
On network coding for security
Keesook Han Tracey Ho Ralf Koetter Muriel Medard

AFRL Computer Science
Caltech

Abstract The use of network coding in military networks
opens many interesting issues for security. The mixing of
data inherent to network coding may at first appear to pose

challenges, but it also enables new security approaches.
In this paper, we overview the recent current theoretical
understanding and application areas for network-coding
based security in the areas of robustness to Byzantine
attackers and of distributed signature schemes for down-
loads.

I. INTRODUCTION

The Global Information Grid (GIG) is the infrastructure
used to conduct Net-Centric Operations (NCO). The GIG
is intended to be a single information-sharing network with
multiple levels of security and bandwidth capabilities in net-
centric environment. A net-centric information environment
is inclusive of Core and Communities of Interest (COI)
enterprise services, a data sharing strategy, and the Task-Post-
Process-Use (TPPU) paradigm. The Global Information Grid
Bandwidth Expansion (GIG-BE) Program was a major DoD
net-centric transformational initiative executed by Defense
Information System Agency (DISA).

The ultimate purpose of the GIG-BE projects is to provide a

secure and reliable platform to enable worldwide Net-Centric
Operations for intelligence, surveillance and reconnaissance
and command and control massive amounts of informa-
tion sharing by providing "bandwidth-available" environment.
Through GIG-BE, DISA leveraged DOD's existing end-to-
end information transport capabilities, significantly expanding
capacity and reliability to select Joint Staff-approved locations
worldwide and under new hardware and software contracts to
build a communications infrastructure. The GIG-BE that is in-
tended to provide high-capacity communications linking DoD
users at locations worldwide is a ground-based optical network
with up to 10-Gbps connections and averaging 105 Gbps per

link on the backbone networks. The GIG-BE program has
greatly contributed to the development of the real-time Net-
Centric Operations. However, a bottleneck link problem exists
between core networks and edge networks due to the enormous

difference in bandwidths.
The DoD supports NCO and GIG-BE projects to improve

quality of services in net-centric environment. The current
coding systems will not be appropriate in the near future.
However, coding based scalable communication technology
has not been applied to the Net-Centric Operations. This tech-
nology will satisfy the bandwidth requirements of tomorrow's
warfighters.

Network coding is a recent development in which nodes
in the network are allowed to perform algebraic operations
inside the network. This scheme was first introduced in [1]
and a powerful algebraic framework, which allows further
developments, was provided in [2], [3]. For multicast settings,
it was shown in [4], [5] that network coding performed in a

distributed, random fashion is with high probability optimal.
A tutorial on network coding can be found in [6], [7].

The specifics of the Scalable Information Operations (SIO)
include: 1. scalable coding techniques for network coding,
compression, channel coding, multimedia data transmission,
encryption, data sharing, data anonymization, meta database
management, caching, network security, and intrusion detec-
tion. 2. Bottleneck flow control. The purpose of this paper

is to overview some of the recent developments in applying
network coding to security in the areas of detection and
correction of Byzantine attacks, and of cryptography for
network coding based file downloads. The aim of this paper

is mainly tutorial and further technical details can be found in
[8], [9]. Especially, our goal is to sketch how network-coding
based scalable information operations will mitigate some of
the security issues in the future net-centric environment

II. NETWORK-CODING BASED DETECTION AND
CORRECTION OF BYZANTINE ATTACKERS

The mixture of data that occurs in network coding can lead
to pollution attacks through rogue, or Byzantine, nodes in the
network [10], [11]. Such nodes may be unreliable through
failure or because of their being compromised. While the use

of network coding would at first appear to render the problem
of Byzantine attackers worse, it actually provides some strong
protection for both the detection and correction of such nodes.

The results in this section have previously appeared in more
detailed form in [8]. We consider network error correction in a

distributed packet network setting with random linear network
coding using coding vectors. A batch of r packets is multicast
from a source node s to a set of sink nodes. An omniscient
adversary can arbitrarily corrupt the coding vector as well as

the data symbols of up to zo packets. A packet that is not a

linear combination of its input packets is called adversarial.
We describe below a polynomial-complexity network error-

correcting code whose parameters depend on zo, the maximum
number of adversarial packets, and m, the minimum source-

sink cut capacity (maximum error-free multicast rate) in units
of packets over the batch. The number of packets in the batch
is set as r = m- zo. The proportion of redundant symbols in
each packet, denoted p, is set as p = (zo+c)/r for some c > 0.

1-4244-1513-06/07/$25.00 ©2007 IEEE

ICE
TUM

EECS
MIT

Fang Zhao
EECS
MIT

The corresponding information rate of the code approaches
m -2zo asymptotically as the packet size increases. If instead
of an omniscient adversary we assume that the source and
sinks share a secret channel not observed by the adversary, a
higher rate of m- zo is asymptotically achievable. Below we
give the details of the code for the omniscient adversary case.

For i = 1,..., Ir, the ith source packet is represented as a
length-n row vector xi with entries in a finite field Eq. The first
n-pn-.r entries of the vector are independent exogenous data
symbols, the next pn are redundant symbols, and the last r
symbols form the packet's coding vector (the unit vector with
a single nonzero entry in the ith position). We denote by X the
r x n matrix whose ith row is xi; it can be written in the block
form [U R I] where U denotes the r x (n -pn- r)
matrix of exogenous data symbols, R denotes the r x pn matrix
of redundant symbols and I is the r x r identity matrix.

The rpn redundant symbols are obtained as follows. For
any matrix M, let vT denote the column vector obtained
by stacking the columns ofM one above the other, and VM
its transpose, a row vector. Matrix X, represented in column
vector form, is given by vT = [VU, VR, VI] . Let D be
an rpn x rn matrix obtained by choosing each entry inde-
pendently and uniformly at random from Eq. The redundant
symbols constituting VR (or R) are obtained by solving the
matrix equation

D [vu, VR, VI]T ()

for VR. The value of D is known to all parties.
An adversarial packet can be viewed as an additional source

packet. The vector representing the ith adversarial packet is
denoted zi. Let Z denote the matrix whose ith row is zi.
We focus on any one of the sink nodes t. Let w be

the number of linearly independent packets received by t;
let Y C IF' x n denote the matrix whose ith row is the
vector representing the ith of these packets. Since all coding
operations in the network are scalar linear operations in Eq,
Y can be be expressed as

Y= GX+KZ (2)

where matrices G C IFw x r and K C IF' x z represent the linearqq
mappings from the source and adversarial packets respectively
to the sink's set of linearly independent input packets.

Since the last r columns of X form an identity matrix, the
matrix G' formed by the last r columns of Y is given by

G' = G+KL, (3)

where L is the matrix formed by the last r columns of Z. The
sink knows G' but not G. Thus, we rewrite (2) as

Y = G'X + K(Z -LX)
= G'X+E (4)

Matrix E gives the difference between the data values in the
received packets and the data values corresponding to their
coding vectors; its last r columns are all zero.

Lemma 1: With probability at least 1 rj/q, the matrix G'
has full column rank, where r1 is the number of links in the
network.

The decoding process at sink t is as follows. First, the sink
determines z, the minimum cut from the adversarial packets
to the sink. This is with high probability equal to w -r. Next,
it chooses z columns of Y that, together with the columns
of G', form a basis for the column space of Y. We assume
without loss of generality that the first z columns are chosen,
and we denote the corresponding submatrix G". Rewriting Y
in the basis corresponding to the matrix [G" G'], we have

Y =[G"/ G'] Iz YZ O

This can be reduced by linear algebraic manipulations to

G'X2 = G/(YX + X1Yz)

(5)

(6)

where Xl, X2 are the matrices formed by the first z columns
of X and the next n-z -r columns of X respectively.

Proposition 1: With probability greater than 1- qfE, equa-
tions (1) and (6) can be solved simultaneously to recover X.
The decoding algorithm has complexity 0(n3m3).

III. CRYPTOGRAPHY FOR CONTENT DISTRIBUTION WITH
NETWORK CODING

A. Background
Recently, several researchers explored the use of network

coding in peer-to-peer (P2P) content distribution and distrib-
uted storage systems [12], [13], [14]. A P2P network has a
fully distributed architecture, and the peers in the network
form a cooperative network that shares the resources, such
as storage, CPU, and bandwidth, of all the computers in the
network. This architecture offers a cost-effective and scalable
way to distribute software updates, videos, and other large files
to a large number of users.

The best example of a P2P cooperative architecture is the
BitTorrent system [15], which splits large files into small
blocks, and after a node downloads a block from the original
server or from another peer, it becomes a server for that
particular block. Although BitTorrent has become extremely
popular for distribution of large files over the Internet, it
may suffer from a number of inefficiencies which decrease its
overall performance. For example, scheduling is a key problem
in BitTorrent: it is difficult to efficiently select which block(s)
to download first and from where. If a rare block is only
found on peers with slow connections, this would create a
bottleneck for all the downloaders. Several ad hoc strategies
are used in BitTorrent to ensure that different blocks are
equally spread in the system as the system evolves. References
[12], [13] propose the use of network coding to increase
the efficiency of content distribution in a P2P cooperative
architecture. The main idea of this approach is the following.
The server breaks the file to be distributed into small blocks,
and whenever a peer requests a file, the server sends a random
linear combination of all the blocks. As in BitTorrent, a peer
acts as a server to the blocks it has obtained. However, in a

linear coding scheme, any output from a peer node is also
a random linear combination of all the blocks it has already
received. A peer node can reconstruct the whole file when
it has received enough degrees of freedom to decode all the
blocks. This scheme is completely distributed, and eliminates
the need for a scheduler, as any block transmitted contains
partial information of all the blocks that the sender possesses.
It has been shown both mathematically [12] and through live
trials [16] that the random linear coding scheme significantly
reduces the downloading time and improves the robustness of
the system.
A major concern for any network coding system is the

protection against malicious nodes. Take the above content
distribution system for example. If a node in the P2P network
behaves maliciously, it can create a polluted block with
valid coding coefficients, and then sends it out. Here, coding
coefficients refer to the random linear coefficients used to
generate this block. If there is no mechanism for a peer to
check the integrity of a received block, a receiver of this
polluted block would not be able to decode anything for the
file at all, even if all the other blocks it has received are valid.
To make things worse, the receiver would mix this polluted
block with other blocks and send them out to other peers, and
the pollution can quickly propagate to the whole network. This
makes coding based content distribution even more vulnerable
than the traditional P2P networks, and several attempts were
made to address this problem. References [12], [17] proposed
to use homomorphic hash functions in content distribution
systems to detect polluted packets, and [18] suggested the use
of a Secure Random Checksum (SRC) which requires less
computation than the homomorphic hash function. However,
[18] requires a secure channel to transmit the SRCs to all
the nodes in the network. Charles et al [19] proposed a
signature scheme based on Weil pairing on elliptic curves and
provides authentication of the data in addition to pollution
detection, but the computation complexity of this solution is
quite high. Moreover, the security offered by elliptic curves
that admit Weil pairing is still a topic of debate in the scientific
community.

In this section, we overview a new signature scheme,
presented in greater detail in [9], that is not based on elliptic
curves, and is designed specifically for random linear coded
systems. We view all blocks of the file as vectors, and make
use of the fact that all valid vectors transmitted in the network
should belong to the subspace spanned by the original set of
vectors from the file. We present a signature that can be used
to easily check the membership of a received vector in the
given subspace, and at the same time, it is hard for a node to
generate a vector that is not in that subspace but passes the
signature test. We show that this signature scheme is secure,
and that the overhead for the scheme is negligible for large
files.

B. Problem Setup
We model the network by a directed graph Gd = (N, A),

where N is the set of nodes, and A is the set of communication

links. A source node s C N wishes to send a large file, of size
M, to a set of client nodes, T c N, and we refer to all the
clients as peers. The large file is divided into m blocks, and
any peer receives different blocks from the source node or
from other peers. In this framework, a peer is also a server to
blocks it has downloaded, and always sends out random linear
combinations of all the blocks it has obtained so far to other
peers. When a peer has received enough degrees of freedom
to decode the data, i.e., it has received m linearly independent
blocks, it can re-construct the whole file.

Specifically, we view the m blocks of the file, vl, ..., Vm,
as elements in n-dimensional vector space IFn, where p is
a prime. The source node augments these vectors to create
vectors v1, ...,vm, given by

Vi= (O, I...,1,.. ,vil, ...-, Vin):

where the first m elements are zero except that the ith one is
1, and vij C IFp is the jth element in vi. Packets received by
the peers are linear combinations of the augmented vectors,

m

i=l

where 3i is the weight of vi in w. We see that the additional
m elements in the front of the augmented vector keep track
of the code vector, Q, of the corresponding packet.
As mentioned in the previous subsection, this kind of

network coding scheme is vulnerable to pollution attacks by
malicious nodes. Unlike uncoded systems where the source
knows all the blocks being transmitted in the network, and
therefore, can sign each one of them, in a coded system, each
peer produces "new" packets, and standard digital signature
schemes do not apply here. In the next subsection, we intro-
duce a novel signature scheme for the coded system.

C. Signature scheme for network coding
We note that the vectors vi, ..., vm span a subspace V of

Fpm+n , and a received vector w is a valid linear combination of
vectors vi, .., vm if and only if it belongs to the subspace V.
This is the key observation for our signature scheme. In the
scheme described below, we present a system that is based
upon standard modulo arithmetic (in particular the hardness
of the Discrete Logarithm problem) and upon an invariant
signature oX(V) for the linear span V. Each node verifies the
integrity of a received vector w by checking the membership
of w in V based on the signature or(V).
Our signature scheme is defined by the following ingredi-

ents, which are independent of the file(s) to be distributed:
* q: a large prime number such that p is a divisor of q -1.
Note that standard techniques, such as that used in Digital
Signature Algorithm (DSA), apply to find such q.

* g: a generator of the group G of order p in EFq. Since the
order of the multiplicative group IFq is q- 1, which is a
multiple of p, we can always find a subgroup, G, with
order p in IFq.

* Private key: Kpr = {C}i=1m+ni a random set of
elements in IF-. Kpr is only known to the source.

Public key: Kp = {h gi }i=1,...,T+n Kpu is
signed by some standard signature scheme, e.g., DSA,
and published by the source.

To distribute a file in a secure manner, the signature scheme
works as follows.

1) Using the vectors v,...,vm from the file, the source
finds a vector u =(1, . Um+n) C F47+n orthogonal
to all vectors in V. Specifically, the source finds a non-
zero solution, u, to the equations

vi u = 0, i =~1...,mT.

2) The source computes vector x (ul/ai, u2/a2,..**
Um+n /Cam+n) -

3) The source signs x with some standard signature scheme
and publishes x. We refer to the vector x as the
signature, oX(V), of the file being distributed.

4) The client node verifies that x is signed by the source.
5) When a node receives a vector w and wants to verify

that w is in V, it computes

m+n

d I| hfi w
i=l

and verifies that d = 1.

To see that d is equal to 1 for any valid w, we have

m+n

d I Iwhi=w gZ?n(t(uiWi) 1
i=l

where the last equality comes from the fact that u is orthogonal
to all vectors in V.

Next, we show that the system described above is secure. In
essence, the theorem below shows that given a set of vectors
that satisfy the signature verification criterion, it is provably
as hard as the Discrete Logarithm problem to find new vectors
that also satisfy the verification criterion other than those that
are in the linear span of the vectors already known.
Definition 1. Let p be a prime number and G be a multi-
plicative cyclic group of order p. Let k and n be two integers
such that k < n, and I' {hi, ..., hn} be a set of generators
of G. Given a linear subspace, V, of rank k in F4n such that
for every v G V, the equality Fv A H2 1 hi= 1 holds, we
define the (p, k, n)-Diffie-Hellman problem as the problem of
finding a vector wGCFn with IW = 1 but w V V.
By this definition, the problem of finding an invalid vector

that satisfies our signature verification criterion is a (p, m, m+
n)-Diffie-Hellman problem.
Theorem 1. For any k < n- 1, the (p, k, n)-Diffie-Hellman
problem is as hard as the Discrete Logarithm problem.

Proof: Assume that we have an efficient algorithm to
solve the (p, k, n)-Diffie-Hellman problem, and we wish to
compute the discrete algorithm logg(z) for some z = gx,
where g is a generator of a cyclic group G with order p.
We can choose two random vectors r = (ri, ..., rn) and
s =(sI, ..., s,) in Fn, and construct = {hi, ..., h,}, where

hi = zrigsi for i = 1, ..., n. We then find k linearly indepen-
dent (and otherwise random) solution vectors v1, ..., Vk to the
equations

vr =0 and vs =0.

Note that there exist n- 2 linearly independent solutions to the
above equations. Let V be the linear span of {v1, ... Vk}, it is
clear that any vector v C V satisfies Iv = 1. Now, if we have
an algorithm for the (p, k, n)-Diffie-Hellman problem, we can
find a vector w V V such that IW = 1. This vector would
satisfy w (xr + s) = 0. Since r is statistically independent
from (xr + s), with probability greater than 1- lp, we have
w r :t 0. In this case, we can compute

logg(z) = X
w s

w r
This means the ability to solve the (p, k, n)-Diffie-Hellman
problem implies the ability to solve the Discrete Logarithm
problem. U

This proof is an adaptation of a proof that appeared in an
earlier publication by Boneh et. al [20].

D. Discussion

Our signature scheme nicely makes use of the linearity
property of random linear network coding, and enables the
peers to check the integrity of packets without the requirement
for a secure channel. Also, the computation involved in the
signature generation and verification processes is very simple.

Next, we examine the overhead incurred by this signature
scheme. The size of each file block is B = n log(p) and we
have M = mn log (p). The size of each augmented vector
(with coding vectors in the front) is Ba = (m + n) log(p),
and thus, the overhead of the coding vector is m/n times
the file size. Note that this is the overhead pertaining to the
linear coding scheme, not to our signature scheme, and any
practical network coding system would make m «< n. The
initial setup of our signature scheme involves the publishing
of the public key, Kpu, which has size (m + n) log(q). In
typical cryptographic applications, the size of p is 20 bytes
(160 bits), and the size of q is 128 bytes (1024 bits), thus, the
size of Kpu is approximately equal to 6(m + n)/mn times
the file size.

For distribution of each file, the incremental overhead of
our scheme consists of two parts: the public data, KPU, and
the signature vector, x.

For the public key, Kpu, we note that it cannot be fully
reused for multiple files, as it is possible for a malicious node
to generate a invalid vector that satisfies the check d = 1
using information obtained from previously downloaded files.
To prevent this from happening, we can publish a new public
key for each file, and as mentioned above, the overhead is
about 6(m + n)/mn times the file size, which is small as
long as 6 < m «< n.

Alternatively, for every new file, we can randomly pick an
integer i between 1 and m + n, select a new random value
for ai in the private key, and just publish the new hi = g i.
The overhead for this method is only 6/mn times the file

size. As an example, if we have a file of size 1OMB, divided
into m = 100 blocks, the value of n would be in the order of
thousands, and thus, this overhead is less than 0.01% of the file
size. This method should provide good security except in the
case where we expect the vector w to have low variability,
for example, has many zeros. Security can be increased by
changing more elements in the private key for each new file.

In addition, for each new file distributed, we also have to
publish a new signature x, which is computed from a vector
u that is orthogonal to the subspace V spanned by the file.
Since the V has dimension m, it is sufficient to only replace m
elements in u to generate a vector orthogonal to the new file.
Since the first m elements in the vectors vl, ..., vm are always
linearly independent (they are the code vectors), it suffices to
just modify the entries ul to urn Assume that the ith element
in the private key is the only one that has been changed for
the distribution of the new file, and that i is between 1 and m,
then we only need to publish xi to xm for the new signature
vector. This part of the overhead has size m log(p), and the
ratio between this overhead and the original file size N is 1/n.
Again, take a 1OMB file for example, this overhead is less than
0.1% of the file size.

Therefore, after the initial setup, each additional file dis-
tributed only incurs a negligible amount of overhead using
our signature scheme.

Finally, we would like to point out that, under our assump-
tions that there is no secure side channel from the source to
all the peers and that the public key is available to all the
peers, our signature scheme has to be used on the original
file vectors not on hash functions. This is because to maintain
the security of the system, we need to use a one-way hash
function that is homomorphic, however, we are not aware of
any such hash function. Although [12] and [17] suggested
usage of homomorphic hash functions for network coding,
[12] assumed that the intermediate nodes do not know the
parameters used for generating the hash function, and [17]
assumed that a secure channel is available to transmit the hash
values of all the blocks from the source node to the peers.
Under our more relaxed assumptions, these hash functions
would not work.

IV. CONCLUSIONS

In this paper, we have overviewed some of the security capa-
bilities ofnetwork coding, particularly in the area of robustness
to Byzantine attacks and to distributed authentication in peer-
to-peer downloads. The implications of network coding for
security are not limited to these applications. For instance,
network coding's mixture of data can be used to use data
for effective countermeasures to eavesdropping. In effect, data
is used, after compression, as a one-time-pad in the system,
[21], [22], [23], [24]. None of these techniques or the ones
summarized in this paper present in themselves a complete
security solution, and we have not attempted to implement
any of our security techniques. However, as network coding
opens entirely new venues for the operation of networks, we
expect to see security challenges inherited from traditional

forms of networking, the mitigation of current problems but
also the emergence of new classes of data sharing problems in
Net-Centric environment. We will further develop scalable and
secure network coding techniques to solve multimedia delivery
and massive data sharing problems in Airborne/UAV networks.

REFERENCES

[1] R. Ahlswede, N. Cai, S. Li, and R. Yeung, "Network information flow:
Single source," submitted to IEEE Transactions on Information Theory,
1999.

[2] R. Koetter and M. Medard, "An algebraic approach to network coding,"
in IEEE International Symposium on Information Theory (ISIT), vol. 1,
p. 104, 2001.

[3] R. Koetter and M. Medard, "An algebraic approach to network coding,"
IEEEIACM Transactions on Networking (selected as one ofthe outstand-
ing papers from INFOCOMfor transfer to IEEEIACM Transaction on
Networking), vol. 11, pp. 782-796, October.

[4] T. Ho, M. Medard, R. Koetter, D. R. Karger, and M. Effros, "The benefits
of coding over routing in a randomized setting," in IEEE International
Symposium on Information Theory (ISIT), p. 442, 2003.

[5] T. Ho, M. Mdard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, "A random linear network coding approach to multicast,"
in IEEE Transactions on Information Theory, vol. 52, pp. 4413-4430,
October 2006.

[6] M. Effros, R. Koetter, and M. Medard, "Breaking network logjams,"
Scientific American, vol. 6, pp. 78-85, June.

[7] C. Fragouli, J.-Y L. Boudec, and J. Widmer, "Network coding: an instant
primer," SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp. 63-68,
2006.

[8] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard,
"Resilient network coding in the presence of byzantine adversaries," in
Proc. IEEE INFOCOM 2007, (Anchorage, AK), May 2007.

[9] F. Zhao, T. Kalker, M. Medard, and K. Han, "Signatures for content
distribution with network coding," in Proc. of IEEE ISIT'07, (Nice,
France), July 2007.

[10] L. Lamport, R. Shostak, and M. Pease, "The byzantine generals prob-
lem," ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382-401,
1982.

[11] R. Perlman, "Network layer protocols with byzantine robustness," MIT
Ph.D. Thesis, 1988.

[12] S. Acedafiski, S. Deb, M. Medard, and R. Koetter, "How good is random
linear coding based distributed network storage?," in Proc. 1st Workshop
on Network Coding, Theory, and Applications (Netcod'05), (Riva del
Garda, Italy), Apr. 2005.

[13] C. Gkantsidis and P. Rodriguez, "Network coding for large scale content
distribution," in Proc. IEEE INFOCOM'05, (Miami, FL), Mar. 2005.

[14] A. G. Dimakis, P. B. Godfrey, M. Wainwright, and K. Ramchandran,
"Network coding for distributed storage systems," in Proc. of IEEE
INFOCOM'07, (Anchorage, Alaska), Mar. 2007.

[15] "Bittorrent file sharing protocol. http://www.bittorrent.com,"
[16] C. Gkantsidis, J. Miller, and P. Rodriguez, "Comprehensive view of a

live network coding p2p system," in Proc. ACM SIGCOMM/USENIX
Internet Measurement Conference (IMC'06), (Rio de Janeiro, Brazil),
Oct. 2006.

[17] C. Gkantsidis and P. Rodriguez, "Cooperative security for network
coding file distribution," in Proc. of IEEE INFOCOM'06, (Barcelona,
Spain), Apr. 2006.

[18] M. N. Krohn, M. J. Freedman, and D. Mazieres, "On-the-fly verification
of rateless erasure codes for efficient content distribution," in Proc. ofthe
IEEE Symposium on Security and Privacy, (Oakland, CA), May 2004.

[19] D. Charles, K. Jain, and K. Lauter, "Signatures for network coding,"
in Proc. of Conference on Information Sciences and Systems (CISS'06),
(Princeton, NJ), Mar. 2006.

[20] D. Boneh and M. Franklin, "An efficient public key traitor tracing
scheme," in Proc. of Crypto'99, Lecture Notes in Computer Science,
1999.

[21] N. Cai and R. W Yeung, "Secure network coding," in IEEE International
Symposium on Information Theory, July 2002.

[22] K. Bhattad and K. Narayanan, "Weakly secure network coding," in Proc.
of the First Workshop on Network Coding, Theory, and Applications
(NetCod), 2005.

[23] J. Tan and M. Medard, "Secure network coding with a cost criterion,"
in Proc. of the Second Workshop on Network Coding, Theory, and
Applications (NetCod), 2006.

[24] L. Lima, M. Medard, and J. Barros, "Random network coding: A
free cypher?," in IEEE International Symposium on Information Theory
(ISIT), 2007.

