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Abstract—The multiple-scales method is used to derive a scalar
differential equation that describes the envelopes of photonic
crystal waveguide modes. For a photonic crystal heterostructure
waveguide and an air core photonic crystal waveguide, the mode
frequencies calculated from the envelope approximation and
full numerical simulations agree to 9% in the worst case when
compared to the frequency difference of the band edges. The
single-mode and cutoff width conditions for a photonic crystal
waveguide are predicted and verified.

Index Terms—Approximation methods, electromagnetic
scattering by periodic structures, optical propagation in nonho-
mogenous media, optical waveguide theory, periodic structures.

I. INTRODUCTION

PHOTONIC crystal waveguides have been a subject of ex-
tensive experimental and theoretical study in recent years

[1]–[6]. Line defects in photonic crystals can act as waveg-
uides, where the stopband in the direction perpendicular to the
propagation direction can provide an additional mechanism for
mode confinement. However, the numerical simulations of these
structures through finite difference time domain or plane wave
expansion methods are computationally intensive. To lessen the
computational complexity and to give a physical feel for waveg-
uiding mechanisms in photonic crystals, theoretical work such
as that based on the tight-binding approximation [7], [8] and
coupled-mode analysis [9] has become an active area of re-
search. In the former theory, the waveguide modes are treated
as expansions of a localized Wannier function basis, whereas in
the latter, the waveguide modes are considered as a superposi-
tion of plane waves reflected by the photonic crystal cladding.

In this paper, we present a physically intuitive, semi-analyt-
ical method to study photonic crystal waveguides. Our approach
is inspired by the envelope function theory commonly used in
semiconductor heterostructure physics. Our aim is to connect
the properties of a photonic crystal waveguide to the dispersion
relations of the constituent photonic crystals, for while full nu-
merical simulations of photonic crystal waveguides are compu-
tationally intensive, dispersion relations of bulk photonic crys-
tals can be readily computed.

Conventional photonic crystal waveguides made of line de-
fects in photonic crystals can be more broadly classified as a
type of photonic crystal heterostructure. Photonic crystal het-
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Fig. 1. Schematic of a photonic crystal heterostructure channel waveguide.
The cladding and core regions are composed of photonic crystals characterized
by dispersion relations! (k) and! (k), respectively.

erostructures are juxtapositions of materials with different dis-
persion relations (Fig. 1). In Fig. 1, waves can be guided along
the heterostructure in thedirection.

We have previously derived envelope functions through
Bloch mode expansions for photonic crystal heterostructure
waveguides composed of photonic crystals with a small frac-
tional index modulation [10]. In the present work, we show
that the envelope picture may encompass a broader class of
photonic crystal waveguides including those consisting of
homogeneous (nonphotonic crystal) dielectric cores and those
which guide in air.

In Section II, we use the multiple-scales method and the pho-
tonic crystal theory described in the Appendix to derive a
scalar envelope equation that describes the propagating modes
in photonic crystal heterostructure waveguides. In Section III,
we verify the envelope approximation for a slab heterostruc-
ture waveguide in a three-dimensional (3-D) photonic crystal by
comparing its results with full numerical simulations. In Sec-
tion IV, we apply the envelope approximation to a photonic
crystal waveguide with an air core and validate our theoretical
results with numerical simulations. We also derive and verify
the single-mode and cutoff width conditions for the waveguide.
In Section V, we discuss the implications and limitations of our
theory.

II. THE ENVELOPE EQUATION

We use the multiple-scales method [11] to derive a general
equation for a channel waveguide in a three-dimensional pho-
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tonic crystal. The resultant envelope equation is analogous to the
time-independent Schrodinger equation in an effective medium.

A. Multiple-Scales Derivation

In the multiple-scales method, we separate the photonic
crystal heterostructure into two spatial length scales: 1) the
fast-varying scale due to the lattice periodicity of the bulk
photonic crystal and 2) the slowly varying scale due to the
defect introduced by the waveguide core. We begin with the
wave equation

(1)

where the speed of lightis normalized to 1, and the subscript
labels the eigenfrequencies of the waveguide modes.
Our envelope approximation allows different photonic

crystals in the core and cladding by solving the multiple-scales
problem in the core and cladding separately. We adopt the
coordinates shown in Fig. 1. We defineas the perturbation
parameter and set and as the slow variables such that

(2)

Furthermore, we assume that the corrections to the eigenfre-
quencies of the cladding and core, and , respectively,
are

(3)

Throughout the paper, the subscriptwill associate a quantity
to the bulk cladding ( ) or core ( ) materials.

The waveguide eigenmode is assumed to be

(4)

where represents the different orders of the expansion.
We assume the multiple-scales equations can be solved in a

piecewise manner in the core and cladding. Furthermore, we as-
sume interband mixing is negligible so that the solution takes the
form of a Bloch mode modulated by an envelope function. If the
waveguide core is sufficiently wide compared to the period of
the photonic crystals and can be considered as a weak index per-
turbation in the bulk cladding photonic crystal, we may assume
that the envelope modulates the Bloch modes of the constituent
photonic crystals near the center of and far away from the core.
The zeroth-order term then takes the form

(5)

where is the envelope function and is an electric-
field eigenmode

(6)

where the subscripts and label the wavevector and band
number respectively. We have also adopted the Dirac notation,
treating the electric-field Bloch mode as a state func-
tion . Since the system is perturbed only in theand
directions, the envelope should only be a function of these two

directions. Analogous to the analysis by de Sterke and Sipe [12],
our ansatz for the higher order terms is

(7)

where the rest of the higher order expansion terms are anal-
ogously defined. Each order is represented by a sum over
the other electric-field Bloch modes at the wavevector cor-
responding to , with each Bloch mode modulated by an
arbitrary envelope function, which for the and
terms are and , respectively.

We now proceed to substitute (4) into the wave equation and
equate each order of the equation to zero. In the multiple-scales
method, we treat the slow and fast variables independently. For
example, when differentiating, we would write

(8)

Therefore, to , we simply have the unperturbed equation.
Projecting the equation obtained in to and in-
voking relation (32) yields

(9)

Since the slopes of the bands and the frequency corrections are
real-valued and the envelope is not constant in bothand
for a channel waveguide mode, for solutions that do not only
exponentially decay or grow, we require

(10)

(11)

Equation (11) stipulates that we must expand our solution about
a band extremum in the directions perpendicular to the propa-
gation direction.

Projecting the equation to and grouping the
like terms result in an equation for

(12)
where and are defined in (27)–(29).

We then proceed to gather all the terms and project
the equation to . When we substitute from (12)
and simplify our relations for the band curvatures with (35), we
finally arrive at our envelope equation

(13)

where, in analogy to the effective mass in semiconductor
physics, we have defined

(14)
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By terminating the multiple-scales expansion in the second
order, we have made a parabolic band approximation in the
transverse directions of the waveguide. As our comparisons with
numerical simulations will illustrate, a parabolic approximation
is sufficiently accurate in describing the photonic crystal band
structure.

Equation (13) is completely analogous to the envelope equa-
tion for semiconductor heterostructures. The only unknowns in
the equation are , , and the envelope function, for
which we may solve by enforcing boundary conditions at the
interfaces.

Applying (13) to the waves in an infinitely periodic photonic
crystal results in the following relation between frequency and
propagation vector perturbations:

(15)

where and are the corrections to the propagation vectors.
This is the well-known parabolic band expansion, which follows
naturally from our analysis since we terminated it at the second
order. The envelope equation provides an approximation to the
dispersion relation of photonic crystal structures, including the
infinitely periodic crystal.

B. Waveguiding Conditions

To illustrate the waveguiding mechanism, we consider a slab
waveguide for which analytical solutions can be readily ob-
tained. For a slab waveguide, the heterostructure profile is along

only. Thus, we drop the terms that depend onin (13).
For a guide of width 2 along , the solutions of the envelope

equation are

(16)

where and are

(17)

We solve for the coefficients in (16) with appropriate
boundary conditions. Although the boundary conditions at the
interfaces between semiconductor crystals with dissimilar lat-
tices remain a subject of contention [13]–[16], we shall assume
that the envelope and its derivative are continuous across the
boundaries. We solve the envelope equation by finding the
appropriate and that match these boundary condi-
tions. In general, heterostructure and dielectric boundaries do
not coincide in space; hence, we do not apply the boundary
conditions for fields in dielectric media.

From (16), we can determine the condition for waveguiding.
The conditions on the curvatures of the envelope of a guided
mode in the core and in the cladding necessitate that and

are of the same sign, implying that and must also
be of the same sign. As illustrated in Fig. 2, these requirements
on the band curvatures dictate that in the vicinity of the band
extremum, the frequency allowed in the core is not allowed in
the cladding. This condition on band curvatures, along with the
condition on the slopes of the bands as given in (11), ensures

Fig. 2. Schematic of core and cladding bands for� > � . The guided
frequencies lie between the two bands.

that a guided wave propagates straight down the core with a
frequency allowed in the core but not in the cladding.

III. PHOTONIC CRYSTAL HETEROSTRUCTUREWAVEGUIDES

To test the validity of the envelope approximation, we begin
by comparing our theoretical results with those of full numer-
ical simulations of a slab photonic crystal heterostructure wave-
guide in a three-dimensional photonic crystal. While the mul-
tiple-scales method is generally applicable to channel waveg-
uides as illustrated in Fig. 1, due to the intensive nature of full
3-D numerical simulations and the complexity associated with
the fabrication of such structures, we concentrate instead on slab
waveguides. The envelope approximation is expected to hold
best when the Bloch modes of the core are similar to those of
the cladding; hence, we start by presenting results from a het-
erostructure whose core is a mildly perturbed version of the
cladding material.

A. Numerical Results

We use MIT Photonic Bands (MPB) software [19] to simu-
late the heterostructure waveguides and to obtain the band cur-
vatures. Fig. 3 illustrates the simulated structure. For simplicity,
the photonic crystal considered is a cubic lattice of spheres with
a radius of 0.5, where is the lattice parameter. The simula-
tion space is 20 cells wide in total, where the waveguide core
is 5 cells wide and the cladding is 15 cells wide. The core con-
sists of spheres with dielectric constant 10 in air ( 10,
1), while the cladding consists of spheres with dielectric con-
stant 11 in air ( 11, 1). Although MPB applies periodic
boundary conditions, we find the cladding region is sufficiently
wide to minimize coupling among adjacent waveguides. We ex-
amine the first band, and for a negative , we use .
The propagation vector is varied, while is fixed at 0.

Due to the symmetry of the bulk photonic crystal, the first
two bands are degenerate, corresponding to the quasi-transverse
electric (TE) polarization, where the electric field is strongly
polarized along , and the quasi-transverse magnetic (TM) po-
larization, where the electric field is strongly polarized along
and . We have not accounted for degeneracies in our multiple-
scales derivation and shall assume that the degenerate Bloch
modes share the same envelope. This approximation is valid
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Fig. 3. Slab heterostructure waveguide simulated. The photonic crystal consists of a cubic lattice of spheres withr = 0:5a, wherea is the lattice constant. The
dielectric constants of the core and cladding are� =10, 1 and� =11, 1 respectively. The waveguide core is 5 cells wide. The supercell is 20 cells wide.
The structure is periodic alongx andy.

Fig. 4. Photonic crystal heterostructure waveguide mode atk = �=a. Thex component of the electric field is shown. The simulation parameters are
illustrated in Fig. 3.

for weak perturbations which do not cause significant coupling
between the degenerate eigenstates, even if such coupling is
present.

We compare the envelope to the main components of the elec-
tric field. The envelope approximation agrees well with the sim-
ulated results. Fig. 4 shows a representative mode shape, and
Fig. 5 shows the dispersion relation. For this simulation, we
generally do not observe quasi-TM modes which are present in
the simulation of a heterostructure waveguide with a high index
core. In the worst case, when compared to the frequency differ-
ence between the core and cladding bands, our predicted mode
frequencies agree with the simulated result to 9%. Generally,
the frequencies agree to about 5%.

IV. WAVEGUIDES WITH HOMOGENEOUSCORES

Since physical realizations of and experiments on photonic
crystal heterostructure waveguides described in the previous
section remain to be demonstrated, we apply the envelope
approximation to conventional photonic crystal waveguides.
To date, fabricated photonic crystal waveguides often consist
of a homogeneous dielectric or air core surrounded by a
photonic crystal cladding [3], [4], [17], [18]. Although the
envelope approximation has not accounted for the finiteness

of the photonic crystal in the direction perpendicular to the
plane of periodicity as in a photonic crystal slab, it can solve
two-dimensional photonic crystal waveguides.

For a homogeneous material, our condition that
and necessitates

that we expand about and . More-
over, the band curvature is constant and positive, with

. Therefore, in our envelope
approximation, we can only solve for guided modes with refer-
ence to a photonic crystal band which is at a higher frequency
than the core band.

The mode frequency is still expressed as a perturbation rel-
ative to the pertinent band extrema in the homogeneous core
and the photonic crystal cladding. Thus, we may expect that the
core dispersion relation should not deviate much from that of the
cladding. Although the constraint may seem to limit the versa-
tility of the envelope approximation, we shall see from numer-
ical results that the envelope approximation is sufficiently robust
that it can accurately solve a waveguide which represents a sig-
nificant perturbation in the photonic crystal.

A. Numerical Results

We compare the predicted results from the envelope approxi-
mation with full numerical simulations. We use MPB to sim-
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Fig. 5. Dispersion relation of the photonic crystal heterostructure waveguide. The simulation parameters are illustrated in Fig. 3. The envelope equation gives the
same dispersion relation for quasi-TE and quasi-TM modes.

Fig. 6. Slab photonic crystal waveguide simulated. The photonic crystal
consists of rods with� = 12 andr = 0:2a, wherea is the lattice constant.
Five missing rows of rods form the waveguide core. The supercell is 20 cells
wide. The structure is periodic alongy.

ulate the TE1 modes of a slab waveguide with an air core in a
two-dimensional (2-D) photonic crystal consisting of a square
lattice of rods. Fig. 6 illustrates the simulated structure. The
rods have a dielectric constant of 12 and a radius of 0.2. We
examine the TE modes, since a transverse stopband exists for
this polarization for the photonic crystal geometry and dielec-
tric contrast. The structure simulated consists of a 5–cells-wide
core and 15–cells-wide cladding.

For this waveguide, we find excellent agreement between
the envelope approximation and simulated results. Fig. 7
shows some representative mode profiles, and Fig. 8 shows
the dispersion relation. Solutions of the envelope equation
whose frequencies are lower than the lower photonic crystal
band edge are considered extraneous and ruled out. The higher
propagation frequencies tend to show better agreement as
the offset from the bulk photonic crystal band can be more
appropriately described as a perturbed quantity. When com-
pared to the frequency difference between the photonic crystal
band edges, the propagation frequencies from the envelope
approximation agree with simulated results to 9% in the worst
case. On average, the frequencies agree to about 3%.

1In our coordinates, where the rods are parallel tox, TE waveguide modes
are characterized byE ,H , andH and are equivalent to the TM polarization
in MPB.

B. Single-Mode and Cutoff Width Conditions

As a useful measure of the accuracy of the envelope approx-
imation, we derive the single-mode and cutoff conditions for a
slab air core waveguide and compare our predictions with the re-
sults from numerical simulations. For a slab waveguide of width
2 , we solve (16) with the appropriate boundary conditions and
find the waveguide is single mode for

(18)

where is the frequency of interest, and and are the un-
perturbed frequencies of the cladding and core bands respec-
tively. All of these values are taken at , which marks
the onset of the waveguide modes.

Solving (18) for the photonic crystal described in this sec-
tion and light of frequency , we find an air core wave-
guide remains single mode for . Numerical simula-
tions using MPB show that the waveguide begins to support two
modes when 2 is between 2 and 2.125. We also find that at
this frequency, light cannot propagate when , while
the numerical simulations show the cutoff waveguide width to
be between 0.5and 0.625. The envelope approximation gives
excellent agreement with the results from numerical simula-
tions, since there may also be inherent numerical errors due to
the simulation software.

V. DISCUSSION

The envelope approximation is robust. It may be applicable
to the study and design of a wide range of complex photonic
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(a)

(b)

Fig. 7. Two of the photonic crystal waveguide modes atk = 0:4�=a. (a) The mode corresponding to Even Mode 2 in Fig. 8. (b) The mode corresponding
to Odd Mode 1. Thex component of the electric field is shown. The simulation parameters are illustrated in Fig. 6.

crystal structures which may not satisfy thea priori envelope as-
sumptions exactly. Moreover, while the actual electric and mag-
netic fields of the waveguide modes are vectorial and exhibit po-
larization dependence, the envelope approximation transcends
these “microscopic” field properties by describing the modu-
lating functions that encapsulate the general properties of the
waveguide modes.

While only a single core band and a single cladding band
are sufficient for the analyses of the waveguides presented here,
more generally, multiple core and cladding bands may need to
be considered, depending on the frequency range and size of
photonic band gap as well as the geometry and the dispersion of
the core. Moreover, since we consider a photonic crystal wave-
guide as in Fig. 6 rather than a photonic crystal holey fiber [20],
there exists a periodicity in the propagation direction. There-
fore, in a multiband treatment, the dispersion relations cannot
be solved with reference to each core or cladding band inde-

pendently, since the dispersion relations will be perturbed at
frequencies where they cross, forming mini-stopbands [21]. A
fully developed envelope theory will be a multiband approach
that accounts for inter-band mixing, as well as complexities
arising from the periodicity in the direction of propagation.

VI. CONCLUSION

Using the method of multiple scales, we have derived a scalar
equation that describes photonic crystal waveguide modes. The
band curvatures in the directions perpendicular to the wave-
guide, as abstracted from the dispersion relations of the con-
stituent photonic crystals, act as homogenized dispersion rela-
tions which account for the local interactions of light with the
photonic crystal. Comparisons between envelope solutions and
full numerical simulations show the mode shapes and the dis-
persion relations are in excellent agreement. We illustrate a de-
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Fig. 8. Dispersion relation of the TE modes for the photonic crystal waveguide. The simulation parameters are illustrated in Fig. 6.

sign application of the envelope approximation by finding the
guiding conditions, and the single-mode and cutoff widths for
slab photonic crystal waveguides.

The envelope approximation is an efficient design tool for
photonic crystal waveguides, reducing the computational com-
plexities associated with full numerical simulations. The work
presented here can also be used to study other devices such as
directional couplers, resonators, and filters.

APPENDIX

Completing the multiple-scales expansion requires some re-
sults from a theory for photonic crystals. Although more
complete and rigourous research on photonic crystaltheory
has been undertaken to study nonlinearity in photonic crystals
[22], [23], such work cannot be directly applied to our envelope
approximation. We shall derive an alternate formulation of the
photonic crystal theory that will not only serve our mul-
tiple-scales expansion but also show the regimes where our en-
velope approximation will be most applicable.

We begin with the vector wave equation

(19)

where we have normalized , is the refractive index
of the photonic crystal, and the subscriptlabels the eigenfre-
quencies of the photonic crystal, . In a periodic medium, the
solutions to the wave equation are

(20)

where the subscriptsand label the band and wavevector cor-
responding to a Bloch mode of the electric field . The
electric-field Bloch modes will satisfy the orthonormality rela-
tion

(21)

where we have adopted the Dirac notation, andis the volume
of the cell which fixes the normalization of the Bloch modes.
In the derivation that follows, we will use the Dirac notation,
treating as a state function .

Now we consider a perturbation in the wavevector to a partic-
ular electric-field mode, so the new electric field takes the form

(22)

where

(23)

is the small perturbation parameter andis the perturbation
wavevector.

Following perturbation analysis, we assume the new Bloch
mode will take the form

(24)

where the superscripts denote the orders of the Bloch mode cor-
rection. We also assume the eigenvalue correction is represented
by

(25)

where gives the th-order correction to the eigenvalue.
We substitute our perturbed Bloch mode into the wave equa-

tion, and we find

(26)

where acts as the unperturbed field operator analogous to a
free Hamiltonian in quantum mechanics, while and are
the normalized perturbation operators. By expanding the wave
equation in Cartesian coordinates, we can define three compo-
nents ( , , ) to each vector operator. The action of each com-
ponent of these operators on each component of a Bloch mode
( , , ) follows explicitly.
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If we define the three vector components of, , ,
and , we can alternatively define operators , , and

, such that

(27)

(28)

(29)

where we have just separated the perturbation dependences of
the operators. A key property of is that it is an adjoint op-
erator. In other words, . This prop-
erty is a consequence of the periodic nature of Bloch modes.

Analogous to theory in solid-state physics, we shall adopt
the same approach as time-independent perturbation theory in
quantum mechanics to solve our perturbed system. We shall ob-
tain equations for each order of the perturbation expansion that
will relate certain properties of the bandstructure to the Bloch
modes.

The first-order correction to the eigenfrequency is a familiar
result in quantum mechanics

(30)

A Taylor expansion about the eigenvalue corresponding to
leads to an expression for

(31)

Therefore, simplifying (30) and separating the, , and
dependences give our the set of relations between the slope at a
particular point on the bandstructure and the Bloch mode

(32)

and are cyclic permutations of (32).
The second order of the expansion, , contains infor-

mation about the curvature of the band, since the second-order
correction to the eigenvalue can be written as

(33)

If we project the all of the second-order terms in (26) to
, we obtain

(34)

where , , and are the three vectorial compo-
nents of the Bloch mode. In arriving at (34), we made an im-
portant assumption that is orthogonal to . This ap-
proximation holds true for the lower bands and is verified nu-
merically. The inner product between a Bloch mode from the
first few bands and modes of higher bands is about 19 orders of
magnitude smaller than its own magnitude.

Following a similar procedure to that used in the anal-
ysis, we can separate the terms based on the perturbation param-
eters to arrive at expressions for the band curvatures

(35)

(36)

and , , , and are
cyclic permutations of (35) and (36). We have used our lower
band approximation as in (34) in arriving at the curvature rela-
tions. Our analysis is now complete; we can relate band curva-
tures to the corresponding Bloch modes.
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