 1975,
	p. 38).

p. 38).			
	De	pth	
	below	a LS	D Thick-
	<u>in</u>	feet	ness
Materials	From	Т	o (feet)
Silt, black (alluvium)	0	-	77
Gravel, dirty, with			
layers of sand	7	- 1	58
Sand, coarse to very			
coarse, trace very fine			
to medium sand; trace			
dirty gravel	15	- 2	5 10
Gravel, dirty	25	- 7	0 45
Sand, very fine to medium	n,		
red; trace silt; occa-			
sional fine gravel	70	-10	7 37
Till, gray	107	-11	25
End of hole	at	112	

Town of Haddam - continued

HD 30 th. 412725N0722817.1. Camp Bethel.	
Drilled 1980. Altitude 70 ft. Depth	
to water 68 ft. Log by U.S. Geological	
Survey.	
Depth	

	De	eptl	ı	
	belo	ow I	SD	Thick-
	in	fee	et	ness
Materials	From	n	То	(feet)
Sand, fine to coarse;				
little very fine sand;				
trace gravel	0	-	7	7
Sand, medium to coarse;				
some very coarse sand;				
trace fine sand; trace				
grave1	7	-	12	5
Sand, coarse to very				
coarse; some medium and				
very coarse sand; trace				
fine sand; trace gravel	12	-	27	15
Sand, coarse to very				
coarse, and gravel;				
little medium sand;				
trace fine sand	27	-	47	20
Sand, medium; some				
coarse sand; trace fine				
sand; trace very coarse				
sand to gravel (gravel				
grain size increasing				
with depth	47	-	72	25
Sand, coarse to very			• =	
coarse; some silt; trace	e			
medium sand, poorly				
sorted; layers of medium	n			
sand with little silt		-	77	5
Sand, medium; some fine			••	-
sand; trace of silt and				
coarse sand	77	-	87	10
Sand, fine to medium;	••			
thin gravel layers	87	-	93	6
End of hole		93		-

HD 31 th. 412824N0722	2950.1. Spencer and
Sons Amusements.	Drilled 1980. Alti-
tude 20 ft. Depth	to water ll ft. Log
by U.S. Geological	Survey.

	Dep	th	
	below	r LSD	Thick-
	in f	eet	ness
<u>Materials</u>	From	То	(feet)
Sand, fine to medium, brown; trace very fine sand; trace coarse sand Sand, medium, brown; some fine sand; trace	0	- 7	7
coarse sand to cobble gravel (rounded) Refusal (boulders)	7 at	- 17 17	10

HD 32 th. 413006N0723310 Whitney Brooks. Drill 10 ft. Depth to water U.S. Geological Survey	ed 19 10 f	80. t.	A Lo	ltitude g by
0.5. Geological Sulvey	•	1		
		pti		671 • 1
				Thick-
				ness
Materials	From		To	(feet)
Sand, medium, brown;				
some fine and coarse				
sand	0	-	2	2
Sand, very fine to fine;				
trace medium sand	2	-	12	10
Clay and silt to very				
fine sand, gray,				
layered	12	-	55	43
Sand, medium to very				
coarse, and gravel, har	d,			
multi-colored (till?)		-	60	5
Refusal	at	60		
<u>HD_421</u> . 412746N0722844.1	. R.	A 1	der	man.
Drilled 1964. Altitud				
to water 77 ft. Log b				
LO WALLEL // IL. LOG D	De			D103.
	hele	per	י פח	Thick-
Natoriola	<u></u>	ree	<u>.</u>	ness
<u>Materials</u> Sand and gravel	From	<u> </u>	10	(feet)
Granite	105	-1		125
Granice	125	- 4	204	129
<u>HD 428</u> . 412839N0723047.1	. Mr	s.	Е.	Pattee.
Drilled 1964. Altitud	- 90	ft.	. n	enth
to water 24 ft. Log b				
Drilling.	, 106	and		
D1111111g.	De	nth	 `	
				Thick-
			et_	
Matariala				
Materials Sand and gravel	<u>FIO</u>		10	<u>(feet)</u> 40
-				
Granite	40		205	165
HD 435. 412809N0722949.1				
D.S. MacGlashan. Dril		964	4.	Alti-
tude 85 ft. Depth to				
by Paganetti Drilling.				• 205
		ptł)	
	belo	•		Thick-
			et	
Materials			_	
<u>Materials</u> Sand	From		26	(feet) 26
Granite	0			26
Granife	26	-	85	59

Town of Haddam - continued

HD 461. 412756N0722845.1 Drilled 1964. Altitud			
by owner.			-
	De	pth	
			Thick-
			ness
Materials			(feet)
Sand and gravel	0	-105	105
Bedrock	105	-135	30
HD 470. 412848N0723030.	1 St	ate of	
Connecticut. Drilled			
10 ft. Depth to water	5.8	ft. 1	og by
		1	log by
U.S. Geological Survey			
		pth	001t . 1-
			Thick-
			ness
<u>Materials</u> Topsoil, brown, sandy;	From	To	(feet)
Topsoil, brown, sandy;			
trace gravel	0	- 5	5
Silt, and very fine sand			
gray		- 17	12
	2	17	14
Clay, silt, and very	17	07	10
fine sand, gray-green	17	- 27	10
Sand, medium, gray;			
little very fine to			
fine sand, little coars	е		
to very coarse sand	27	- 32	5
Sand, coarse to very			
coarse, gray; little			
fine to medium sand;			
	22	10	10
little very fine gravel	32	- 42	10
Sand, medium gray; some			
coarse to very coarse			
sand; little silt to			
fine sand; trace very			
fine gravel	42	- 52	10
Sand, coarse, gray;	•		
little medium sand:			
· · · · · · · ·			
trace very fine to fine			
sand	52	- 62	10
Sand, coarse, gray; some			
medium sand; little sil	t		
to fine sand; little			
very coarse sand to ver	v		
fine gravel	-	- 72	10
	02	- / 4	10
Sand and gravel, reddish			
brown; poorly sorted			-
(till)		- 78	6
Till	78	- 82	4
End of hole	at	82	

	1000		1.1.4.4	-
Connecticut. Drilled 10 ft. Depth to water	10 -	+	11 1	cuae
		τ.	LO	g by
U.S. Geological Survey		pth		
			Thick-	
	below LSD in feet			
Materials	From			(feet)
Sand, medium to coarse,	T T Om		10	(IEEL)
and fine to very coarse				
gravel; trace fine				
sand; trace very coarse				
sand (fill?)	0	_	7	7
Sand, coarse to very	v		,	,
coarse; some medium				
sand; trace fine sand				
and very fine to medium				
gravel	7	_	12	5
Sand, very coarse, and	•			•
gravel, brown; little				
coarse sand; trace				
medium sand	12	_	17	5
Sand, fine to medium;				-
trace very fine sand	17	_	17.	5 • !
Sand, coarse to very				
coarse, and gravel,				
brown; little medium				
sand	17.	5-	20	2.
Sand, fine to medium,				
and silt, brown; little				
medium sand; inter-				
bedded with layers of				
coarse to very coarse				
sand and gravel; some				
medium sand	20	_	27	7
Sand, coarse to very				
coarse, and gravel,				
brown, poorly sorted;				
interbedded with layers				
of silt to fine sand,				
yellow; little medium				
sand	27	_	37	10
Sand and gravel, very				
poorly sorted	37	-	52	15
Sand and gravel, very				
poorly sorted, compact,				
multi-colored (till)	52	-	59	7
Refusal (bedrock or				

HD 471. 413011N0723316.1. State of

Town of Mansfield

MS 38. 414925N0721849.1. George Merrow. Drilled 1980. Altitude 310 ft. Depth to water 5 ft. Log by U.S. Geological Survey.

	Dep			
	below LSD		Thick-	
	in f	eet	ness	
Materials	From	То	(feet)	
Topsoil, brown, sandy	0	- 2	2	
Sand, fine to very				
coarse, and gravel;				
little silt to very find	e			
sand, layered	2	- 28	26	
Refusal (boulder)	at	28		

Town of Rocky Hill

<u>RH 78</u>. 413852N0723733.1. Pratt & Whitney Div., United Aircraft. Drilled 1946. Altitude 2 ft. Depth to water 0 ft. Log by Ranney Method Water Supplies (previously published in Ryder and Weiss, 1971, p. 26).

	Depth				
	below	ΨL	SD	Thick-	
	in i	fee	et _	ness	
Materials	From		То	(feet)	
Water	0	-	4	4	
Sand, coarse, and gravel	4	-	42	38	
Sand, fine, red	42	-	46	4	
Sand, coarse, and gravel	46	-	55	9	
Sand, gravel, clay and					
boulders (till)	55	-	63	8	
Traprock, blue	63	-	64	1	

Town of Seymour

<u>SE 8</u>. 412358N0730304.1. William Molsick. Drilled 1980. Altitude ft. Depth to water 12 ft. Log by U.S. Geological Survey.

Survey.				
	Dep	ptl	า	
	below	w I	SD	Thick-
	_in i	fee	et	ness
<u>Materials</u>	From		То	(feet)
Sand, fine to medium;				
trace coarse sand to				
gravel; trace very fine				
sand	0	-	2	2
Sand, fine to very				
coarse, and gravel	2	-	7	5
Sand, fine to medium;				
trace very fine sand;				
trace coarse sand	7		12	5
Sand, fine to medium;				
clay, silt, and very fin	ne			
sand, layered	12	-	32	20
Sand, fine to medium;				
interbedded with medium				
to coarse sand layers	32	-	37	5
Silt, sand, and gravel;				
angular fragments; com-				
pact; gray-black; (till				
or weathered bedrock)	37	-	38	1
Refusal	at	38	8	

Town of Simsbury

SI 9 th. 415118N0725129.1. Town of Simsbury, Parks and Recreation Dept. Drilled 1971. Altitude 265 ft. Depth to water 14 ft. Log by U.S. Geological Survey (previously published in Hopkins and Handman, 1975, p. 43).

Depth			
below LSD		Thick-	
in feet		ness	
From		То	(feet)
0	-	3	3
3	-	8	5
8	-	10	2
10	-	12	2
e			
12	-	18	6
18	-	21	3
d			
21	-	25	4
25	-	34	9
34	-	47	13
47	-	48	1
at	48	3	
	belov <u>in</u> From 0 3 8 10 e 12 18 21 25 34 47	below I <u>in fee</u> From 0 - 3 - 8 - 10 - 10 - 12 - 18 - 21 - 25 - 34 - 47 -	below LSD <u>in feet</u> From To 0 - 3 3 - 8 8 - 10 10 - 12 12 - 18 18 - 21 21 - 25 25 - 34 34 - 47

SI 24 th. 415141N0725038.1. (Formerly SI 108). Village Water Co. Drilled 1953. Altitude 240 ft. Depth to water 2 ft. Log by Layne-New York Co. (previously published in Hopkins and Handman, 1975, p. 44).

	Dep	ptl	ı	
	below	v I	SD	Thick-
	_in f	Eee	et	ness
Materials	From		То	(feet)
Fill	0	-	2	2
Clay and silt	2	-	8	6
Sand, fine, red	8	-	20	12
Sand, medium, red	20	-	35	15
Sand, medium, and gravel	,			
brown	35	-	60	25
End of hole	at	60)	

SI 45 th. 415145N0724930 Ensign Bickford Co. D Altitude 265 ft. Dept Log by U.S. Geological	rille h to	water	23 ft.
	De	pth	
	belo	w LSD	Thick-
		feet	
Materials	From	То	(feet)
Sand, medium, brown;			
trace of silt to fine			
sand	0	- 32	32
Sand, very fine to fine,	v	52	52
brown; little silt;			
trace medium sand	32	- 42	10
Sand, medium; some silt	52	- 42	10
to fine sand; little			
gravel (mostly rounded			
sandstone fragments;			
poorly sorted (till?)	42	- 58	16
Sandstone, friable			
(weathered bedrock)			2
Refusal (bedrock)	at	60	
SI 46 th. 415144N0724853 Ensign Bickford Co. D Altitude 215 ft. Dept Log by U.S. Geological	rille h to Surv	water ey.	5 ft.
		pth	
			Thick-
	in	feet	
<u>Materials</u> Topsoil, brown, sandy	From	To	(feet)
Topsoil, brown, sandy	0	- 2	2
Silt to medium sand,			
pink-brown; some coarse			
sand; little very coars	е		
sand to fine gravel	2	- 17	15
Sandstone, and siltstone	,		
red; weathered, loose	17	- 18	1
Refusal	at	18	
SI 47 th. 415133N0724941 Ensign Bickford Co. D Altitude 250 ft. Dept	rille		
Log by U.S. Geological			4 100
dog by 0.0. Geological		pth	
			Thick-
		feet	
Natanial a			
Materials		<u> </u>	
Topsoil, silt, and sand.	0	- 2	2
Sand, fine to medium;			
some coarse sand and	-		
silt	2	- 12	10
Sand, coarse and gravel;			
some silt and clay;			
poorly sorted	12	- 23	11
Silt and clay, with sub-			
angular gravel (sand-			
stone fragments);			
(weathered bedrock)	23	- 27	4
Refusal		27	•

Town of Simsbury - continued

SI 81. 415139N0725045.1. Village Water
Co. Drilled 1954. Altitude 245 ft.
Depth to water 3 ft. Log by R.E.
Chapman Co. (previously published in
Hopkins and Handman, 1975, p. 30).
Depth

	Depen	
	below LS	SD Thick-
	in feet	ness
Materials	From T	o (feet)
Sand, fine	0 - 1	5 15
Sand, coarse	15 - 3	30 15
Sand, fine, dirty	30 - 6	5 35
Sand, water-bearing	65 - 7	74 9
Ledge	at 74	

SI 230. 415151N0725019.1. Village Water Co. Drilled 1966. Altitude 238 ft. Depth to water 2 ft. Log by R.E. Chapman Co. (previously published in Hopkins and Handman, 1975, p. 31).

	Der	ptn		
	below	w LSD	Thick-	
	<u>in</u> f	feet	ness	
Materials	From	То	(feet)	
Mud, black	0	- 5	5	
Clay, sandy, fine	5	- 15	10	
Sand, medium	15	- 45	30	
Gravel, coarse	45	- 55	10	
Sand, medium	55	- 74	19	
End of hole	at	74		

SI 233. 415035N0725127.1. P. Downey. Drilled 1967. Altitude 305 ft. Depth to water 60 ft. Log by Farmington Drilling Co.

Drilling Co.			
	Der	pth	
	below	₹ LSD	Thick-
	<u>in</u> i	feet	ness
<u>Materials</u>	From	То	(feet)
Sand	0	-130	130
Gravel, coarse to fine,			
mixed			17
End of hole	at	147	

SI 242.	415208N072	4906.1.	Valley	Cab Co.
	ed 1966. A			
to wa	ter 20 ft.	Log by	A-well	-
Indus	tries. Inc.			

Industries, inc.			
	Dep	oth	
	below	✔ LSD	Thick-
	<u>in</u> i	leet	ness
Materials	From	То	(feet)
Sand, fine, and silt	0	- 30	30
Rock, red	30	-250	220

SI 281. 415154N0725042.1 Drilled 1968. Altitud to water 12 ft. Log b (previously published Handman, 1975, p. 31).	e 280 y Geo in Ho	ft rge	:. 2 L	Depth Engel
		ptł		
	belo			
Maria 1	in			ness
<u>Materials</u>	From 0		$\frac{10}{10}$	<u>(feet)</u> 10
Clay	10			8
Hardpan Red rock, medium-hard	18			82
Red Fock, medium-nard	10		100	02
SI 285. 415153N0725022.1 Co. Drilled 1970. Al Depth to water 14 ft. Chapman Co. (previousl Hopkins and Handman, 1	titud Log y pub	e 2 by lis	248 R.1 Shea	ft. E. d in
		ptł		
	belo	w I	SD	Thick-
	<u>in</u>	fee	et	ness
Materials	From		To	
			10	(feet)
Sand, medium, brown, and				
gravel	0	-	15	15
gravel Sand, medium, brown	0 15	-	15 20	15 5
gravel Sand, medium, brown Gravel, medium, brown	0 15 20		15 20 35	15 5 15
gravel Sand, medium, brown Gravel, medium, brown Sand, coarse, brown	0 15 20 35		15 20 35 45	15 5 15 10
gravel Sand, medium, brown Gravel, medium, brown	0 15 20		15 20 35	15 5 1 5
gravel Sand, medium, brown Gravel, medium, brown Sand, coarse, brown Gravel, coarse, brown	0 15 20 35		15 20 35 45	15 5 15 10
gravel Sand, medium, brown Gravel, medium, brown Sand, coarse, brown Gravel, coarse, brown Sand, fine to medium,	0 15 20 35 45 50		15 20 35 45 50	15 5 15 10 5
gravel. Sand, medium, brown Gravel, medium, brown Sand, coarse, brown Gravel, coarse, brown Sand, fine to medium, brown Gravel, medium to coarse brown	0 15 20 35 45 50		15 20 35 45 50	15 5 15 10 5
gravel Sand, medium, brown Gravel, medium, brown Sand, coarse, brown Gravel, coarse, brown Sand, fine to medium, brown Gravel, medium to coarse	0 15 20 35 45 50		15 20 35 45 50 5 5	15 5 15 10 5
gravel Sand, medium, brown Gravel, medium, brown Gravel, coarse, brown Sand, fine to medium, brown Gravel, medium to coarse brown Sand, medium to coarse, brown	0 15 20 35 45 50 , 55 60		15 20 35 45 50 55 60 75	15 5 15 10 5 5 5
gravel. Sand, medium, brown Gravel, medium, brown Sand, coarse, brown Gravel, coarse, brown Sand, fine to medium, brown Gravel, medium to coarse brown Sand, medium to coarse, brown Sand, medium to coarse.	0 15 20 35 45 50 , 55		15 20 35 45 50 5 5 60	15 5 15 10 5 5 5
gravel Sand, medium, brown Gravel, medium, brown Sand, coarse, brown Gravel, coarse, brown Sand, fine to medium, brown Gravel, medium to coarse brown Sand, medium to coarse, brown Sand, medium to coarse Gravel and clay, hard-	0 15 20 35 45 50 , 55 60		15 20 35 45 50 55 60 75 88	15 5 15 10 5 5 5 15 13
gravel. Sand, medium, brown Gravel, medium, brown Sand, coarse, brown Gravel, coarse, brown Sand, fine to medium, brown Gravel, medium to coarse brown Sand, medium to coarse, brown Sand, medium to coarse.	0 15 20 35 45 50 55 60 75 88		15 20 35 45 50 55 60 75 88 90	15 5 15 10 5 5 5

SI 299. 415047N0725133.1. C. Prince. Drilled 1971. Altitude 310 ft. Depth to water 75 ft. Log by George L. Engel (previously published in Hopkins and Handman, 1975, p. 32).

		pth w LSD	Thick-
	in	f <u>eet</u>	ness
Materials	From	То	(feet)
Sand, medium	0	- 70	70
Silt	70	-110	40
Sand, fine	110	-155	45
Rock, red, medium-hard	155	-400	245

Town of Simsbury - continued

<u>SI 313</u> . 415057N07251191.1. Ethel Walker
School. Drilled 1980. Altitude 260 ft.
Depth to water 6.08 ft. Log by
U.S. Geological Survey.

	Depth			
	below LSD			Thick-
	<u>in</u>	fee	et	ness
<u>Materials</u>	From		To	(feet)
Topsoil, sandy	0	-	2	2
Sand, very coarse, brown	;			
some gravel; little ver	У			
fine to medium sand	2	-	7	5
Sand, coarse to very				
coarse, brown; little				
fine to medium sand;				
trace silt	7	-	12	5
Sand, medium to very				
coarse, tan; trace fine				
sand, trace of gravel	12	-	22	10
Sand, medium to very				
coarse, tan; little				
medium to coarse				
gravel; little fine				
sand	22	-	27	5
Sand, fine to medium,				
pink-tan; little silt				
to very fine sand;				
little medium to coarse				
gravel	27	-	32	5
Sand, fine to very coars	e,			
tan; some gravel;				
little silt	32	-	47	15
Sand, medium to very				
coarse, and gravel;				
little silt to fine				
sand	47	-	57	10
Silt, and very fine to				
medium sand, tan; trace				
coarse sand to medium				
gravel	57	-	67	10
Sand, medium to coarse;				
some fine sand	67	-	77	10
Till and weathered rock.	77	-	83	6
Refusal (bedrock?)	at	83	3	

$SI 314 \cdot 415133N0/24914 \cdot 1$		•	
Co. Drilled 1980. Alt	titude	230	ft.
Depth to water 3.1 ft.	Log b	уU.	S. Geo-
logical Survey.			
	Dept	h	
	below	LSD	Thick-
	in fe	et	ness
Materials	From	То	(feet)
Topsoil, sandy	0 -	2	2
Sand, very fine to			
medium, brown; little			
silt; trace coarse sand	2 -	7	5
Sand, medium to coarse,			
orange-brown; trace very	y		
fine to fine sand	, 7 -	17	10
Sand, medium to very			
coarse; some fine			
gravel; little silt to			
fine sand in layers	17 -	32	15
Silt and very fine to			
fine sand	32 -	43	11
Sand, fine to coarse,	• -		
and angular gravel;			
some clay and silt; red			
sandstone and shale			
fragments (weathered			
bedrock or till)	43 -	. 53	10
Refusal (bedrock)			10
Refusar (Bearber)	alj		
SI 315. 415122N0725100.1	Fthe	1 Wa	lkor
School Drilled 1980			

School. Drilled 1980. Altitude 250 ft. Depth to water 5.8 ft. Log by U.S. Geological Survey.

		_		
	Dej	ptl	n	
	below	J I	SD	Thick-
	ini	ee	et	ness
Materials	From		То	(feet)
Topsoil, sandy	0	-	2	2
Sand, medium to very				
coarse, brown; little				
silt	2	-	7	5
Sand, coarse to very				
coarse, brown-gray;				
little medium sand;				
trace silt to fine sand	7	-	45	38
Sand and angular gravel,				
multi-colored; very				
poorly sorted; compact				
(till)	45	-	53	8
Refusal	at	5	3	

SI 314. 415133N0724914.1. Ensign Bickford

Town of Tolland

<u>TO 1 th</u> .	415019NC	721842.	1. Pheobe Dimock	
King.	Drilled	1980.	Altitude 345 ft.	
Depth	to water	l ft.	Log by U.S. Geo-	
logica	1 Survey.			
			Depth	

	Depth			
	below	v I	SD	Thick-
	_in i	fee	et	ness
<u>Materials</u>	From		То	(feet)
Sand, coarse and cobble				
gravel, brown; little				
fine to medium sand;				
trace very fine sand	0		2	2
Sand, medium to very				
coarse, and fine to				
medium gravel, yellow-				
brown; little very fine				
to fine sand; trace				
silt	2		12	10
Sand, very fine to				
medium, and gravel,				
poorly sorted, yellow-				
brown; some silt; trace				
clay	12	-	17	5
Sand, coarse to very				
coarse, and gravel,				
poorly sorted, brown;				
some silt to fine sand;				
trace clay	17	-	23	6
Sand, fine, and angular				
gravel, blue-gray;				
(weathered bedrock?)	23			1
Refusal (bedrock?)	at	24	4	

TO 7. 415229N0721833.1. Angeline DeSiato.
Drilled 1980. Altitude 360 ft. Depth
to water 9 ft. Log by U.S. Geological
Survey

Survey.				
	Dep	ptl	ı	
	below	v I	SD	Thick-
	<u>in</u>	ee	<u>et</u>	ness
Materials	From		То	(feet)
Topsoil, sandy	0		2	2
Sand, medium to coarse,				
brown; some very coarse				
sand; trace very fine				
to fine sand	2		7	5
Sand, fine to medium,				
brown; some coarse sand;	;			
little very coarse sand	;			
trace very fine sand;				
trace cobbles (rounded)	7		12	5
Sand, fine to coarse,				
and gravel, brown;				
poorly sorted	12		22	10
Sand, fine to medium,				
brown; little silt to				
very fine sand; trace				
coarse sand	22	-	27	5
Sand, medium to very				
coarse, and fine gravel,	,			
brown; little very fine				
to fine sand; trace sile	t,			
layered	27		38	11
Refusal (rock or				
boulders)	at	38	3	

Town of Willington

WG 1. 415119N0721816.1. Joseph Mihaliak. Drilled 1980. Altitude 350 ft. Depth to water 9.4 ft. Log by U.S. Geological Survey.

ical Survey.			
	Dept	h	
	below	LSD	Thick-
	in fe	et	ness
Materials	From	То	(feet)
Sand, fine to medium, brown Sand, medium and gravel,	0 -	- 7	7
light brown; trace fine sand Sand, medium to very	7 -	- 12	5
coarse, and gravel, gray-brown; little very fine to fine sand Refusal (boulder)	12 - at 2		12

Town of Woodbridge

<u>WO 5 th</u> . 412319N0730208.	1. Town of
Woodbridge. Drilled l	980. Altitude
285 ft. Log by U.S. G	eological Survey.
	Depth
	below LSD Thick-
	<u>in feet</u> ness
Materials	From To (feet)
Topsoil, sandy, dark	
brown	0 - 2 2
Sand	2 - 5 3
Refusal (boulder)	at 5

W0 6 th. 412321N0730210.1. Town of Woodbridge. Drilled 1980. Altitude

				auo						
280 ft. Log by U.S. G	eolog	ica	11 S	urvey.						
	Depth									
	belo	wΙ	SD	Thick-						
	in	fee	et	ness						
Materials	From		То	(feet)						
Topsoil, sandy, brown	0	-	2	2						
Sand, very fine to fine,										
gray-brown; some silt;										
trace medium to coarse										
sand; trace clay	2	-	15	13						
Clay, silt, and very find	e									
sand, gray-brown; trace										
fine sand; layered	15	-	27	12						
Sand and gravel, yellow-										
brown; poorly sorted										
(till)	27	-	28	1						
Refusal	at	28	3							

WO 282. 412306N0730050.1. Town of Woodbridge. Drilled 1980. Altitude

250 ft.	Depth	to	water	7	ft.	Log by
U.S. Geo	logical	L Si	irvey.			

	Dej	ptl		
	below	v I	SD	Thick-
	<u>in</u>	Eee	et	ness
Materials	From		То	(feet)
Gravel (fill)	0	-	2	2
Topsoil; trace gravel	2	-	7	5
Sand, medium; some fine				
sand; little silt to				
very fine sand; trace				
coarse sand to gravel	7		17	10
Sand, coarse to very				
coarse; some medium				
sand; little fine sand;				
trace silt; trace fine				
gravel	17	-	32	15
Sand, fine to medium;				
trace silt to very fine				
sand; trace fine gravel	32	-	42	10
Sand, very fine to fine;				
some silt; little medium	n			
sand; trace clay	42	-	58	16
Refusal (bedrock)	at	58	В	

320 ft. Depth to wate S.B. Church Co.	r 10 ±	Et	Lo	g by
	Der	oth	1	
	below	νI	SD	Thick-
	in i	Eee	et	ness
Materials	From		То	(feet)
Sand, fine to medium	0	-	10	10
Sand, medium	10	-	15	5
Sand, medium to coarse,				
dirty, with fines,				
(poorly sorted)	15	-	20	5
Sand, coarse, dirty with				
fines	20	-	25	5
Sand, medium to coarse,				
some fines	25	-	30	5
Sand, fine to medium,				
dirty, with clay and				_
silt	30	-	35	5
Sand, medium, dirty,				_
with clay layers	35	-	40	5
Sand, fine to medium,				• •
with clay layers	40	-	50	10
Sand, medium to coarse,				
dirty, with fines and	50		<i>(</i>)	10
some clay	50		68	18
Hardpan	68		72.5	4. 5
Refusal	at	Γ	2.5	

WO 283. 412251N0730250.1. Town of Woodbridge. Drilled 1976. Altitude

WO 284. 412259N0730237.1. Town of Woodbridge. Drilled 1976. Altitude 320 ft. Depth to water 34.5 ft. Log by S. B. Church Co.

	Dep	oth		
	below	a I	SD	Thick-
	in	Eee	et	ness
Materials	From		То	(feet)
Topsoil and subsoil	0	-	3	3
Sand, medium	3	-	10	7
Sand, fine, tight	10	-	27	17
Gravel, coarse and				
cobbles	27	-	30	3
Sand, coarse, and gravel	;			
in layers	30	-	43	13
Sand, coarse	43		45	2
Sand, medium, brown	45	-	50	5
Sand, medium to coarse,				
yellow	50	-	57	7
Hardpan	57	-	61	4
Refusal	at	6	1	

Town of Woodbridge - continued

WO 285. 412308N0730226.1. Town of Woodbridge. Drilled 1976. Altitude 265 ft. Depth to water 2.1 ft. Log by S. B. Church Co.

	Dej	pth	
	below	w LSD	Thick-
	in i	feet	ness
<u>Materials</u>	From	То	(feet)
Fill	0	- 5	5
Silt	5	- 13	8
Gravel, coarse	13	- 19	6
Sand, fine, and silt	19	- 26	7
Gravel (hardpan)	26	- 31	5
Refusal	at	31	

WO 286. 412316N0730226.1. Town of Woodbridge. Drilled 1976. Altitude 290 ft. Depth to water 8.2 ft. Log by S.B. Church Co.

by S.B. Church Co.			
	Dept	th	
	below	LSD	Thick-
	<u>in fe</u>	ness	
<u>Materials</u>	From	То	(feet)
Hardpan, gravel with			
cobbles	0 -	- 10	10
Hardpan	10 -	- 14	4
Refusal	at 1	14	

WO 287. 412315N0730219.1. Town of Woodbridge. Drilled 1976. Altitude 280 ft. Depth to water 1.25 ft. Log by S.B. Church Co.

by 5.5. Church 60.				
	De	ptł		
	belo	wΙ	SD	Thick-
	_in :	fee	et	ness
Materials	From		То	(feet)
Sand and gravel; some				
cobbles	0	-	5	5
Clay	5	-	7	2
Sand, fine; with layers				
of clay	7	-	15	8
Sand, fine, and silt	15	-	23	8
Sand, fine; layer of				
clay	23	-	37	14
Hardpan; clay	37	-	38	1
Refusal	at	38	8	

<u>WO 288</u> . 412312N0730220.1. Town of	
Woodbridge, Drilled 1976, Alti	tude
260 ft. Depth to water 2.67 ft.	Log
by S.B. Church Co.	

	Dep below	Thick-			
	<u>in f</u>	eet	ness		
Materials	From	То	(feet)		
Fill	0	- 4	4		
Gravel, coarse	4	- 7	3		
Sand, fine, dirty, with clay	7	- 18	11		
Gravel, coarse, dirty, with clay End of hole		- 24 24	6		

49

[Chemical constituents dissolved, except as indicated; concentrations in milligrams per liter, except as indicated; < = less than]

Well number and date sampled (month, day, and year)

Constituent or property	CV 37 4-3-81	GL 236 3-30-81	HD 420 3-31-81	MS 38 4-3-81	SE 8 4-1-81	SI 313 4-2-81	SI 314 4-2-81	SI 315 4-2-81	TO 7 4-3-81	WO 282 4-1-81	Limiting value	Basis for limiting value (A)
Alkalinity, as CaCO3	26	83	14	36	36	29	33	11	18	13	-	-
Arsenic (As)	0.018	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.05	1,2
Bacteria, fecal coliform, in col/100 mL	0	0	0	0	0	0	0	0	0	0	-	-
Bacteria, fecal streptococci, in col/100 mL	0	0	0	0	0	0	0	0	0	0	-	-
Chloride (Cl)	19	9.9	15	15	8.5	7.4	3.7	1.6	25	8.0	250	1,3
Chromium (Cr)	.010	.010	<.010	.010	.010	.010	.010	.010	.010	<.010	.050	1,2
Color, units	0	5	5	0	5	5	0	0	0	5	15	1,3
Dissolved solids	79	208	83	116	115	88	53	43	87	64	-	-
(residue on evaporation, at 180ºC)												
Fluoride (F)	•1	•2	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	2.0	1,2
Iron (Fe)	20	•01	.02	3	•64	0	.01	0	.16	0	.3	3
Mercury (Hg)	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	.002	1,2
Nitrite (NO ₂) + Nitrate (NO ₃) as N	•02	<.01	1.5	•48	1.8	.03	.01	•25	•54	1.8	10	1,2
pH, units	6.6	7.3	6.0	6.4	5.8	7.0	6.1	-	5.9	5.6	6.4-8.5	1,3
Selenium (Se)	•000	.000	.000	•000	.000	.000	•000	.000	.000	.000	.010	1,2
Silver (Ag)	•000	•000	•000	.000	•000	•000	•000	.000	•000	•000	•050	1,2
Specific conductance, in micromhos/cm	180	320	132	205	159	120	90	53	141	99	-	-
Sulfate (SO4)	1.7	31	15	29	16	11	5.7	9.5	11	12	-	-

Semi-quantitative analysis by Inductively Coupled Plasma Emission Spectroscopy (ICP).

Semi-quantitative analysis by inductively Coupled Plasma Emission Spectroscopy (ICP). [Results are rounded to the nearest reporting level. Reporting levels range from the detection limit in steps of 1, 3, 5, 7, and 10. Levels which are less than the detection limit are reported as < that value. Levels which are greater than the upper concentration limit are reported as > that value. For example, for an analysis of lead, the result would be reported as one of the following concentrations in mg/L: <0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7, 1, 3, 5, 7, >10. Results are reported to one significant figure only. Due to the rounding technique, even one significant figure is an estimate. The precision is approximately plus or minus one step at the 68 percent confidence level (1 std. dev.) and two steps at 95 percent confidence level (2 std. dev.)].

Aluminum (Al)	<.05	<.05	<.05	<.05	•7	<.05	<.05	<.05	<.05	<.05	-	-
Antimony (Sb)	<.03	<.03	<.03	<.03	<.03	<.03	<.03	<.03	<.03	<.03	-	-
Barium (Ba)	.03	•1	.01	.03	.03	.03	.03	.01	.01	•01	1.0	1,2
Beryllium (Be)	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	-	-
Bismuth (Bi)	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-	-
Boron (B)	•05	.05	.03	.03	.03	.01	•01	.01	.01	.01	-	-
Cadmium (Cd)	.003	.001	.001	.001	<.001	<.001	<.001	<.001	<.001	<.001	.010	1,2
Calcium (Ca)	7	50	10	10	10	10	10	5	7	5	-	-
Cobalt (Co)	-	<.005	<.005	•05	.01	<.005	<.005	<.005	.01	<.005	-	-
Copper (Cu)	.03	•03	•03	.03	•03	•03	•03	.03	.03	•03	1.0	1,3
Gallium (Ga)	<.03	<.03	<.03	<.03	<.03	<.03	<.03	<.03	<.03	<.03	-	-
Germanium (Ge)	<.03	<.03	<.03	<.03	<.03	<.03	<.03	<.03	<.03	<.03	-	-
Lead (Pb)	<.03	<.03	<.03	<.03	<.03	<.03	<.03	<.03	<.03	<.03	.050	1,2
Lithium (Li)	<.005	<.005	<.005	<.005	.01	<.005	<.005	<.005	<.005	<.005	-	-
Magnesium (Mg)	3	7	3	5	5	3	1	<1	3	1	-	-
Manganese (Mn)	• 3	.3	.003	10	.3	<.001	•1	.003	3	.3	.050	3
Molybdenum (Mb)	.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	-	-
Nickel (Ni)	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	-	-
Potassium (K)	3	<1	3	3	3	<1	<1	<1	1	I	-	-
Silica (SiO ₂)	7	10	10	10	10	10	10	10	10	10	-	-
Sodium (Na)	7	5	7	10	7	3	3	3	10	5	20	1
Strontium (Sr)	•05	•1	.03	•07	•07	•03	.03	•03	.07	.05	-	-
Tin (Sn)	•1	• 5	.1	.3	• 3	•1	•07	•05	.1	•1	-	-
Titanium (Ti)	<.005	<.005	<.005	<.005	.07	<.005	<.005	<.005	<.005	<.005	-	-
Vanadium (V)	<.01	<.01	<.01	<.01	<.01	<+01	<.01	<.01	<.01	<.01	-	-
Zinc (Zn)	•005	<.005	.03	<.005	.01	<.005	<.005	<.005	<.005	<.005	5	3
Zirconium (Zr)	<.005	<.005	<.005	<.005	<.005	<.005	<.005	<.005	<.005	<.005	-	-

A. Most stringent criterion based on:

1. Maximum permissible level for drinking water, Connecticut Public Health Regulation 19-13-B102 (Connecticut General Assembly, 1975).

Maximum contaminant level established by: National Interim Frimary Drinking Water Regulations, U.S. Environmental Protection Agency, 1975.
 Maximum level recommended by: National Secondary Drinking Water Regulations, U.S. Environmental Protection Agency, 1977.

[Chemical constituents dissolved, except as indicated; concentrations in micrograms per liter (ug/L), except as indicated; < = less than.]

Well number and date sampled (month, day, and year)

Constituent or property	CV 37 4-3-81	GL 236 3-30-81	HD 420 3-31-81	MS 38 4-3-81	SE 8 4-1-81	SI 313 4-2-81	SI 314 4-2-81	SI 315 4-2-81	TO 7 4-3-81	WO 282 4-1-81	Limiting value	Basis for limiting value (A)
Cyanide (CN) (mg/L)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	_	-
Methylene blue active substance	•00	.00	•00	•00	•00	•00	•00	.00	•00	.00	-	-
(MBAS), total (mg/L)												
Organochlorine compounds:												
Gross polychlorinated	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	-	-
biphenyls (PCBs)												
Gross polychlorinated	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	-	-
napthalenes (PCNs)												
Pesticides:												
Aldrin	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	-	-
Chlordane	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	-	-
DDD	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	-	-
DDE	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	-	-
DDT	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	-	-
Dieldrin	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	-	-
Endosulfan	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	-	
Endrin	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	0.2	1,2
Heptachlor epoxide	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	-	-
Heptachlor	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	-	-
Lindane	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	4.0	1,2
Methoxychlor	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	100	1,2
Mirex	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	-	-
Perthane	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	-	-
Toxaphene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5	1,2
Phenols, total recoverable	0	0	0	0	0	4	0	1	2	0	-	-

Volatile organics, total recoverable (quantitative GC/MS analyses of purgeable organics in water). [In order to identify these purgeable compounds in water, they must first be separated from the water by a technique known as "vapor stripping". A stream of inert gas is bubbled through the water sample and then passes through a tube of absorbent material. Nitrogen carries the volatile organics out of the water and into the absorbent trap.

The trap is then connected to a computer-controlled HP 5992A GC/MS spectrometer and heated rapidly to drive the volatile organics into the GC/MS system. Volatile organic compounds pass through the GC column (6' x 18"ID 0.2% cabowax 1500 on carbopack C) where they are separated prior to entering the mass-spectrometer. A mass spectrum for each compound is then collected, stored on magnetic tape, and compared against a library of known compounds for positive identification.

A quantitative analysis was made by comparing the total abundance value at the top of each GC/MS peak with the abundance value of the known standards.]

Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Bromoform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Carbon, tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chlorodibromomethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Dichlorobromomethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,2-dichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Methylene chloride	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1, 1, 2, 2-tetrachloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,1,2-trichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-
1,1,2-trichloroethylene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	-

A. Most stringent criterion based on:

Maximum permissible level for drinking water, Connecticut Public Health Regulation 19-13-B102 (Connecticut General Assembly, 1975).
 Maximum contaminant level established by: National Interim Primary Drinking Water Regulations, U.S. Environmental Protection Agency, 1975.
 Maximum level recommended by: National Secondary Drinking Water Regulations, U.S. Environmental Protection Agency, 1977.