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Abstract: The application of a constrained receding horizon control technique to stabilise an indoor
vectored-thrust flight experiment, known as the Caltech ducted fan, is given. The receding horizon
control problem is formulated as a constrained optimal control problem and solved in real time with
an efficient, computational method that combines nonlinear control theory, B-spline basis
functions, and nonlinear programming. Characteristic issues, including non-zero computational
times, convergence properties, choice of horizon length and terminal cost are discussed. The study
validates the applicability of real-time receding horizon control for constrained systems with fast
dynamics.

1 Introduction

In receding horizon control (RHC), an open-loop trajectory
is found by solving a finite-horizon constrained optimal
control problem starting from the current state. The controls
of this trajectory are then applied for a certain fraction of the
horizon length, after which the process is repeated.

RHC has found successful applications in the process
control industry for some time, where dynamics are
relatively slow. However, the algorithm demands tremen-
dous computational power, and can exhibit poor stability
properties if not implemented properly. These difficulties
have largely prevented its application to stability-critical
nonlinear systems with fast dynamics. Increasingly
powerful and affordable computing facilities combined
with better understanding of receding horizon control’s
stability properties have revived interest in this area
(see Mayne et al. [1], Findeisen et al. [2, 3] and the
references therein for a review of recent work in this field).

To implement the RHC strategy, a constrained nonlinear
optimisation problem must be solved online. Owing to the
complexity of solving a nonlinear programming problem in
real time, the computational delay cannot be ignored. This is
particularly important in aerial vehicle applications, where
the timescales of the vehicle dynamics (and the requisite
control loops) are very short and comparable to the time
required to solve a finite-horizon optimisation problem.
The papers by Ronco et al. [4] and Chen et al. [5] examine
the effects of computation in receding horizon control for
some specific applications.

The application of RHC to aerial vehicles has been
proposed and analysed by several researchers. Representa-
tive examples include the mixed integer linear programming

approach of Richards et al. [6], the LMI framework for
receding horizon control of Bhattacharya et al. [7], and the
work of Singh et al. [8], which provide simulation results for
stabilisation of an unmanned aerial vehicle about an open
loop trajectory using receding horizon control. Applications
to missiles have been considered by Kim et al. [9] and
others. The results here build on the approach developed by
Jadbabaie et al. [10–12], in which a control Lyapunov
function terminal cost is used to increase the speed of the
computation while still ensuring stability.

The RHC strategy offers many benefits in this environ-
ment, such as the inherent ability to deal with constraints in
the control. Examples of such a constraint commonly
encountered include saturations on the actuators. However,
RHC would serve little practical purpose unless stable and
efficient computational techniques are developed to provide
real-time solutions to the underlying constrained nonlinear
optimal control problems.

The goal of the work in this paper is twofold. The first
goal is to address issues of implementation with substantial
computation times and fast system dynamics and the second
is to provide a validation of theoretical results through
implementation on an actual nonlinear experiment. A full
nonlinear model of the Caltech ducted fan is used in order to
test the viability of this technique on a flight platform.
The results are among the first to demonstrate the use of
receding horizon control for agile flight in an experimental
setting using representative dynamics and computation.

2 Theoretical background

RHC, also known as model predictive control, makes use of
online model-based optimisation to determine the current
control action. In this paper, we explore the practical
application of receding horizon control for operating point
regulation of nonlinear systems for which a linear quadratic
regulator provides the desired local system performance.
Using online optimisation, we expect to enlarge the
operating region significantly by exploiting knowledge of
nonlinearities and control constraints.

Our system is modeled as

_xx ¼ f ðx; uÞ ð1Þ
where the vector field f : Rn � R

m ! R
n is (at least) C2 and

possesses a linearly controllable equilibrium point at
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the origin, i.e. f ð0; 0Þ ¼ 0 and ðA;BÞ :¼ ðD1 f ð0; 0Þ;
D2 f ð0; 0ÞÞ is controllable. Furthermore, f is affine in the
control u and the control is restricted to a compact convex
set �UU containing the origin in its interior. We assume that
f is such that (1) does not exhibit finite escape time
behaviour when driven by bounded inputs. This is
a reasonable assumption for the mechanical systems
considered in this paper.

For the purpose of regulation, we consider the online
solution of the optimal control problem

minimise

Z T

0
qðxðtÞ; uðtÞÞ dtþ VðxðTÞÞ

subject to _xxðtÞ ¼ f ðxðtÞ; uðtÞÞ; xð0Þ ¼ x0

uðtÞ 2 �UU

ð2Þ

where x0 is the current (measured) state. The incremental
cost q is chosen to be quadratic, qðx; uÞ ¼ kxk2

Q=2 þ
kuk2

R=2; with Q ¼ QT >0 and R ¼ RT >0, so that both
state and control are fully penalised (useful for nonlinear
regulation) and such that the linear quadratic approximation
has desirable behaviour. The terminal cost V is taken to be
the linear quadratic optimal cost-to-go VðxÞ ¼ kxk2

P=2
where P ¼ PT >0 is determined from the Ricatti equation
for the linearised system.

With this setup, we make a few observations. First, note
that, for each initial condition x0, there exists an optimal
control trajectory u	ð
; x0Þ that achieves the minimum value
J	Tðx0Þ of the cost function. Since there are no state
constraints, we conclude, by the Pontryagin Maximum
Principle, that each optimal control trajectory u	ð
; x0Þ is a
continuous function of time.

Secondly, for x0 in a neighborhood of the origin, the
optimal control is in fact unique and depends continuously
(locally C1 or better) on the initial condition x0. On the
neighbourhood where u	 is unique and x0 7!u	ð
; x0Þ is
continuous, we can define an instantaneous optimal state
feedback kðx0Þ :¼ u	ð0; x0Þ, with kð
Þ continuous on its
domain of definition and differentiable in the neighbour-
hood of the origin.

The optimal value function J	
Tð
Þ is a positive definite

function that is locally convex, locally smooth (C2 or better)
and quadratically tangent to the optimal LQ cost Vð
Þ at
x0 ¼ 0. Therefore the locally defined state feedback kð
Þ is,
to first order, the LQR state feedback. It follows easily that
the origin of the system (1) with instantaneous optimal

feedback u ¼ kðxÞ is locally exponentially stable with the
optimal value function J	

Tð
Þ acting as as Lyapunov
function.

We can examine the region of operation for this
instantaneous feedback law by looking at the sublevel sets
of the optimal value function, defined as

GT
r :¼ path connected component of fx 2 R

n : J	
TðxÞ  r2g

containing 0

where we use the squared radius r2 (rather than r) to reflect
the fact that our incremental cost is quadratically bounded
from below. For small r>0, we may use the linearisation of
_xx ¼ f ðx; kðxÞÞ to conclude that the set GT

r is positively
invariant and attractive. Let ~rr be the largest radius such that
the instantaneous optimal feedback kðxÞ is uniquely defined
for all x 2 GT

r with r < ~rr. The value function J	
Tð
Þ is C1 on

the interior of GT
~rr (there is a potential loss of differentiability

due to control saturation) so that the directional derivative,
_JJ	

TðxÞ :¼ DJ	
TðxÞ 
 f ðx; kðxÞÞ; is well defined there. Defining

�rr  ~rr to be that largest radius such that _JJ	
TðxÞ< 0 for all

x 2 GT
r with r < �rr, we see that the interior of GT

�rr is contained
in the domain of attraction of 0 and is thus a valid region of
operation for the instantaneous optimal control law.

Summarising, we have a Lyapunov function J	ð
Þ that
provides a family of sets GT

r , r < �rr, that are positively
invariant and attractive under the (possibly saturated)
instantaneous optimal feedback u ¼ kðxÞ. Moreover, _JJ	

Tð
Þ
is continuous on the sets GT

r , r < �rr. It follows that the
stability and stability-like properties of the closed-loop
system will persist (on a subset of the ideal operating region)
under perturbations in the system vector field (including
external disturbances) and in the control law.

We can view the practical application of RHC as a
perturbation of the instantaneous optimal feedback law. For
example, we might view the receding horizon system as a
sampled data system where at each ti ¼ id we sample the
system state to obtain xi ¼ xðtiÞ. On the interval ½ti; tiþ1Þ, we
apply a control ~uuiðtÞ, t 2 ½ti; tiþ1Þ that is determined in some
fashion from our online optimisation.

A standard choice is to use a zero-order hold, sampled
data control ~uuiðtÞ � kðxi�1Þ. In the case that control inputs
are provided to the system at a much higher rate than the
computation time d, however, it is useful to command
the system with a portion of the computed optimal
input trajectory rather than holding the input constant for

Fig. 1 Illustration of timing scheme without prediction
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d seconds. The following two options for applying
the optimal input trajectory are implementable if the
optimisation can be performed in less than d seconds:

1 No prediction: apply ~uuiðtÞ � k½d;2d�ðxiÞ over the interval
t 2 ½tiþ1; tiþ2�.
2 Prediction: apply ~uuiðtÞ � k½0;d�ðx p

iþ1Þ over the interval
t 2 ½tiþ1; tiþ2�. Here x

p
iþ1 represents the predicted state of the

system at tiþ1 found by simulating the system model with
initial condition xi and inputs k½0;d�ðx p

i Þ.
The goal with any scheme is to keep the receding horizon
trajectory as close as possible to the real system trajectory in
the face of significant computational delays, modelling
errors and disturbances. Figures 1 and 2 show graphically
the timing paradigm for options 1 and 2, respectively.

Using the Lyapunov function properties discussed above,
one may easily prove

Proposition 1: Given r < �rr, there exists a d0>0 such
that, for each d 2 ð0; d0�, the sampled data RHC law ~uuiðtÞ;
t 2 ½ti; tiþ1Þ with ti ¼ id, provides exponential stability of
(1) with a region of attraction that includes GT

r .

Key in the proof of the above result is showing that J	Tð
Þ
can be used as a discrete time Lyapunov function.

This approach to RHC will be effective provided that the
optimal control problem in (2) can always be solved in d
seconds. Since the optimal control trajectory depends
continuously on the state in the region of operation, one
may hope to solve the problem for xiþ1 quickly, given the
solution for xi, by using a warm start strategy.

3 Technique for solving RHC problem

The resulting optimal control problem in (2) will be solved
using the Nonlinear Trajectory Generation (NTG) software
package developed by Milam [13].

There are three primary components to NTG. The first is
to determine a parameterisation (output) such that the
equations of motion can be mapped to a lower dimensional
space (output space). The idea is to map dynamic constraints
in (1) to algebraic ones. Once this is done, the cost and
constraints in the optimal control problem in (2) are mapped
to the output space. The second component of NTG is to
parameterise each component of the output in terms of
an appropriate B-spline polynomial. Finally, nonlinear

programming is used to solve for the coefficients of the
B-splines.

The key to the approach is to map (1) to a lower
dimensional output space, the idea being that it will
computationally more efficient to solve a lower dimensional
problem. In most cases it is desirable to find an output
z ¼ z1; :::; zq of the form

z ¼ Aðx; u; uð1Þ; . . . ; uðrÞÞ ð3Þ

such that ðxðtÞ; uðtÞÞ can be determined completely from

ðx; uÞ ¼ Bðz; zð1Þ; . . . ; zðsÞÞ ð4Þ

where xðiÞ denotes the ith time derivative of x. By doing this,
the differential constraints in (1) are automatically satisfied
and (1) is said to be differentially flat. A necessary condition
for the existence of such an output can be found in
Fliess et al. [14]. Examples of differentially flat systems can
be found in Fliess et al. [15]. In general, finding the flat
output may be very difficult even if one could prove it does
exist. In the case that we cannot determine a flat output or no
flat output exists, we will map the system dynamics in (1) to
the lowest dimensional space possible. Therefore, ðxðtÞ; uð
tÞÞ will be completely determined from

ðx; uÞ ¼ C1ðz; zð1Þ; . . . ; zðs1ÞÞ and

C2ðz; zð1Þ; . . . ; zðs2ÞÞ ¼ 0 ð5Þ

Once chosen, the outputs are parameterised in terms of
piecewise polynomial B-spline basis functions. B-splines
are chosen as basis functions for their flexibility and ease of
enforcing continuity across knot points. A complete
treatment of B-splines can be found in [16]. The outputs
are written in terms of finite dimensional B-spline curves as

z1 ¼
Xp1

i¼1
Bi;k1

ðtÞC1
i for the knot vector t1

z2 ¼
Xp2

i¼1
Bi;k2

ðtÞC2
i for the knot vector t2

..

.

zq ¼
Xpq

i¼1
Bi;kq

ðtÞCq
i for the knot vector tq

and pj ¼ ljðkj � mjÞ þ mj

where Bi;kj
ðtÞ is a B-spline basis function defined in [16]

for the output zj with order kj, C
j
i are the coefficients of the

B-spline, lj is the number of polynomial segments and mj is

Fig. 2 Illustration of timing scheme with prediction
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the number of smoothness conditions at the knots. After the
desired B-spline properties of the outputs have been chosen
and all constraints are mapped to output space, the
coefficients of the B-spline basis functions are found
numerically by numerical solution of a nonlinear program-
ming problem.

The nonlinear programming problem may be stated in the
form

min
y2RM

FðyÞ subject to lb  cðyÞ  ub ð6Þ

where y ¼ ðC1
1 ; . . . ;C1

p1
;C2

1; . . . ;C2
p2
; . . . ;C

q
1 ; . . . ;C

q
pq
Þ;M ¼Pq

i¼1 pi and F(y) is the discrete approximation in output
space to the objective in (2). The vector c(y) contains the
input constraints in output space from (2) and any other

constraints represented in output space, as a result of not
choosing the flat output. Note that the trajectory constraints
will be satisfied at the collocation points chosen by the user.
The lower and upper bounds for the constraints are denoted
by the vectors lb and ub.

See [17] for detailed analysis of the efficiency of this
approach.

4 Experimental setup and mathematical model

The RHC theory and supporting numerical algorithms
are validated using the Caltech ducted fan experiment.
The Caltech ducted fan implements the longitudinal flight
dynamics of a typical highly manoeuvrable aircraft and was
carefully designed to be representative of modern flight

Fig. 3 The Caltech ducted fan testbed
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systems [18]. Its dynamics include aerodynamic effects
from lift and drag, actuation saturation, and computational
delays. All these features are also present in full-scale flight
systems and must be handled by flight control systems.

Figure 3 shows an overview of the Caltech ducted fan
experiment. The experiment consists of a vertical stand and
a horizontal boom, which holds a ducted fan and wing. This
setup enables flight on a cylinder of height 2.5 m and radius
2.35 m. Because of a mass of 12.5 kg and a maximum thrust
of only 13 N, a counterweight is attached to the boom via a
cable and pulleys, which reduces the effective gravity to
mgeff ¼ 7N. This allows the system to attain sizable vertical
accelerations, while minimising the force of potential
crashes. Mechanical brakes in the vertical direction are
used as well to aid in crash landings. The sensors are read
and the commands are sent by a multiprocessor system,
comprising a D=A card, an optical encoder card, a digital IO
card, two Texas Instruments C40 signal processors, two
Alpha processors (500 and 600 MHz), and an ISA bus to
interface with a PC. The RHC strategy used in this paper
resides on the 500 MHz Alpha processor. Actuation of the
ducted fan is accomplished in two ways: by controlling the

current to the ducted fan, and by vectoring the resulting
thrust via a servo-controlled bucket. The bandwidth of the
ducted fan motor is 1 Hz and the bandwidth of the bucket
servos is 4 Hz.

Figure 4 shows the inertial and body co-ordinate frames
used in this paper. In the inertial frame, the axes are fixed to
the ground, and the x and z directions represent horizontal
and vertical inertial translations. In the body frame, the XB

and ZB axes are fixed to the vehicle. y represents the rotation
of the ducted fan about the boom axis. All three of these
variables are measured via rotary encoders, and the resulting
signals are routed to the computing platform via slip rings.

The equations of motion of the experiment are given by

m€xx þ FXa
� FXb

cos y� FZb
sin y ¼ 0

m€zz þ FZa
þ FXb

sin y� FZb
cos y ¼ mgeff

J €yy� Ma þ
1

rs

IpO_xx cos y� FZb
lt ¼ 0; ð7Þ

where

FXa
¼ D cos gþ L sin g; FZa

¼ �D sin gþ L cos g

are the aerodynamic forces, see [18] for a complete
derivation of these equations. We chose a spatial represen-
tation of the equations of motion so that we can consider
both hover and forward flight modes, which couples
translation and rotation of the flight dynamics. FXb

and FZb

are thrust vectoring body forces. There exists an invertible
nonlinear transformation between FXb

and FZb
and the set

thrust (T ) and the thrust vector bucket angle dt. Ip ¼
2 � 10�5 kgm2 and O ¼ 1300 rad=s are the moment of
inertia and angular velocity of the ducted fan propeller,
respectively. J ¼ 0:25 kgm2 is the moment of inertia of the
ducted fan about the boom, and lt ¼ 0:35m is the distance
from the centre of mass along the Xb axis to the effective
application point of the thrust vectoring force. The angle of
attack a is related to the pitch angle y and the flight path
angle g by a ¼ y� g, where the flight path angle can be
derived from the spatial velocities by g ¼ arctan ð�_zz=_xxÞ:
The lift (L), drag (D) and moment (M) are given by L ¼
qSCLðaÞ;D ¼ qSCDðaÞ and M ¼ �ccSCMðaÞ; respectively.
The dynamic pressure is given by q ¼ 1

2
rV2. The norm ofFig. 4 Ducted fan co-ordinate frames

Fig. 5 B-spline curve fits to wind tunnel and flight test results for the CLðaÞ, CDðaÞ and CMðaÞ aerodynamic coefficients
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the spatial velocity is denoted by V, the wing chord is �cc, the
wing surface area is S and r is the atmospheric density. The
coefficients of lift ðCLðaÞÞ, drag (CDðaÞ) and moment
(CMðaÞ) were determined from a combination of wind
tunnel and flight testing.

It is easily checked that the linearisation is controllable at
the equilibrium operating condition.

Figure 5 shows the coefficients of lift (CLðaÞ) and drag
(CDðaÞ) and the moment coefficient (CMðaÞ).

5 RHC problem formulation

We first state explicitly the cost functions used in this paper,
as defined in (2):

qðxðtÞ;uðtÞÞ ¼ 1

2
xT

errðtÞQxerrðtÞ þ
1

2
uT

errðtÞRuerrðtÞ

VðxðTÞÞ ¼ 1

2
xT

errðTÞPxerrðTÞ

xerr � x� xeq ¼ ½x� xcmd; z� zcmd;y� p=2; _xx; _zz; _yy�T

uerr � u� ueq ¼ ½FXb
�mgeff ;FZb

�T

Q ¼ diag½4;3;15;3;4;0:3�
R ¼ diag½0:5;0:5�

ð8Þ
where the equilibrium point of interest is hover:

xeq � ½xcmd; zcmd; p=2; 0; 0; 0�T ; ueq � ½mgeff ; 0�T

We choose Q and R to be the same as weights used to
generate LQR gains with good performance, and P to be the
corresponding solution to the algebraic Ricatti equation
resulting in a control Lyapunov function (CLF) terminal
cost around a hover equilibrium.

The input constraints are

0

�Fmax
Xb

=2

" #


FXb

FZb

� �


Fmax
Xb

Fmax
Xb

=2

" #
ð9Þ

where Fmax
Xb

is 13 N and mgeff is 7.0 N.

6 NTG setup

By using NTG, we can sufficiently reduce the dimension of
the nonlinear programming problem to make real-time
computation possible.

For our system we will choose as outputs z1 ¼ xðtÞ,
z2 ¼ zðtÞ, z3 ¼ yðtÞ in solving the problem posed in (2).
Given these outputs, their derivatives and the control
trajectory can be computed easily.

Note that the system in (7) is not necessarily differentially
flat. An offline comparison of computation times and
probability of convergence from a random initial guess for
several different outputs motivated our parameterisation. By
choosing this parameterisation, one equality constraint will
need to be satisfied over the entire trajectory. In the case of
only forward flight, it would be possible to choose a
parameterisation that contains no equality constraints, see
[19] for a complete discussion of this topic. In general, it is
best to find a parameterisation that eliminates all equality
constraints.

The optimal control problem is set up in NTG code by
parameterising the three position states ðx; z; yÞ, each with
eight B-spline coefficients. Over the receding horizon time
intervals, 21 collocation points were used with horizon
lengths of 2.0 s. Collocation points specify the locations in

time where the differential equations and any constraints
must be satisfied, up to some tolerance.

7 Results

7.1 Timing method selection

In proposition 1, we proposed that there exists a sampling
rate d0 such that sampling rates less than d0 will provide a
stable neighbourhood of the origin. We investigated through
simulation and experimental testing the d0 for the ducted fan
with different timing methods and horizon lengths. Table 1
shows results of identifying the highest acceptable d for
different combinations of timing mode and horizon length.
The simulation allows us to explore many different
configurations without fear of damaging the hardware.
The test used for these results was a 20m step in x, a fairly
demanding request, which puts the fan into a forward flight
state to test out the full features of the model. We were
unable to design a gain-scheduled LQR controller that could
perform this manoeuvre in an acceptable fashion.
Acceptable results are defined as stable and with few
qualitative differences from the best results. Next, Table 2
shows horizon lengths and timing methods that were
acceptable on the real experiment. One difference from
these runs for the simulation was that on the real experiment
we used a smaller step of 5 m in x in order to prevent damage
to the apparatus. Another difference from the simulation is
that the fixed period chosen is only a lower bound on the
actual period. The majority of calculations remain below the
fixed period in all the runs, but there are still some that
exceed the value owing to limited computing power. The
prediction timing method produced larger run times on
average, and appeared more sensitive to the model used in
NTG. Note that 0.0 s refers to the ‘fast as possible’ scheme.
This scheme allows a varying d, so that, whenever a
computation completes, the next computation is started
immediately. The no prediction timing method with a 2 s
horizon running in ‘fast as possible’ mode was chosen for
the example test cases shown in this paper.

7.2 Further considerations

Another consideration involves non-convergent trajectory
computations. Unfortunately, receding horizon trajectory
computations are not guaranteed to converge. For the warm

Table 1: Maximum acceptable d as determined in
simulation

Horizon Predict No predict

1.0 s 0.4 s 0.15 s

1.5 s 0.5 s 0.2 s

2.0 s 0.65 s 0.3 s

2.5 s 0.6 s 0.4 s

3.0 s 0.5 s 0.4 s

Table 2: Maximum acceptable d as determined on the
real experiment

Horizon Predict No predict

1.0 s 0.0 s 0.2 s

2.0 s 0.1 s 0.2 s

3.0 s 0.2 s 0.2 s
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start strategy, each computation is given the last computed
trajectory as an initial guess, which is sometimes not good
enough. Also, some combinations of initial constraints and
cost function are simply degenerate. If a computation
returns signs of failure, the last good trajectory is
simply continued and another computation is triggered.
This will certainly fail if non-convergence happens
frequently or repeatedly, as it has the effect of greatly
increasing the sample time. In practice, this has not been a
problem.

A characteristic of the spline representation used to solve
the optimal control problem is that, between enforcement
points, the values of the states, their derivatives and the
controls may not be consistent with the equations of motion
for the system. Because of this, a point on the trajectory is,
in general, not suitable as an initial equality constraint for
successive computation. Experience showed us that some
sort of effort in minimising large jumps in at least the forces
is worthwhile. To deal with this, we introduce a degree of
freedom on the accelerations by eliminating their initial
constraints. We are most interested in minimising
jumps in the controls, so we enforce an inequality constraint

jukþ1ð0Þ � ukðtÞj< a ð10Þ
for some a. If a fixed d is used, t is equal to d. If a ‘fast as
possible’ rule is used, t is taken as an average of the past n
run times. This approach is compatible with both timing
schemes discussed above; graphically, control trajectories
always start near the previous trajectory.

Since this constraint is applied to the finite dimensional
problem, it does not affect the stability properties of
the system as the constraint is not active in a small
neighbourhood of the equilibrium point.

7.3 Ducted fan flight test results

In this Section we present the result of commanding a large
change in the equilibrium of the system using the cost in (8)
and the constraints in (9) and (10). This aggressive
command results in highly nonlinear motion of the system.

The two test cases that are investigated are aggressive
manoeuvring, using a series of step commands, and
operation of the ducted fan near a state constraint.
The desired commands to the experiment are input
with joysticks. They are set up so that the user can change
in real time the x and z equilibrium positions of the
experiment.

The first test case is an 11 m step command in x followed
by a �11m step. Figure 6 shows an animation of the
translation and rotation of the ducted fan as well as the angle
of the thrust vectoring bucket and the force being applied on
the system. The commanded forces are shown in Fig. 7.
The RHC at tk is denoted by a dotted line. The insert picture
illustrates with a solid line the portion (d) of the RHC that is
being commanded to the experiment. The allowable jump in
the control at tkþ1, given by jukþ1ð0Þ � ukðdÞj, was bounded
by 0:25N. Figure 8 illustrates that the system quickly
responds to the step commands and then settles at the

desired commanded location. The receding horizon refer-
ence trajectory in Fig. 8 is the predicted state resulting from
the control applied in Fig. 7 applied over each d. Moving in
and out of stall on several occasions, the attitude of the
ducted fan changes significantly over the course of the run,
as shown in Fig. 9. The velocity of the ducted fan is shown
in Fig. 10. The RHC strategy provides very aggressive and
responsive flight qualities. Each RHC trajectory in this run
converged to an optimal solution. The computation times
for each trajectory are shown in Fig. 11. The largest
computation times occur when the system is far from the
commanded equilibrium. NTG is started with a random
initial guess. However, recall that the RHC solution at tkþ1

uses the solution from tk as the initial guess. The forces in
are acceptably within the prescribed bounds, as shown in
Fig. 11. The density of the collocation points determines
how well the controls stay within the prescribed bounds.

Fig. 6 Plot depicting actual attitude and position of ducted fan throughout manoeuvre

Fig. 7 Controls in body frame

Fig. 8 Horizontal position of ducted fan
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8 Conclusions

The results presented in this paper demonstrate the potential
of real-time RHC for constrained systems with fast
dynamics. Real-time RHC represents a revolutionary
alternative to the traditional linear or nonlinear controller
design with many benefits.

The primary advantage of RHC over more traditional
techniques is its ability to deal explicitly with input
constraints. While the theoretical conditions for conver-
gence in these cases require computation of terminal costs
that satisfy these constraints (difficult to do in general),
in practice RHC provides excellent stability and perform-
ance characteristics with very little tuning. In the exper-
iments described here, the controller effectively provided
global convergence to the desired equilibrium point.

In addition, RHC provides improved flexibility for
trajectory generation and reconfigurability. RHC effectively
integrates the inner and outer loops usually found in aircraft

Fig. 9 Attitude of ducted fan

Fig. 10 Spatial horizontal velocity of ducted fan

Fig. 11 Force constraints and computation times
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control design, allowing the navigation function to be better
integrated with stability and performance characteristics.
In addition, the controller can be reconfigured online by
changing the model, cost functions or constraints that are
used in the receding horizon optimisation. This provides
interesting opportunities for integrating vehicle manage-
ment functions within the controller architecture, allowing
the vehicle to reconfigure its operation in the presence of
component failure or degradation.

In this paper we have addressed RHC at the vehicle
dynamics level. Future research includes extending RHC for
robust nonlinear optimisation at the mission level. Merits of
different timing methods should also be examined through
rigorous mathematical investigation and numerical
simulation.
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