
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2000, PAGES 253-264 1

Perturbation Methods for Interactive Specular

Reflections
Min Chen, James Arvo

Abstract—We describe a new approach for interactively

approximating specular reflections in arbitrary curved sur-

faces. The technique is applicable to any smooth implicitly-

defined reflecting surface that is equipped with a ray inter-

section procedure; it is also extremely efficient as it employs

local perturbations to interpolate point samples analytically.

After ray tracing a sparse set of reflection paths with respect

to a given vantage point and static reflecting surfaces, the al-

gorithm rapidly approximates reflections of arbitrary points

in 3-space by expressing them as perturbations of nearby

points with known reflections. The reflection of each new

point is approximated to second-order accuracy by applying

a closed-form perturbation formula to one or more nearby

reflection paths. This formula is derived from the Taylor ex-

pansion of a reflection path and is based on first and second-

order path derivatives. After preprocessing, the approach

is fast enough to compute reflections of tessellated diffuse

objects in arbitrary curved surfaces at interactive rates us-

ing standard graphics hardware. The resulting images are

nearly indistinguishable from ray traced images that take

several orders of magnitude longer to generate.

Keywords— animation systems, illumination effects, im-

plicit surfaces, matting and compositing, optics, ray tracing

I. Introduction

COHERENT reflection from surfaces is an important
optical effect that has long been a challenging problem

for computer graphics, where it is better known as specular
reflection. The two principal challenges inherent in the sim-
ulation of specular reflections are speed and realism, where
realism requires both geometric and radiometric accuracy.
By geometric accuracy, we mean both shape and location
of the reflection. Radiometric accuracy includes both the
directly observed brightness, or radiance, of the reflection,
as well as its indirect illumination effects, of which the most
pronounced are caustics [1], [2].
The most general and accurate means of simulating spec-
ular reflections is ray tracing, especially when curved sur-
faces or multiple interreflections are involved. Even indirect
lighting effects involving specular reflection can be accu-
rately simulated via Monte Carlo methods that are based
on ray tracing [2]. However, full ray tracing is generally im-
practical for interactive applications despite extensive work
on ray tracing acceleration schemes [3]. A popular alter-
native to ray tracing is environment mapping [4], which
can produce convincing visual effects that mimic specular
reflection with far less computation. Recently, Cabral et.
al [5] combined radiance environment maps with image-
based rendering in reflection space for interactive viewing
of arbitrary objects with a class of reflectance functions.
Unfortunately, environment mapping provides a good ap-

Both authors are from the California Institute of Technology.
E-mail: {chen,arvo}@cs.caltech.edu.

q

x x'

p ∆p
p'

v

v'
∆v

(a) (c)(b)

q

x

p

v
virtual

x

n

p
q actual point

view point

reflective surface

image
 point

point

Fig. 1. Three different reflection problems. (a) Computing the point
p as seen reflected at x. (b) Computing the virtual point v corre-
sponding to the actual point p. (c) Computing how the position
of the virtual point v changes as the actual point p is perturbed.

proximation only when reflected objects are static and far
from the reflector. When these conditions are violated,
the results are of very poor accuracy. In contrast to envi-
ronment mapping, Mitchell and Hanrahan [1] made use of
Fermat’s principle to compute exact reflection paths from
curved surfaces defined by implicit functions. They found
the reflection points by solving a non-linear system numer-
ically, which is a computationally expensive procedure.
Other approaches have been proposed in which specu-
lar reflections of entire objects are computed at once by
constructing a virtual object rather than forming the re-
flection pixel-by-pixel. In such an approach, the scene is
rendered by explicitly constructing the virtual objects and
then handling them much as ordinary objects. It is the lat-
ter class of techniques that is most amenable to interactive
applications. The idea of using virtual objects to simu-
late specular reflections has been explored by a number of
researchers. Panduranga [6] described how several hidden
surface algorithms could be enhanced to include reflections
in curved surfaces, essentially by accommodating virtual
objects. Rushmeier and Torrance [7] used the virtual object
idea in the context of radiosity to handle specular reflec-
tions from planar surfaces. Taking advantage of graphics
hardware, Ofek and Rappoport [8] used the virtual object
method to interactively approximate single-level reflections
on curved objects which are polygonal meshes or linear ex-
trusions. In their method, virtual vertices are computed
by a space subdivision and an “explosion map” accelera-
tion scheme.
Fig. 1 depicts three different strategies for simulating
specular reflections: ray tracing (left), virtual objects (mid-
dle), and our approach (right), which combines aspects of
both ray tracing and virtual objects. The key ideas be-
hind the three different approaches can be characterized
by the type of question they attempt to answer. In the ray
tracing approach, one asks: Given a viewpoint and a point
on a reflecting surface, what point of the environment is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216264677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2000, PAGES 253-264

seen reflected there? However, if we drive the rendering
based on the objects of the scene and not the pixels, we
ask a different question: Given a viewpoint and a point
in 3-space, where does its reflection appear? This is the
question Mitchell and Hanrahan [1] confronted in rendering
caustics. Unfortunately, the latter question is much more
difficult to answer for several reasons. First, the answer
may not be unique. That is, a single point may have many
reflections, even in a single smooth surface. See Fig. 8.
Secondly, while the reflected point is typically easy to ex-
press analytically using only the surface normal at the re-
flection point (and standard ray-intersection procedures),
finding the position of the reflection point, or the virtual
point usually requires numerical approximation, even for
very simple reflecting geometries.

Our approach is based on a third type of question: How
does the reflection of an object move when the object
moves? The rationale for considering this form of reflec-
tion problem is that specular reflections in smooth surfaces
vary continuously as a function of object position, except
when occlusion or boundary conditions intervene. More-
over, when expressed in terms of differential motions, this
question can be answered analytically even for very com-
plex geometries. Previous work on exploring differential
movements of this nature includes Ward and Heckbert’s
irradiance gradient for higher-order interpolation [9], and
Igehy’s ray differential for texture filtering [10]. In this pa-
per we describe an algorithm for rapidly computing highly
accurate reflections in curved specular surfaces by exploit-
ing this third category of reflection problem. The method is
fast enough to interactively update the specular reflections
on static reflective surfaces while moving diffuse objects.

By characterizing how specular reflections change as a
result of perturbing an object with a known reflection, we
may rapidly approximate a family of very similar reflec-
tions from a single nearby reflection. The central idea be-
hind our approach is to approximate the reflection of any
point in 3-space by viewing it as a perturbation of a known
reflection. Thus, from a sparse set of known reflections, we
can quickly construct any reflection at all. In effect, this
is an interpolation method for reflections, as it allows a
continuous reflection to be constructed from discrete sam-
ples while preserving the exact behavior at those samples.
From these interpolated reflections, virtual objects are con-
structed and rendered along with real objects using graph-
ics hardware supporting alpha blending and z-buffering.
This hardware rendering is most similar in spirit to the
work of Ofek and Rapport. Our most significant point of
departure is in the use of perturbation theory [11] to ac-
curately locate the position of the virtual object. To that
end, one of the central contribution of this paper is the use
of a closed-form expression for perturbing specular reflec-
tions. By using second-order approximation, we can attain
extremely faithful reflection geometry.

In the next section, we present the general idea of our
path perturbation theory and present the closed-form for-
mulas for first- and second-order perturbations of a spec-
ular reflection path. Detailed derivation of these formulas

are given by Chen [12] and Chen and Arvo [13]. Section III
is devoted to the description of an algorithm for rapidly
approximating specular reflections on arbitrary curved sur-
faces, with a focus on the computation of virtual objects
using path perturbation formulas shown in Section II. Re-
sults and further discussion of this perturbation approach
are demonstrated in Sections IV and V. We conclude with
some future directions.

II. Specular Path Perturbation

Our perturbation method is motivated by the fact that
reflections tend to have a great degree of coherence; in gen-
eral, as two objects p and p′ grow nearer to each other, as
shown in Fig. 1c, so will their reflections x and x′. Here
coherence means local smoothness of specular reflections.
That is, given a known reflection path from a fixed point
q to p via a smooth surface, it is likely that the reflection
point x will vary continuously as a function of the posi-
tion of p, that is, x = Ψ(p), where the smooth function
Ψ : IR3 → IR3 is called the path function. The essence
of specular path perturbation is to approximate families
of closely related reflection paths using a high-dimensional
Taylor expansion of Ψ around a given path. In this way,
the reflection from q to a new point p′ in the neighborhood
of p can be obtained by perturbing x analytically.
For a vector-valued function Ψ with three components
Ψ1, Ψ2 and Ψ3, the second-order Taylor expansion can be
expressed as:

Ψ(p+∆p) = Ψ(p)+J∆p+
1

2
∆pTH∆p+O(||∆p ||

3
), (1)

which is the perturbation formula to update a given path
through p to a new path reaching the neighboring point
p+∆p. Here, the first-order derivative J is a 3× 3 matrix
defined by

J ≡
∂Ψ(p)

∂p
=

Ψ1,1 Ψ1,2 Ψ1,3
Ψ2,1 Ψ2,2 Ψ2,3
Ψ3,1 Ψ3,2 Ψ3,3

 , (2)

where Ψi,j ≡ ∂Ψi/∂pj . The second-order derivative H is a
third-order tensor, which consists of three Hessian matrices
H1,H2,H3 corresponding respectively to coordinates x, y
and z, given by

Hi ≡
∂2Ψi(p)

∂p2
=

Ψi,11 Ψi,12 Ψi,13
Ψi,21 Ψi,22 Ψi,23
Ψi,31 Ψi,32 Ψi,33

 (3)

for i = 1, 2, 3, where Ψi,jk ≡ ∂2Ψi/∂pj∂pk. The
term ∆pTH∆p in equation (1) denotes a vector
(

∆pTH1∆p, ∆pTH2∆p, ∆pTH3∆p
)

. We call J and H
the path Jacobian and the path Hessian, which provide the
first- and second-order approximations to the path func-
tion, respectively.
To extend equation (1) to a general path withN bounces,
we order the reflection points from the perturbed point p
to the fixed point q as p = x0,x1, . . . ,xN,q = xN+1, and

CHEN AND ARVO: PERTURBATION METHODS FOR INTERACTIVE SPECULAR REFLECTIONS 3

consider each reflection point xi as a function of the previ-
ous point xi−1. By computing the first- and second-order
derivatives of this function with respect to xi−1, which cor-
respond to a Jacobian matrix Ji and a Hessian tensor Hi
with forms similar to (2) and (3), we can perturb the en-
tire path recursively, beginning at p and stepping toward
q. That is,

x′i = xi + Ji∆xi−1 +
1

2
(∆xi−1)

T
Hi∆xi−1, (4)

where i = 1, 2, 3, . . . , N , ∆xi−1 = x
′

i−1 − xi−1, ∆x0 =
p′−p and the tensor product (∆xi−1)

T
Hi∆xi−1 is defined

as before.
The closed-form formula for path Jacobians is derived
from the Fermat principle [14], Lagrange Multiplier Theo-
rem [15], and the Implicit Function Theorem [16]. Based
on the expression for path Jacobians, path Hessians can be
computed via tensor differentiation. We provide an out-
line of the derivations and major results below. Interested
readers can refer to Chen and Arvo [13] and Chen [12] for
further details.
It follows from the Fermat principle of shortest distance
that the reflection point x is a point lying on the reflective
surface that locally minimizes the optical path length from
p to q. Given an implicit function g(x) = 0 defining the
reflecting surface, we can apply the method of Lagrange
Multipliers to the resulting constrained optimization prob-
lem [1] to obtain a non-linear system in the case of one-
bounce reflections. That is, we must solve

−
(pi − xi)

||p− x ||
−
(qi − xi)

||q− x ||
+ λ
∂g(x)

∂xi
= 0

g(x) = 0,

(5)

where i = 1, 2, 3. We denote it by F (p,x, λ) = 0, where
F has the four components (F1, F2, F3, F4) shown in equa-
tion (5). From the Implicit Function Theorem, we know
that there exists an explicit function f : p→ (x, λ) within
a neighborhood of the given path, provided that the 4× 4
Jacobian matrix

[

∂F (p,x, λ)

∂(x, λ)

]

≡

[

∂F

∂x

∂F

∂λ

]

is nonsingular. Moreover, the path Jacobian J can be com-
puted analytically without explicit knowledge of the func-
tion f [16, pp.211-213]. In particular,

J = sub

(

−

[

∂F (p,x, λ)

∂(x, λ)

]

−1

4×4

[

∂F (p,x, λ)

∂p

]

4×3

)

, (6)

where sub : Hom(IR3, IR4) → Hom(IR3, IR3) is an opera-
tor taking a 4 × 3 matrix to a 3 × 3 matrix by dropping
the last row, and Hom(V,W) represents the space of lin-
ear mappings from the vector space V to the vector space
W [17, pp.45]. For clarity, we have indicated the matrix
dimensions with subscripts in equation (6).
For an N -bounce path, a similar derivation can be per-
formed on each ray segment formed by three consecutive

points. By introducing an operator aug : Hom(IR3, IR4)→
Hom(IR4, IR4) to expand a 4 × 3 matrix with a zero col-
umn, the path Jacobians Ji in a multiple bounce path can
be shown to satisfy a recurrence relation derived from the
chain rule:

Ji = sub
(

− [Ai + aug(Bi · Ji+1)]
−1
Ti
)

, (7)

where JN+1 = 0 and Ji(i = N, . . . , 1) is computed sequen-
tially from the fixed point q = xN+1 to the perturbed point
p = x0, and Ai, Bi, Ti are given by

Ai =

[

∂Fgi(xi−1,xi,xi+1, λi)

∂(xi, λi)

]

4×4

Bi =

[

∂Fgi(xi−1,xi,xi+1, λi)

∂xi+1

]

4×3

(8)

Ti =

[

∂Fgi(xi−1,xi,xi+1, λi)

∂xi−1

]

4×3

.

Letting Γi = [Ai + aug(Bi · Ji+1)] and Di = −Γ
−1
i Ti,

we may rewrite equation (7) as

T = −Γ ·D, (9)

where we have omitted the subscript i for simplicity.
Henceforth, we assume that all the variables with no sub-
scripts are associated with a particular reflection point xi.
For the second-order approximation, we need to compute
the gradient of the matrix D, denoted by ∇D [18, pp.62].
The gradient ∇D is a third-order tensor and can be de-
scribed with several different formalisms. It can be viewed
as: the scalar components (∇D)mij , the vector entries
∇(Dij), or the matrix layers ∇mD, defined respectively
as

(∇D)mij ≡
∂Dij
∂(xi−1)m

, ∇(Dij) ≡
∂Dij
∂xi−1

, ∇mD ≡

{

∂Dij
∂(xi−1)m

}

,

where i = 1, 2, 3, 4 and m, j = 1, 2, 3. By differentiating
both sides of equation (9) with respect to xi−1 using Carte-
sian tensor notation, we obtain

∇mD = −Γ
−1 (∇mT +∇mΓ ·D) (10)

for m = 1, 2, 3. The formulas for ∇T and ∇Γ are given by

∇(Tjk) =
∂Tjk
∂xi−1

+
∂Tjk
∂xi+1

· Ji+1 · Ji +
∂Tjk
∂(xi, λi)

·D (11)

(∇Γ)mjl =

(∇mA+∇mB · Ji+1 +B · ∇mC)jl
(l = 1, 2, 3)

(∇A)mjl (l = 4)

(12)

where

∇ (Ajr) =
∂Ajr
∂xi−1

+
∂Ajr
∂xi+1

· Ji+1 · Ji +
∂Ajr
∂(xi, λi)

·D

∇ (Bjk) =
∂Bjk
∂xi−1

+
∂Bjk
∂xi+1

· Ji+1 · Ji +
∂Bjk
∂(xi, λi)

·D

∇ (Ckl) = ∇ ((Ji+1)kl) · Ji (13)

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2000, PAGES 253-264

Preprocess: Trace sparse
set of rays, and build octree.

1.

Edit: Modify diffuse scene
 geometry.

2.

For each modified vertex in scene:

Render using alpha-blending
and z-buffering.

7.

Find closest reflection rays
using octree.

3.

Compute path Jacobians and
path Hessians.

4.

Interpolate new reflection
points using perturbation.

5.

Compute new virtual vertices.6.

in
te

ra
ct

io
n

lo
op

Fig. 2. Overview of the algorithm for interactively computing spec-
ular reflections using local perturbations.

for j, r = 1, 2, 3, 4 and m, k, l = 1, 2, 3. It follows from
equation (3) and J = sub(D) that the Hessian tensor can
be formed from ∇D by1

Hjkm =
∂Ψj
∂pkpm

=
∂Jjk
∂pm

= (∇J)mjk = (∇D)mjk. (14)

for j, k,m = 1, 2, 3. The dependence of the ith path Hessian
on Ji, Ji+1 and ∇Ji+1 implied by equation (13) suggests
that path Jacobians and path Hessians for an N -bounce
path can be computed together, from the fixed point prop-
agated to the perturbed point. Pseudo-codes describing all
the steps of the computation is given in Section III-C.2.

III. A Perturbation Approach for Specular

Reflections

In this section we present an algorithm for rapidly com-
puting highly accurate reflections of dynamic objects in
static curved specular reflecting surfaces. We define an
interpolation scheme in the sense that we employ the an-
alytic perturbation formula (4) shown in the previous sec-
tion to construct a continuous reflection from discrete sam-
ples, which preserves the exact behavior at those samples.
By combining ray tracing and hardware-supported alpha-
blending and z-buffering, the entire process is fast enough
for real-time interaction.

A. Overview

An overview of the process is shown in Fig. 2. It can be
divided into three parts: preprocessing, computing virtual
objects, and hardware rendering. The latter two parts form
a loop during interactive rendering. Before the interaction
loop begins, two steps are performed as preprocessing: a
sparse set of rays is traced through the environment using
standard ray tracing, and an octree hierarchy is constructed
to partition the resulting reflection rays into small candi-
date sets. The heart of the algorithm, computing virtual
objects, is shown within the shaded box of Fig. 2. Initially,
for each tessellated vertex of a reflected object, these steps
compute its virtual vertices which are then used to gener-
ate specular reflections of the scene. Updating each vir-
tual vertex is accomplished in four steps, as shown in the
figure: (1)finding the closest reflection rays using the oc-
tree, (2)computing path Jacobians and path Hessians, (3)in-
terpolating new reflection points using perturbation, and
(4)computing new virtual vertices. Finally, both the real
objects and the virtual objects are rendered using standard
graphics hardware that supports both alpha-blending and
z-buffering. After tessellation, the specular reflectors are
rendered as transparent surfaces, with transparency deter-
mined by their reflectivity. The following sections describe
these steps in detail.

B. Preprocessing

B.1 Sparse Sampling

Our perturbation formula requires the existence of true
reflection paths in order to interpolate new reflections. Due
to the smooth variation of specular reflections, these sam-
ples may be relatively sparse over the image plane. In
addition, if both the viewpoint and reflecting surfaces are
fixed, these sampled paths can be reused for each update
of the interactive computation.
The sampling over the image plane is performed with a
ray tracer and done uniformly. We cast a sparse set of sam-
ple rays from the given vantage point and trace specular
reflections in the scene using standard ray tracing tech-
niques, skipping to every nth pixel in a scan line, and skip-
ping to every nth scan line. In our tests, n varied from 8
to 32. We store all reflection paths with a depth less than
or equal to the maximum level of specular reflections to be
handled. All reflection points and associated reflecting sur-
faces along the path are retained. The reflection paths are
distinguished into different types according to the number
of bounces and the order in which surfaces are hit. For
example, given a scene containing two reflectors, A and
B, and a maximum reflection depth of two, the sampling
results in four types of reflection rays: those that hit A,
those that hit B, those that hit A then B, and those that
hit B then A. These rays will serve as the samples from
which all other reflections are interpolated. By perturbing
different types of sample rays, we can approximate both
single-bounce and multiple-bounce specular reflections. In

1For a multiple-bounce path, p in equation (14) is xi−1, and Ψ, J,
D and H are all associated to the ith reflection point.

CHEN AND ARVO: PERTURBATION METHODS FOR INTERACTIVE SPECULAR REFLECTIONS 5

the example of two reflectors, the four types of rays will be
used to interpolate up to the second-level reflections.
For a smooth and implicitly-defined reflecting surface,
we tessellate it into triangles, which are used both for z-
buffered rendering and for accelerating ray-surface inter-
sections; that is, ray-surface intersection is approximated
by ray-triangle intersection. To improve the accuracy of
the reflected rays, we use the surface normal at the inter-
section point instead of the triangle normal to determine
the reflection ray. Surface normals for the curved surfaces
can be obtained from the gradient of the function used to
define them implicitly. To effectively handle the large num-
ber of triangles, a bounding slab hierarchy [19] is used to
reduce the computation cost of tracing rays.

B.2 Constructing the Ray Octree

Because our approach interpolates by perturbing several
nearest-neighbors, it is important to find a set of nearest
reflection rays for any given point very quickly. Since there
may be a large number of reflection rays, we wish to avoid
a linear search. The approach we take is to construct an
octree whose root node encloses the space bounding all
dynamic objects of the environment. The subdivision of
the octree is determined by the distribution of the pre-
computed reflection rays; a set of rays is associated with
each node of the octree that is guaranteed to contain the k
nearest rays for any point inside the cell. Once the octree
is created, the closest rays to any point can be found by
searching only those rays stored with the cell containing
the point.
The key element for this space subdivision approach is
to identify a small set of ray candidates for each cell of
the octree. The procedure RayCandidateSet in Fig. 3 finds
a subset of the rays that is guaranteed to contain the k
closest rays to any point within a sphere S, which encloses
a cell of the octree. The octree is then built recursively,
building each candidate set from the candidate set of its
parent node. The recursive subdivision terminates when
further subdivision fails to reduce the candidate set or the
candidate set has exactly k members.
Once the octree is constructed, we find the k closest rays
to a given point p by first locating the octree cell containing
p, then searching its candidate list. Since points are very
likely to be clustered closely together, locating the cell can
be optimized by finding the first common ancestor with the
previous point, and then descending to a leaf, which is a
well-known optimization used in ray tracing [20].
Given a sphere S, a set of rays R, and an integer k, the
algorithm shown in Fig. 3 returns a set of rays R∗ that
will contain the k closest lines to any point in the sphere.
When S is small compared to the original scene, R∗ will
generally be a small subset of R.

C. Computing Virtual Objects

After the preprocessing, the sparsely-sampled reflection
rays are retained in a hierarchical structure. Each ray is
tagged to record the position of reflectors along the reflec-
tion path. Then, when a non-specular object in the scene is

RayCandidateSet(Sphere S, Rays R, integer k)

Point A ← center of sphere S
Scalar r ← radius of sphere S
Rays R∗ ← empty set

Compute distance interval for each ray, and keep
all rays that intersect S.

for each ray ̺ ∈ R do
d ← distance from ray ̺ to the point A
̺.min ← d− r
̺.max ← d+ r
if ̺.min ≤ 0 then add ̺ to R∗

endfor

Ensure that the set R∗ contains at least k rays.

if |R∗| < k then
Rays S ← elements of R−R∗ sorted by

increasing min distance
add the first k − |R∗| elements of S to R∗

endif

Include all rays that are among the k closest to
some point in S.

Scalar α ← maximum of ̺.max among all ̺ ∈ R∗

for each ̺ ∈ R−R∗ do
if ̺.min < α then add ̺ to R∗

endfor

For any point p ∈ S the subset R∗ ⊂ R now
contains the k rays of R that are closest to
p (and possibly others).

return R∗

end

Fig. 3. Pseudo-code to find the k closest rays to any point within a
sphere enclosing an octree cell.

manipulated, the algorithm computes new virtual objects
for each reflected object that was modified.

The virtual object of a reflected object is constructed
by connecting virtual vertices computed for each vertex of
the tessellated object. In order to “close” virtual objects,
we choose to compute virtual vertices for all the object
vertices rather than determining which vertices are invisi-
ble from the current viewpoint. Each reflected object may
correspond to several virtual objects, by virtue of multi-
ple reflecting surfaces, multiple reflections within a single
surface, or reflections at multiple levels. In the following
sections, we describe how to compute a virtual vertex for
an object vertex in detail.

C.1 Finding Closest Reflection Rays

Once the known reflection rays are stored in an octree, it
is easy to search the tree to get the candidate ray sets R∗

for any modified scene vertex p′. For convex reflectors, a

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2000, PAGES 253-264

point and its reflection has a one-to-one correspondence, we
simply pick the closest ray inR∗ and perturb it. However, a
point may have more than one reflection point in a concave
surface, Fig. 8 illustrates such an example. To generate
multiple reflections in a non-convex surface, we require a
mechanism that can detect rays associated with multiple
reflections and divide the rays into groups. With a correct
grouping, multiple reflections can be split by interpolating
the rays in the respective groups.
Without prior information about reflective properties of
a curved reflector, it is very difficult to split reflections cor-
rectly and robustly. In our implementation, we use several
heuristics to decide whether the chosen k closest reflection
rays (k > 1) should be split or not. Based on an assumption
that two different reflections in a concave surface are gener-
ally perturbed from reflection rays which are well-separated
or point in different directions, we choose the reflection dis-
tance (distance between corresponding reflection points of
two rays) and the ray direction as two criteria for grouping.
That is, the reflection rays in the same group are assumed
to always have close reflection points and similar reflection
directions. We compute the angle between two reflection
directions to measure the direction similarity, and separate
them into groups that remain within user-defined thresh-
olds.
For a given point p′, we first find the k closest reflection
rays (k = 5 in our case) in ascending order from the ray
candidate set and then do the grouping test. Initially, we
assign the nearest of the chosen k rays as the representative
of the first group. Then, for each of other k − 1 rays, we
check the angles and the reflection distances between it and
representatives of existing groups. If either the angle or the
distance is over a pre-defined threshold for each represen-
tative, we assume this ray will contribute to another new
reflection point for p′ and assign it as the representative of
a new group. Otherwise, it belongs to an existing group.
Since our perturbation for a single reflection is based on the
nearest neighbor, this new ray can be thrown out to keep
only one closest ray for each group. Finally, depending on
the geometry of the reflector, we will obtain either one ray
(group) or several rays (groups) for perturbation; the latter
case results in multiple reflections in a single surface.

C.2 Computing Path Jacobians and Path Hessians

For a given point p′, once the closest reflection ray is
found, we find the point p on the ray which is closest to
p′. Now the problem of computing the new reflection x′

of p′ is reduced to the third reflection problem shown in
Fig. 1c, that is, computing how the position of the known
reflection point x changes as the actual point p is perturbed
by ∆p = p′−p. To apply the perturbation formula (4) to
approximate the new reflection point, we compute the path
Jacobians and/or path Hessians for the closest reflection
path found.
In Section II, we showed the closed-form formulae for
path Jacobians and path Hessians for a general multiple-
bounce reflection path. Given a reflection path from p
(varying) to q (fixed) via reflection points x1,x2, . . . ,xN,

PathJacobians(Point p, q, x[], Surface g[], int N)

1 Matrix J[]
2 x0 ← p

Compute the last path Jacobian
3 JN ← SimpleJac(xN-1, xN, q, 0, gN)

Compute the other path Jacobians from back to front
4 for i = N − 1, . . . , 1
5 Ji ← SimpleJac(xi−1, xi, xi+1, Ji+1, gi)
6 endfor
7 return J

SimpleJac(xi−1, xi, xi+1, Ji+1, gi)

1 Matrix A,B,C,Γ, T,Di,Ji

Compute lagrange multiplier λi for the ray segment
xi−1 − xi − xi+1

2 Vector h ← gradient of gi at xi
3 hj ← Nonzero component of h

4 Scalar λi ←
1

hj

(

(xi−1)j − (xi)j
||xi−1 − xi ||

+
(xi+1)j − (xi)j
||xi+1 − xi ||

)

Compute the Jacobian matrices of F with respect to
different variables using equation (8), evaluated
at (xi−1,xi,xi+1, λi).

5 A ← [∂F/∂(xi, λi)]
6 T ← [∂F/∂xi−1]
7 if Ji+1 6= 0 then
8 B ← [∂F/∂xi+1]
9 C ← B ∗ Ji+1
10 C ← C expanded with a zero column
11 Γ ← A+ C
12 else
13 Γ ← A
14 endif

Apply recursive formula (7)
15 Di ← Γ

−1T
16 Ji ← the first three rows of Di
17 return Ji

Fig. 4. Pseudo-codes to evaluate path Jacobians for a specular re-
flection path from p to q via N reflection points stored in the
array x[].

and the corresponding reflecting surfaces g1, g2, . . . , gN, the
steps for computing the path Jacobian for each xi can be
summarized by the pseudo-codes in Fig. 4, where the sub-
routine SimpleJac is called to compute the path Jacobian
for a single bounce path segment.

The Jacobian matrices A, B and T in lines 5, 6 and
8 of SimpleJac are computed by evaluating the first-order
partial derivatives of the four explicit equations Fi shown
in equation (5). Since Fi’s are based on the gradient of
the implicit function, the gradient vector and the Hessian
matrix of the corresponding implicit function g are required
to compute the path Jacobian. For any smooth function g,

CHEN AND ARVO: PERTURBATION METHODS FOR INTERACTIVE SPECULAR REFLECTIONS 7

its mixed partial derivatives are order-independent, which
reduces the cost of computing the required partials.

As shown in Section II, the ith path Hessian is not only
dependent on the ith path Jacobian, but also dependent on
the (i+1)th path Jacobian and path Hessian. Therefore, if
the second-order approximation is required, we start from
the last bounce, and for each reflection point compute the
path Jacobian followed by the path Hessian. The following
pseudo-code summarizes the steps to compute the second-
order approximation (including both path Jacobians and
path Hessians) of an N -bounce path.

PathJacHess(Point p, q, x[], Surface g[], int N)

1 Matrix J[]
2 Tensor H[]
3 x0 ← p

Compute the last path Jacobian and Hessian.
4 JN ← SimpleJac(xN-1, xN, q, 0, gN)
5 HN ← SimpleHess(xN-1, xN, q, gN, JN, 0, 0)
Compute the other path Jacobians and path
Hessians from back to front

6 for i = N − 1, . . . , 1
7 Ji ← SimpleJac(xi−1, xi, xi+1, Ji+1, gi)
8 Hi ← SimpleHess(xi−1, xi, xi+1, gi,

Ji, Ji+1, Hi+1)
9 endfor
10 return J, H

To compute the path Hessian for each intermediate
bounce, PathJacHess calls a subroutine SimpleHess re-
cursively, which is provided in Fig. 5. To evaluate the
partial derivatives in lines 7, 8 and 9 of SimpleHess, the
second-order partial derivatives of the four explicit equa-
tions F1, · · · , F4 in equation (5) are required, which in turn
requires the third-order derivatives of the implicit func-
tion g.

Due to the computational cost associated with path Hes-
sians, we use the second-order perturbation only when the
local curvature of the curved surface is estimated to be
large. For nearly flat areas, the linear approximation with
path Jacobians is sufficient. The local curvature of an im-
plicit surface can be approximated in several ways; for ex-
ample, by computing the second-order derivatives of the
implicit function, or by using finite differences.

C.3 Interpolating Reflection Points

Let p′ be a point near p. Suppose (p,x1, . . . ,xN,q) is
a known reflection path found to be closest to p′. When
viewed from the fixed vantage point q, the Nth level reflec-
tion of p appears at the position xN in the corresponding
curved surface. When the perturbation from p to p′ is
small, the Nth reflection of p′ on the same surface can
be obtained by perturbation. With path Jacobians and/or
path Hessians evaluated for this closest known path, we
can choose to approximate the Nth level reflection of p′ to
different accuracy. That is, the new reflection point x′

N
can

SimpleHess(xi−1, xi, xi+1, gi, Ji, Ji+1, Hi+1)

1 Matrix A,B, T,Di ← obtained from SimpleJac
2 Tensor ∇T , ∇A, ∇B, ∇C, ∇E, ∇Γ, ∇Di, ∇Ji+1
3 Tensor Hi
4 ∇Ji+1 ← Hi+1 reorganized according to equation (14)

Compute the gradient ∇T , ∇A, ∇B, ∇C according
to equations (11) and (13).

5 for j, r = 1, 2, 3, 4
6 for k, l = 1, 2, 3

7 ∇(Tjk) ←
∂Tjk
∂xi−1

+
∂Tjk
∂xi+1

· Ji+1 · Ji+
∂Tjk
∂(xi, λi)

·Di

8 ∇(Ajr) ←
∂Ajr
∂xi−1

+
∂Ajr
∂xi+1

· Ji+1 · Ji+
∂Ajr
∂(xi, λi)

·Di

9 ∇(Bjk) ←
∂Bjk
∂xi−1

+
∂Bjk
∂xi+1

· Ji+1 · Ji+
∂Bjk
∂(xi, λi)

·Di

10 ∇(Ckl) ← ∇((Ji+1)kl) · Ji
11 endfor

12 endfor

Compute the gradient ∇Γ according to equation (12).
13 for m = 1, 2, 3
14 ∇mE ← ∇mA+∇mB · Ji+1 +B · ∇mC
15 endfor
16 for m = 1, 2, 3
17 for j = 1, 2, 3, 4
18 for l = 1, 2, 3
19 (∇Γ)mjl ← (∇mE)jl
20 endfor

21 (∇Γ)mj4 ← (∇A)mj4
22 endfor

23 endfor

Compute the gradient ∇Di according to equation (10).
24 for m = 1, 2, 3
25 ∇mDi ← −Γ

−1 (∇mT +∇mΓ ·Di)
25 endfor

Compute path Hessian from ∇Di using equation (14).
26 for j, k,m = 1, 2, 3
27 (Hi)jkm ← (∇Di)mjk
28 endfor
29 return Hi

Fig. 5. Pseudo-code to evaluate the path Hessian tensor for an
intermediate bounce of an N-bounce specular reflection path.

be approximated to first-order accuracy by

x′i = xi + Ji∆xi−1 (15)

or to second-order accuracy by

x′i = xi + Ji∆xi−1 +
1

2
(∆xi−1)

T
Hi∆xi−1 (16)

where i = 1, 2, 3, . . . , N , ∆xi−1 = x
′

i−1 − xi−1 and ∆x0 =
p′ − p. Shown in Fig. 6 are several known single-level re-
flection paths associated with the given view point and re-
flector. All other single-level reflections are approximated

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2000, PAGES 253-264

view point
virtual object

actual object

reflective surface

known reflection path

Fig. 6. The reflection of an actual object is computed by perturb-
ing one or more known reflection paths. All virtual objects are
then z-buffered with the rest of the environment. The reflect-
ing surface is alpha-blended, with transparency corresponding to
reflectivity of the actual surface.

by perturbing these, using the nearest reflection ray in each
case. The resulting virtual vertices define a virtual object
corresponding to the reflection, as described in the follow-
ing section.

C.4 Computing the Virtual Vertex

Once the reflection point x′ of the point p′ is approx-
imated, it is used to compute the corresponding virtual
point v′. This virtual point is placed at a distance from
the eye that is equal to the optical path length from the
eye to the actual point. This places the point v′ behind the
reflecting surface. By preserving the optical path length in
the virtual objects, we preserve their ordering with respect
to z-buffering. That is, z-buffering will have the correct
effect on the resulting virtual objects and actual objects.
It is important that all surfaces of reflected objects be
finely tessellated, as the mapping from actual to virtual ob-
ject is non-linear, and will warp all surfaces. It is also nec-
essary to assign pre-computed vertex colors to the virtual
object that match the actual object, rather than allowing
the 3D graphics hardware to shade them. This is because
the orientation and distance of the virtual objects with re-
spect to the light sources will in general produce shading
that is inconsistent with the corresponding actual object.
Based on the octree hierarchy created in the preprocess-
ing pass, the algorithm that combines the above four steps
to compute a virtual vertex for a single point in 3D is sum-
marized in Fig. 7. Here, the virtual vertex computed is for
a single-level specular reflection, the point q passed in is
the view position where the sample rays originate and the
second-order perturbation is used.

D. Hardware Rendering

After all the virtual objects are constructed, the entire
scene, consisting of real and virtual objects, is rendered
using standard graphics hardware that supports both z-
buffering and alpha-blending. The use of z-buffering and
alpha-blending in this context is made possible by sev-
eral important facts. First, since virtual objects are posi-
tioned behind the reflective surface with respect to the view

ComputeVirtualVertex(Point q, p′, Surface g)

Cube C ← cell containing p′

Rays R ← candidate set of C

Find the nearest ray to p′ using a linear search.
Ray ̺ ← the ray of C closest to p′

Perturb the path according to equation (16).
Point x ← origin of the ray ̺
Point p ← the point on ̺ closest to p′

Vector ∆p ← p′ − p
Matrix J,Tensor H ← PathJacHess(p, q, x, g, 1)
Point x′ ← x+ J∆p+ 1

2
∆pTH∆p

Create the virtual vertex .

return x′ +
||x′ − p′ ||

||x′ − q ||
(x′ − q)

Fig. 7. Pseudo-code to compute the virtual vertex for a single-level
specular reflection of a perturbed point p′, viewed from q.

point, reflectivity of a surface can be simulated using alpha-
blended transparency to “merge” specular reflections onto
real objects. Second, since the optical length is preserved in
computing the virtual vertices, the correct depth informa-
tion and ordering of real and virtual objects is maintained.
Therefore, hidden surface removal and relative visibility are
correctly handled by z-buffering, even for reflections.
The idea of using a hardware graphics pipeline to sim-
ulate more advanced effects has a long history. For exam-
ple, Williams simulated shadows of curved objects using
multiple z-buffer passes [21], while Haeberli and Akeley
proposed the use of multiple images and an accumulation
buffer to perform hardware anti-aliasing [22]. In a similar
spirit, Diefenbach and Badler [23] employed accumulation
buffers and projective texture mapping to simulate spec-
ular reflection and transmission. However, our approach
fits naturally into a single pass though a standard graphics
pipeline, with the only caveat being that the shading of
virtual objects must be handled in software.

IV. Results

We have implemented our perturbation algorithm using
Open Inventor on a SGI Indigo2. The reflecting surface
we chose is a vase model defined by the implicit function
g(x, y, z) = 0, where

g(x, y, z) =
√

x2 + y2 −

[

a
(z

h

)3

+ b
(z

h

)2

+ c
(z

h

)

+ d

]

.

Here a, b, c, d are polynomial coefficients for the contour
of the vase, and h is the height of the vase. Specifically,
a = 5.80, b = −9.78, c = 3.90, d = 0.47, h = 2. This
surface is a good test of our method because it has mixed
convexity. At some locations, an object may have two re-
flection images on the vase, one near the top and the other
near the bottom. The vase is equipped with a bounding
slab hierarchy to speed up the ray-surface intersection.

CHEN AND ARVO: PERTURBATION METHODS FOR INTERACTIVE SPECULAR REFLECTIONS 9

Fig. 8. Side-by-side comparison of one-bounce reflection images gen-
erated by the perturbation method (left) and ray tracing (right).
The results are nearly identical, yet the images in the left col-
umn can be computed very rapidly (approximately 0.1 seconds
per update) as the lizard-shaped polygon is moved interactively.

Fig. 9. Side-by-side comparison of multiple-bounce reflection im-
ages generated by the perturbation method (left) and ray tracing
(right). The images on the left show all reflections up to two
bounces, while the ray traced images on the right show all reflec-
tions up to a depth of five.

For a scene with a reflecting vase and a diffuse polygonal
lizard, Fig. 8 shows a side-by-side comparison of the re-
flection images of the lizard generated by our perturbation
method and ray tracing. The top image is the full view of
the scene, and the bottom shows a closeup of the reflection
near the bottom. The images in the left column are gen-
erated by perturbation and the ray traced images on the
right are rendered by PovRay, a widely available ray tracer.
The image resolution is 640 × 480 and the lizard is trian-
gulated by connecting 61 vertices. After casting 40 × 30
sample rays in the preprocessing, we computed the bottom
reflection with linear interpolation using the single-bounce
path Jacobian, and approximated the top reflection to the
second-order accuracy using the path Hessian to handle the
greater curvature near the neck of the vase. The resulting
image is nearly indistinguishable from the ray traced ver-
sion.

TABLE I

Performance comparison between perturbation and ray tracing.

pre-processing updates
Fig. 8 Fig. 9 Fig. 8 Fig. 9

Perturbation 0.43 9.6 0.1 0.7
Ray Tracing 41 67 41 67

As an example of generating multiple-bounce specular
reflections by the perturbation method, another reflector
has been added to the scene. Here, the second-level spec-
ular reflections are computed by perturbing two-bounce
paths to first-order accuracy using the recursive formula
derived for multiple-bounce path Jacobians. The side-by-
side comparison with a ray traced image is shown in Fig. 9.
Similarly, the bottom images show a closeup view of the
two-bounce reflections. 80 × 60 sample rays were casted
for this 640× 480 image. The reflections (virtual objects)
of the vase and the sphere are constructed by tessellating
them into 1250 triangles. The ray traced images are ren-
dered with a maximum depth of 5, which accounts for the
third-level reflections in the right column. The reflections
up to the second-level are nearly identical for both meth-
ods. The slight difference in shading in the two images is
due to slightly different shading algorithms used in hard-
ware and software.

We have compared our perturbation algorithm and
PovRay on a SGI Indigo2 working at 175 Mhz R10000,
with Impact graphics board. Excluding the preprocessing
time from our perturbation method and the time for pars-
ing and creating bounding slab tree from ray tracer, their
performances on these two scenes are summarized in TA-
BLE I. The second column shows the time for rendering
the initial whole scene, and the third column shows the
time for updating the scene while moving the lizard. Fig. 8
and Fig. 9 demonstrate that perturbation provides a great
speedup over conventional ray tracing with little sacrifice
in accuracy. Most importantly, by exploiting path coher-
ence from frame to frame, which is also a motivation of
path perturbation, we can rapidly update specular reflec-
tions while moving diffuse objects interactively. In the case
of the scenes shown in Fig. 8 and Fig. 9, each update takes
less than one second.

In Fig. 10, we render a scene with a reflecting vase, a
window, a floor, and a moving icosahedron. The reflec-
tions of the window, the floor and the icosahedron are all
interpolated to second-order. Hidden surface removal is
performed by z-buffering the entire scene, including the
reflections simulated by virtual objects. Fig. 10 shows sev-
eral frames in an animation sequence, which are generated
interactively at 30 frames/sec.

V. Discussion

We have described a practical approach for rapidly com-
puting specular reflections in arbitrary implicitly-defined
curved surfaces. The technique uses second-order pertur-
bations of known specular reflection paths, which are ray

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2000, PAGES 253-264

Fig. 10. Images generated interactively by repositioning, rotating, and scaling the icosahedron. The reflection of the icosahedron is updated
in real time as it is moved. Hidden surface removal is performed in one pass of z-buffering for the entire scene, including the reflections.

traced in a pre-processing step, to compute virtual objects
for each reflection. The virtual objects and the real ob-
jects are then rendered using standard graphics hardware
supporting both alpha-blending and z-buffering. The en-
tire process is fast enough for real-time interaction, even
accounting for multiple-bounce specular reflections. The
simulated reflections are of very high accuracy, as indicated
by our test results, which are nearly identical to ray traced
images.
Next we discuss the limitations of our perturbation ap-
proach, several tradeoffs between its reflection quality and
performance, and contrast it with other related work.

Limitations: The implicit function defining the reflective
surface is encapsulated in the nonlinear system F and thus
the closed-form expression (6) for path Jacobians. There-
fore, it is required that the reflective surface has a differen-
tiable implicit definition, which also guarantees a continu-
ous specular reflections for our interpolation. A practical
extension would be to generalize the formulas for path Ja-
cobians and path Hessians to more popular surface repre-
sentations, such as parametric surfaces.
While computing virtual objects in Section III-C, we as-
sumed that the reflected object and the viewpoint always
lie on the same side of the reflector. As for mixed polygons
which are partially located on the other side of the reflector
with respect to the viewpoint, our current implementation
cannot find appropriate sample rays for some hidden ver-
tices and will thus fail. Although Ofek and Rappoport [8]
proposed a second z-buffer (relating to a reflector) for such
a problem, this approach is not well supported by current
graphics architecture. Another way to handle this problem
is to compute the virtual object only for the part of the
object that lies in front of the reflector.
Our perturbation approach has another limitation with
regard to concave reflectors, which can produce compli-
cated reflections. Ofek and Rappoport [8] classified the
space in front of a concave reflector into three reflection
regions. An object falling in regions A, B, or C generates
a single deformed virtual object, a single upside-down vir-
tual object, or multiple virtual objects, respectively. Thus,
when a reflected object crosses regions A and C (or B and
C), different object vertices may have different numbers of
virtual vertices. It is hard for our virtual object algorithm
to find the correspondence between these virtual vertices to
correctly “close” the virtual objects, and the resulting re-
flection image becomes “chaotic”. A possible way to handle

8× 8/413ms 10× 10/416ms 16 × 16/418ms

Fig. 11. Varying sample density affects reflection quality and ren-
dering time.

this case is to detect such a crossing and further decompose
the reflected object until it falls entirely within a region of
type A or B.

Sample Density: Since the second-order perturbation
has an error of order O(||∆p ||

3
), the accuracy of our per-

turbation method depends upon the underlying sample
rays. Denser sampling leads to smaller ||∆p ||, and thus
a higher accuracy. Fig. 11 shows how varying sample den-
sity affects reflection quality and rendering performance.
The image resolution is 512× 512. From left to right, the
reflections become finer as the sample rays become denser.
On the other hand, more sample rays increases the cost of
locating nearest neighbors, which increases rendering time.
Due to continuous specular reflections, the sampling over
the image plane can be relatively sparse. For the scene in
Fig. 11, an array of 16 × 16 sample rays produces nearly
identical results compared to those from 32× 32 sampling.

Tessellation: Tessellation presents another important
tradeoff to consider when using the perturbation method.
Since we create virtual objects by connecting virtual ver-
tices computed for each tessellated vertex of the reflected
objects, the complexity of this algorithm is linear in the tes-
sellation size of the reflected objects. However, the smooth-
ness of the simulated specular reflections is improved ac-
cordingly. Fig. 12 compares specular reflections as well as
rendering times corresponding to different levels of tessel-
lation. Each reflection image is generated by tessellating
the vase and the sphere with the number of triangles shown
beneath each image.

Approximation Order: Fig. 13 shows three images gen-

CHEN AND ARVO: PERTURBATION METHODS FOR INTERACTIVE SPECULAR REFLECTIONS 11

200/1.3s 450/2.6s 800/4.5s

Fig. 12. Varying tessellation levels cause different qualities and ren-
dering times.

0.36s 0.39s 0.53s

Fig. 13. Three images rendered using the sparse set of reflection rays.
Left: nearest neighbor interpolation. Middle: Linear interpola-
tion using the path Jacobian. Right: Quadratic interpolation
using the path Hessian.

erated by using three interpolation strategies of different
orders on a sparse set of sampled reflection rays. Given
40×30 sample rays, the left image uses the nearest neighbor
reflection without any perturbation, the middle image ap-
plies linear interpolation with the path Jacobian computed
for the nearest neighbor, and the right image is generated
from quadratic interpolation of the nearest neighbor using
the path Hessian. The reflection quality clearly improves
from left to right.
Without local perturbation, the sparse sample rays are
not dense enough to reasonably approximate the reflection.
The accuracy of linear interpolation and quadratic interpo-
lation is dependent on the local curvature of the reflecting
surface. Linear approximation works well near the rela-
tively flat bottom of the vase, while quadratic interpolation
becomes necessary to attain the same level of accuracy in
highly curved regions.
Another alternative is to pre-cache path Jacobians and
path Hessians in the preprocessing pass. This can be done
by deriving path Jacobians and/or path Hessians in terms
of a reflection direction rather than a particular position
along this direction. The motivation behind this is that
path Jacobians and/or path Hessians for the family of re-
flection paths represented by the same reflection direction
are closely related. Characterizing this relation analytically
is future work.

Comparison: Other work related to specular reflections
on curved surfaces include environment mapping and the

work of Ofek and Rappoport [8]. As mentioned in Section I,
environment mapping fails for dynamic objects relatively
close to the reflector. Although our method and the ap-
proach of Ofek and Rappoport are both based on the idea
of virtual objects, they are different in several important
respects.
• Curved reflectors are represented differently for these two
approaches. Ofek and Rappoport handle curved reflectors
with a polygonal mesh, while we deal with any curved
surface associated with a differentiable implicit definition.
The tessellation of the reflecting surfaces in our approach is
convenient for both ray tracing and z-buffering, but plays
no role in the computation of reflection points2. Hence,
other ray intersection and rendering procedures (such as
those that work directly with implicit surfaces) could be
employed without changing the essence of our approach.
• The explosion map used by Ofek and Rappoport to ac-
celerate the computation of virtual objects is similar to
an environment map and thus suffers from the same dis-
advantage of spherical environment mapping; that is, its
accuracy is dependent on the reflector shape. In addition,
by approximating the correct reflection ray by a ray from
the center of the reflector, none of the triangles in the map
correspond to the actual reflection cell, which distorts the
specular reflections for more complicated surfaces. Since
the surface curvature information is already embedded in
the formulae for path Jacobians and path Hessians, our
second-order perturbation can generate accurate reflections
for general curved surfaces. The approximation error for
the perturbation method comes from truncation, visibility
and boundary exceptions. Of course, error analysis is re-
quired for precise accuracy comparison between these two
methods.
• The method proposed by Ofek and Rappoport applies
only to single-level specular reflections in curved sur-
faces. In contrast, the perturbation method accommodates
multiple-bounce specular reflections as easily as single-
bounce reflections by using the closed-form recursive for-
mulae for path Jacobians and path Hessians.
• Ofek and Rappoport decomposed reflectors of mixed
curvexity into pure convex parts and pure concave parts.
By perturbing a specular path analytically, accounting for
the geometric properties of the reflector (by differentiat-
ing its implicit function to higher orders), our method can
handle mixed surfaces with no special cases.
In summary, both methods have their advantages and
limitations. In general, the approach of Ofek and Rap-
poport is more efficient for some special types of reflectors,
such as planar surfaces, linear extrusions, and spherical-like
surfaces, while our method is more accurate for compli-
cated curved surfaces. A very practical extension would be
to combine these two methods, as well as environment map-
ping to handle very complex scenes. Reflections of distant
static objects could be approximated using a conventional
environment map, while reflections of nearby dynamic ob-
jects could be computed more accurately by path pertur-

2When the reflector becomes a reflected object, its reflections are
computed from the tessellated points.

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO. 3, JULY-SEPTEMBER 2000, PAGES 253-264

bation or the explosion map, depending on the reflective
geometry and accuracy requirements.

VI. Future Work

Many extensions of the theory of specular path pertur-
bation are possible. For example, one could extend the
idea very naturally to a refraction path or a path mix-
ing reflection and refraction. With the index of refraction
taken into account, derivations for a refraction path follow
a similar strategy, and the same algorithm can be applied
to real-time simulation of lens effects. To precisely eval-
uate the accuracy of path perturbation, error analysis is
required to identify and quantify the error in the perturba-
tion method, which results from truncation of the Taylor
series, boundary exceptions, and changes in visibility. An-
other interesting topic is the extension of specular path
perturbation to more general parametric surfaces without
an implicit definition.
There are also many optimizations to make the approach
described in Section III faster and more robust, such as
adaptively sampling rays in the object space, based on the
contour of the reflector; balancing quality and performance
by choosing proper tessellation and interpolation strate-
gies; exploring more efficient ways to store and search the
sample ray space; and caching path Jacobians and/or path
Hessians.
There are potentially many other applications for pertur-
bation methods of this nature to image synthesis. For ex-
ample, path derivatives may prove useful for image warping
where specular effects are prominent [24], for stereoscopic
rendering in the context of emersive displays [25], for inter-
polating samples to speedup Monte Carlo ray tracing [26],
and for improved mutation strategies in metropolis light
transport [2].

Acknowledgments

The authors wish to thank Anil Hirani and Al Barr for
many valuable discussions, Don Mitchell and Pat Hanra-
han for their patience in answering our questions, and Mark
Meyer for helpful comments. This work was supported in
part by the NSF Science and Technology Center for Com-
puter Graphics and Scientific Visualization, the Army Re-
search Office Young Investigator Program (DAAH04-96-
100077), and the Alfred P. Sloan Foundation.

References

[1] Don Mitchell and Pat Hanrahan, “Illumination from curved
reflectors,” Computer Graphics, vol. 26, no. 2, pp. 283–291,
July 1992.

[2] Eric Veach and Leonidas J. Guibas, “Metropolis light trans-
port,” in Computer Graphics Proceedings, Aug. 1997, Annual
Conference Series, ACM SIGGRAPH, pp. 65–76.

[3] James Arvo and David Kirk, “A survey of ray tracing accelera-
tion techniques,” in An Introduction to Ray Tracing, Andrew S.
Glassner, Ed., chapter 6. Academic Press, New York, 1989.

[4] James F. Blinn and M. E. Newell, “Texture and reflection in
computer generated images,” Communications of the ACM, vol.
19, no. 10, pp. 542–547, Oct. 1976.

[5] Brian Cabral, Marc Olano, and Philip Nemec, “Reflection space
image based rendering,” in Computer Graphics Proceedings,
Aug. 1999, Annual Conference Series, ACM SIGGRAPH, pp.
165–169.

[6] E. S. Panduranga, Reflections in Curved Surfaces, Ph.D. thesis,
Princeton University, Oct. 1987, Technical Report CS-TR-122-
87.

[7] Holly E. Rushmeier and Kenneth E. Torrance, “Extending the
radiosity method to include specularly reflecting and translucent
materials,” ACM Transactions on Graphics, vol. 9, no. 1, pp.
1–27, Jan. 1990.

[8] Eyal Ofek and Ari Rappoport, “Interactive reflections on curved
objects,” in Computer Graphics Proceedings, July 1998, Annual
Conference Series, ACM SIGGRAPH, pp. 333–342.

[9] Gregory J. Ward and Paul S. Heckbert, “Irradiance gradients,”
in Proceedings of the Third Eurographics Workshop on Render-
ing, Bristol, United Kingdom, May 1992, pp. 85–98.

[10] Homan Igehy, “Tracing ray differentials,” in Computer Graphics
Proceedings, Aug. 1999, Annual Conference Series, ACM SIG-
GRAPH, pp. 179–186.

[11] C. C. Lin and L. A. Segel, Mathematics Applied to Deterministic
Problems in the Natural Sciences, Society for Industrial and
Applied Mathematics, Philadelphia, 1988.

[12] Min Chen, “Perturbation methods for image synthesis,” M.S.
thesis, California Institute of Technology, May 1999, Tech-
nical Report CS-TR-99-05, ftp://ftp.cs.caltech.edu/tr/cs-tr-99-
05.ps.Z.

[13] Min Chen and James Arvo, “Theory and application of specular
path perturbation,” May 1999, Submitted for publication.

[14] Max Born and Emil Wolf, Principles of Optics: Electromagnetic
Theory of Propagation, Interference and Diffraction of Light,
Pergamon Press, New York, third edition, 1965.

[15] David G. Luenberger, Optimization by Vector Space Methods,
John Wiley & Sons, New York, 1969.

[16] Jerrold E. Marsden and Michael J. Hoffman, Elementary Clas-
sical Analysis, W. H. Freeman, New York, 1993.

[17] Lynn H. Loomis and Shlomo Sternberg, Advanced Calculus,
Addison-Wesley, Reading, Massachusetts, 1968.

[18] L. A. Segel, Mathematics Applied to Continuum Mechanics,
Dover Publications, Inc., New York, 1987.

[19] Timothy L. Kay and James Kajiya, “Ray tracing complex
scenes,” Computer Graphics, vol. 20, no. 4, pp. 269–278, Aug.
1986.

[20] Hanan Samet, “Implementing ray tracing with octrees and
neighbor finding,” Computers and Graphics, vol. 13, no. 4, pp.
445–460, 1989.

[21] Lance Williams, “Casting curved shadows on curved surfaces,”
Computer Graphics, vol. 12, no. 3, pp. 270–274, Aug. 1978.

[22] Paul Haeberli and Kurt Akeley, “The accumulation buffer:
Hardware support for high-quality rendering,” in Computer
Graphics Proceedings, Aug. 1990, Annual Conference Series,
ACM SIGGRAPH, pp. 309–318.

[23] Paul J. Diefenbach and N. Badler, “Pipeline rendering: Inter-
active refractions, reflections and shadows,” Displays: Special
Issue on Interactive Computer Graphics, vol. 15, no. 3, pp. 173–
180, 1994.

[24] Dani Lischinski and Ari Rappoport, “Image-based rendering
for non-diffuse synthetic scenes,” in Proceedings of the Ninth
Eurographics Workshop on Rendering, Vienna, Austria, June
1998.

[25] Wolfgang Krüger, Christina-A. Bohn, Bernd Fröhlich, Heinrich
Schüth, Wolfgang Strauss, and Gerold Wesche, “The responsive
workbench: A virtual work environment,” IEEE Computer, vol.
28, no. 7, pp. 42–48, July 1995.

[26] James T. Kajiya, “The rendering equation,” Computer Graph-
ics, vol. 20, no. 4, pp. 143–150, Aug. 1986.

CHEN AND ARVO: PERTURBATION METHODS FOR INTERACTIVE SPECULAR REFLECTIONS 13

Min Chen received her B.S. and M.S. in Com-
puter Science from Peking University, China,
in 1994 and 1997, respectively. She received
another M.S. in Computer Science in 1999 from
California Institute of Technology. She is cur-
rently a PhD candidate with the Department
of Computer Science at the California Insti-
tute of Technology. Her research interests in-
clude physically-based rendering, image-based
rendering, human computer interaction, ani-
mation and computer graphics.

James Arvo is an Associate Professor of Com-
puter Science at the California Institute of
Technology. He received a B.S. in Mathemat-
ics from Michigan Technological University, an
M.S. in Mathematics fromMichigan State Uni-
versity, and a Ph.D. in Computer Science from
Yale University in 1995. His research inter-
ests include physically-based image synthesis,
human-computer interaction, and artificial in-
telligence. Dr. Arvo received a young investiga-
tor award from the U.S. Army Research Office

in 1996, and an Alfred P. Sloan Research Fellowship in 1997 for his
work in image synthesis.

