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Entropy of constant curvature black holes in general relativity
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We consider the thermodynamic properties of the constant curvature black hole solution recently found by
Bañados. We show that it is possible to compute the entropy and the quasilocal thermodynamics of the
spacetime using the Einstein-Hilbert action of general relativity. The entropy we obtain is not associated with
the event horizon; rather it is associated with the Killing horizon of static observers, which is tangent to the
event horizon. This unusual feature of the constant curvature black hole has not been seen in other black hole
spacetimes.@S0556-2821~98!00216-1#

PACS number~s!: 04.70.Dy, 04.20.Ha, 04.70.Bw
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It is generally believed that black holes have a fundam
tal role to play in furthering our understanding of the qua
tization of gravity. Indeed, a wide variety of spacetimes re
resenting black holes with unusual properties has b
discovered in the past decade as a consequence of an i
sive study of the various approaches to quantum grav
Further progress will necessarily entail a more thorough
vestigation of the basic thermodynamics of the different s
cies of black holes.

A new type of black hole solution has been recently fou
by Bañados@1#. This solution, which is one possible gene
alization of the~211!-dimensional black hole@2# to higher
dimensions, represents a black hole in a spacetime with
oidal topology (R33S1) and constant curvature. The co
stant curvature black hole~CCBH! is an anti–de Sitter space
time with identifications, and so it is a solution of any theo
that contains anti–de Sitter spacetimes.1

In this paper, we examine the thermodynamic proper
of the CCBH spacetime in general relativity. In general
given black hole solution can arise from a variety of theori
and its thermodynamic properties are theory-dependen
order to understand the thermodynamic properties
CCBHs, Ban˜ados considered the black hole to be a solut
of a five-dimensional Chern-Simons supergravity theory.
such a theory, the thermodynamic variables can be c
structed for a rotating solution, but the result is surprisin
the thermodynamic internal energy is associated with the
gular momentum parameter of the solution while the therm
dynamic conjugate to the angular velocity is associated w
the mass parameter. In addition, the entropy is found to
proportional to the circumference of theinner horizon rather
than the outer horizon. Such phenomena also occur for
~211!-dimensional black hole when the thermodynam
variables are computed from a Chern-Simons like action@4#,
though a more conventional result for the thermodynam

1An examination of all identifications in four dimensional anti–
Sitter spacetime has been presented by Holst and Pelda´n @3#; the
CCBH manifold described by Ban˜ados can be considered to be
submanifold of one of the solutions found in Ref.@3#.
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variables is obtained when the action of general relativity
used@5#. We consider here CCBHs in the context of fou
dimensional general relativity, although our results may
straightforwardly generalized to any larger number
dimensions.2

For definiteness, we consider the non-rotating CCB
spacetime. This spacetime has the line element

ds25
l 4f 2~r !

r H
2 @du22sin2u~dt/l !2#1

dr2

f 2~r !
1r 2df2

~1!

with the metric function

f 2~r !5
r 22r H

2

l 2 . ~2!

The quantityr H is the circumferential radius of the ‘‘bolt’’ of
the event horizon, andl is the length scale of the anti–d
Sitter spacetime curvature. The anglef is periodic with pe-
riod 2p; the coordinate system is valid outside the black h
~i.e., for r .r H! and for 0,u,p. The details of the con-
struction of this spacetime from an ordinary anti–de Sit
spacetime can be found in Ref.@1#. Because this solution is
merely an anti–de Sitter spacetime with identifications, it i
solution to the field equations arising from the Einste
Hilbert action

I 5E
M

L5
1

16p
*M

4e~R22L!, ~3!

with a cosmological constantL523/l 2. Here, L is the
Einstein-Hilbert Lagrangian 4-form~with a cosmological
constant! and 4e is the volume form on the manifoldM.

The Lorentzian black hole spacetime is depicted in Fig
Notice that the foliation of the spacetime into leaves of co
stant coordinate timet is degenerate on the axisA with u

2The thermodynamics of other asymptotically anti–de Sitter bla
holes with non-trivial spatial topology has been studied in Ref.@6#.
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50 andu5p. Thus, in addition to the event horizons, the
is a Killing horizon on which the Killing vectorta

5(]/]t)a becomes null.3 It is an interesting feature of th
CCBH spacetime that the Killing horizon of static observe
of the black hole does not coincide with the event horizon
the black hole except along a particular surface~which is
indicated by the thick dark lines in the middle of the Killin
horizon in Fig. 1!. Note that along this surface the eve
horizon and the Killing horizon share a generator. We w
show that, for these static observers, the entropy is assoc
with the bifurcation surface of the Killing horizon. Th
quasilocal surfaceB is taken to be a 2-surface of consta
time and radiusr 5R.r H .

Let us begin our analysis of the properties of the CCB
with a calculation of the entropy. The entropy of a black ho
spacetime is equal to the value of the microcanonical ac
of the Euclidean section of the spacetime@7#. In the case of
the CCBH, the Euclidean section is obtained by the W
rotation t→t5 i t . The line element is

ds25
l 4f 2~r !

r H
2 @du21sin2u~dt/l !2#1

dr2

f 2~r !
1r 2df2.

~4!

3If a different static Killing vector had been chosen, there wo
be some other axis along which the foliation into leaves of cons
coordinate time would become degenerate. We have assumed
arbitrary static Killing vector and chosen the coordinateu such that
the axis hasu50 andu5p.

FIG. 1. The Lorentzian CCBH spacetime. The two cones rep
sent the future and past event horizons of the black hole, while
spacelike surfacesS0 and S1 are surfaces of constant coordina
time. The singularity within the event horizon is not shown. Ea
point represents a circle in the suppressed coordinatef. The outer
boundaries ofS0 and S1 are the quasilocal surfaces of consta
time and radius. The foliation is degenerate along the axisA, which
is the bifurcation surface of the Killing horizon of the vector fie
ta. The Killing horizon touches the event horizon along the th
dark lines in the middle of the Killing horizon.
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Notice that the quantity in brackets is the line element o
two sphere if 0<u<p andt is periodic with period 2pl . If
such an identification of the time is made, the Euclide
manifold is regular and is depicted in Fig. 2.4

The microcanonical action differs from the action of E
~3! by a boundary term on the historyT of the quasilocal
surfaceB @8#,

I micro5*ML2*Tdt∧q@ t#. ~5!

The boundary functional contains the Noether charge
form, q@ t#, associated with the covariance of the Lagrang
under diffeomorphisms generated by the vectorta5(]/]t)a

@9#. On a two-dimensional submanifold with binormalnab

and volume element2eab5 1
2

4eabcdn
cd, the Noether charge

2-form is given by

q@ t#5
1

16p
2enab¹atb . ~6!

The microcanonical action can be evaluated on the Euclid
manifold to yield the entropy. We follow the method of Iye
and Wald@8# in computing the entropy. Because the spa
time is stationary, we find

S5Dt@2*]Sq@ t#1*Bq@ t##, ~7!

with Dt52pl . From Fig. 2, it is clear that]S contains two
pieces: the quasilocal surfaceB and the axisA of the spheri-
cal instanton. Thus, the entropy only depends on the inte

nt
me

4The period of identification satisfies the usual regularity con

tion Dt52p/k with k5@2
1
2 (¹atb)(¹atb)#1/251/l evaluated on

the Killing horizon.

-
e

t

FIG. 2. The Euclidean CCBH instanton. The azimuthal angle
the timet/l , the polar angle isu, and the radius is the proper radiu
r5*dr/ f (r ) with r(r H)50. Each point represents a circle in th
suppressed coordinatef. The surfaceS is a surface of constan
time; its boundary consists of the quasilocal surfaceB and the axis
A of the sphere.
3-2
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of the Noether charge 2-form over the axisA of the spherical
instanton. For a fixed time, the binormal toA is nab

52u[amb] ~evaluated on the axis! where ua is the normal
vector to the surface of constant time andma is the normal
vector to surfaces of constantu. The Noether charge 2-form
is found to beq@ t#52e(8pl )21 where 2e is the area ele-
ment of the 2-surfaceA. Integrating the Noether charge ov
the boundaryA ~which consists of both the portion withu
50 andu5p!, we find that the entropy is

S5pl 2f ~R! ~8!

wherer 5R is the radius of the quasilocal surfaceB. Notice
that the entropy depends on the size of the quasilocal
face: this dependence occurs because the entropy is as
ated with the area of the cylinderA which extends tor
5R.

We can also calculate the quasilocal thermodynamic v
ables in order to verify that the first law of thermodynam
holds. The relevant quantities we need are the quasil
energy density and the surface stress tensor. These vari
are calculated using the definitions of Brown and York@10#.
The quasilocal energy density derived from the Einste
Hilbert action is given by

E5
1

8p
Ask. ~9!

Here, k is the trace of the extrinsic curvaturekab of the
quasilocal surfaceB embedded in the spacelike surfaceS:
kab52sa

cDcnb whereDa is the covariant derivative opera
tor on S, na is the normal vector toB embedded inS, and
sab is the induced metric onB. Similarly, the quasilocal
surface stress tensor is

S ab5
1

16p
As@kab2sab~k2ncac!# ~10!

where ac5ua¹auc is the acceleration of the timelike un
normalua to the surfacesB embedded inT. In general, the
quasilocal energy density also has a contribution aris
from an arbitrary background action functional; this cont
bution effectively provides a zero point for the energy in
reference spacetime. However, it is difficult to choose a
erence spacetime for the CCBH because the intrinsic ge
etry of the quasilocal surfaceB depends on the constant o
integrationr H . Fortunately, since the first law of thermod
namics only depends on changes in the quasilocal ene
the contribution from the reference spacetime is irrelev
when analyzing the thermodynamics of the spacetime.

The calculation of the quasilocal energy density and s
face stress tensor is straightforward. From Eqs.~9! and~10!,
we obtain

E52
1

8pr H
@R21l 2f 2~R!# ~11!

for the quasilocal energy density and
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S uu5
1

16p

r H

l 4f 2~R!
@R21l 2f 2~R!# ~12a!

S ff5
1

8pr H
~12b!

for the quasilocal stress tensor. In addition, the inverse t
peratureb(R) on the quasilocal boundary can be compute
it is just the red-shifted period of identification of the Eucli
ean time. We find

b~R!5@gtt~R!#1/2Dt5
2pl 2f ~R!

r H
sin u. ~13!

Notice that the temperature is not constant on the quasil
surface. In particular, it diverges atu50 andu5p. This is
because the foliation becomes degenerate at these poin

The first law of thermodynamics is obtained by consid
ation of variations of the microcanonical action evaluated
the Euclidean manifold. As shown in Refs.@7, 8#,

dS5*0
pdu*0

2pdfb@dE1S abdsab#. ~14!

Because the quasilocal boundary is not an isotherm, the
law of thermodynamics must be left in an integral form, i.
the temperature cannot be factored out of the integral. Eq
tion ~14! can be explicitly verified using the quasilocal e
ergy density of Eq.~11!, the quasilocal stress tensor of E
~12!, the temperature of Eq.~13! and the entropy of Eq.~8!.
Recall thatsab is the metric on the quasilocal boundaryB.
The variations induced in the entropy, energy, and me
sab are variations in both the constant of integrationr H and
the size of the quasilocal systemR. Two unusual features o
the CCBH spacetime thermodynamics are the facts that
entropy depends on the sizeR of the quasilocal system an
that the metric of the quasilocal boundary depends on
constant of integrationr H . Thus, under variations in the pa
rameterr H alone, there is work done by the surface stre
similarly, a process involving a change in the size of t
quasilocal system alone is not adiabatic.

We have shown that it is possible to compute the therm
dynamic variables associated with the CCBH spacetime
311 dimensions as a solution to the theory of general re
tivity. In order to avoid the effects of the unusual asympto
behavior of the spacetime, we have adopted quasilocal d
nitions of the thermodynamic variables. When the spacet
is foliated into leaves associated with the timelike Killin
vector, the Euclidean instanton has an unusual topology:
foliation becomes degenerate on a cylinder that contains
bifurcation circle of the event horizon. The entropy is ass
ciated with the area of this cylinder, and it vanishes as
quasilocal surface approaches the horizon. The entrop
associated with the Killing horizon generated by the acc
eration of static observers; such an entropy is also found
accelerating observers in a Rindler wedge of Minkow
spacetime @11#. We should emphasize that, unlike
Minkowski spacetime, a static observer is forced to see
acceleration horizon because of the black hole geometry
3-3
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addition, the metric on the quasilocal boundary depends
the constant of integration of the black hole solution. B
cause of this, it is difficult to find a reference spacetime t
produces a suitable zero-point for the quasilocal ene
Nevertheless, the thermodynamic variables do satisfy
first law of thermodynamics given in Eq.~14!.
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