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A nonlinear theory for unsteady flexible wing
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Abstract. This paper extends the previous studies by Wu (2001-2006)[1]-[3] to continue developing a fully
nonlinear theory for evaluation of unsteady flow generated by a two-dimensional flexible lifting surface moving in
arbitrary manner through an incompressible and inviscid fluid for modeling bird/insect flight and fish swimming.
The original physical concept founded by Theodore von Kármán and William R. Sears (1938)[4] in describing
the complete vortex system of a wing and its wake in non-uniform motion for their linear theory is adapted and
applied to a fully nonlinear consideration. The new theory employs a joint Eulerian and Lagrangian description
of the lifting-surface movement to accomplish the formulation and analysis. The present investigation presents
further development for addressing arbitrary variations in wing shape and trajectory to achieve a fully nonlinear
integral equation generalizing Herbert Wagner’s (1925)[5] linear version for enhancing determination of exact
solutions in general.
Key words: nonlinear unsteady flexible wing theory, unsteady camber function, arbitrary trajectory.

1. Introduction
In the world of self-locomotion of aquatic and aerial animals by using lifting surfaces such as wings and

appended fins, there are several salient features of significance. First, the wings are in general large in aspect-
ratio, a feature that would suit for an unsteady lifting-line approach. Secondly, the periodic flapping of the wing
generally involves changes in surface profile shape (or shape function), e.g. from a stretched-straight pronation in
downward stroke to a form with an arched camber and spanwise bending in upward supination stroke. Further, in
swift maneuvering, the wings may bend and twist asymmetrically to change and turn in orientation and trajectory,
e.g. in the beautiful performance of a humming bird using a figure-eight wing flapping in keeping its body fixed
in front of a flower, and then suddenly fleeting off in a flash. All these features are so strongly nonlinear and
time-dependent that a comprehensively valid theory would have to take all these factors fully into account.

Recently, a nonlinear unsteady wing theory has been introduced by Wu [1]-[3] along this approach to provide
an optimally unified analytical and numerical method for computation of solutions on specific premises. This
nonlinear theory has been applied by Stredie (2004)[6] and Hou et al. (2006)[7,8] to perform computations of a
number of unsteady motions of bodies shedding vortex sheet(s), attaining results of high accuracy (as measured
versus relative errors and experiments available) in all the cases pursued. The present work is a continuation to
this series of studies, here addressing further on the general issue of arbitrary changes in wing shape and trajectory
along the line discussed by Wu[2,3] with intent to optimize the analytical and computational efforts required for
attaining exact solutions efficiently.

2. Wing movement with arbitrary changes in shape and trajectory
We first recapitulate the nonlinear theory[1-3] of a two-dimensional arbitrary flexible lifting surface for mod-

eling aquatic and aerial animal locomotion at high Reynolds number. We opt two-dimensional theory for its
simplicity to provide a foundation for further development of unsteady wing theory and for general applications.

In this respect, we find that of the existing linear theories, the simple and clear physical concept crystallized
by von Kármán and Sears[4] in providing such a general view on an ingenious restructuring of the vorticity
distribution over the wing and its trailing wake is readily found to afford powerful generalizations. So it has
been extended by Wu (2001, Sect. 6)[1] to account fully for all possible nonlinear effects in theory, and bring
Herbert Wagner’s pioneering work (1925)[5] to more general applications. The principal step is to employ a joint
Eulerian and Lagrangian description of the lifting-surface movement for the formulation and analysis which we
will delineate synoptically next. This useful description of unsteady bodily movement has also been applied by
Lighthill [9] to develop a large-amplitude elongated-body theory.

[Figure 1 here]

Thus, we consider the irrotational flow of an incompressible and inviscid fluid generated by a two-dimensional
flexible lifting surface Sb(t) of negligible thickness, moving with time t through the fluid in arbitrary manner.
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Its motion can be described parametrically by using a Lagrangian coordinate system (ξ, η) to identify a point
X(ξ, t), Y (ξ, t) on the boundary surface S(t) = Sb(t) + Sw(t) comprising the body surface Sb and a wake surface
Sw, with S(t) lying at time t = 0 over a stretch of the ξ-axis (at η = 0) and moving with time t(≥ 0) as can be
prescribed by z = x + iy = Z(ξ, t) (see Fig. 1),

Z(ξ, t) = X(ξ, t) + iY (ξ, t) on Sb(t) + Sw(t), (1)

where Sb(t) : (−1 < ξ < 1) and Sw(t) : (1 < ξ < ξm), parametrically in ξ, with ξ = −1 marking the leading edge
and ξ = 1 the trailing edge of the wing, from the latter of which a vortex sheet is assumed being shed smoothly
(i.e. under the Kutta condition) to form a prolonging wake Sw, and ξm identifies the path Z(ξm, t) of the starting
vortex shed at t = 0 to reach ξm = ξm(t) at time t. A simple choice for (ξ + iη) is the initial material position
of Sb(t = 0), taken to be in its stretched-straight shape such that Z(ξ, 0) = ξ (−1 < ξ < 1, η = 0), lying in an
unbounded fluid initially at rest in an inertial frame of reference (see Figure 1). The flexible Sb(t) is assumed to
be inextensible (|Zξ| ≡ |∂Z/∂ξ| = 1, |ξ| < 1) and the point ξ on Sb(t) moves with a prescribed (complex) velocity
W (ξ, t) = U − iV ,

W (ξ, t) = U − iV = ∂Z/∂t = Xt − iYt (|ξ| < 1, t ≥ 0; Z = X − iY ), (2)

which has a tangential component, Us(ξ, t), and a normal component, Un(ξ, t), given by

W∂Z/∂ξ = (XξXt + YξYt) − i(XξYt − YξXt) = Us − iUn, (3)

and with the same expression for the wake surface Sw(t) for (1 < ξ < ξm).
In the spirit of von Kármán and Sears, we adopt for t > 0 the following vorticity distribution:

on Sb(t): γ(ξ, t) = γ0(ξ, t) + γ1(ξ, t) (−1 < ξ < 1),
on Sw(t): γ(ξ, t) = γw(ξ, t) (1 < ξ < ξm),

where γ0(ξ, t) is the bound vortex distributed over Sb representing the ”quasi-steady” flow past Sb such that the
time t in the original prescribed W (ξ, t) is frozen to serve merely as a parameter in evaluating the quasi-steady γ0

(by steady airfoil theory), and γ1(ξ, t) is the additional bound vortex induced on Sb by the trailing wake vortices
γw(ξ, t) such that γ1 and γw jointly will bear no change to Un (but not so to Us) over Sb so as to reinstate the
original time-varying normal velocity Un(ξ, t) on Sb(t).

Thus, we represent the velocity field by a vorticity distribution, γ(ξ, t), per unit length spanwise over the body
and wake surfaces to give at time t the complex velocity w(z, t) = u − iv of the fluid at a field point z as

w(z, t) =
1

2πi

∫ ξm

−1

γ(ξ, t)
Z(ξ, t) − z

dξ (z = x + iy /∈ S, t ≥ 0). (4)

Applying Plemelj’s formula to (4) yields for w± = lim w(z(ξ + iη), t) as η → ±0 on the two sides of S as,

u±
s − iu±

n = w±(ξ, t)
dZ

dξ
= ±1

2
γ(ξ, t) +

1
2πi

dZ

dξ

∫

S

γ(ξ′, t)
Z′ − Z

dξ′, (5)

with Z = Z(ξ, t), Z′ = Z(ξ′, t) both on S = Sb + Sw . From (5) we have γ(ξ, t) = (u+
s − u−

s ), and

u+
n (ξ, t) = u−

n (ξ, t) = Re

{
1
2π

dZ

dξ

∫

S

γ(ξ′, t)
Z′ − Z

dξ′
}

, (6)

usm ≡ 1
2
(u+

s + u−
s ) = Im

{
1
2π

dZ

dξ

∫

S

γ(ξ′, t)
Z′ − Z

dξ′
}

. (7)

Here, (6) shows the continuity of normal velocity u+
n = u−

n = un across S and (7) gives the algebraic mean of
tangential velocity us on S. From (6)-(7) we deduce the contributions separately made by γ0, γ1, and γw as:

Un(ξ, t) = Re

{
1
2π

dZ

dξ

∫ 1

−1

γ0(ξ′, t)
Z′ − Z

dξ′
}

(Z = Z(ξ, t) ∈ Sb), (8)

U1n(ξ, t) = Re

{
1
2π

dZ

dξ

∫ ξm

1

γw(ξ′, t)
Z′ − Z

dξ′

}
(Z = Z(ξ, t) ∈ Sb), (9)
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−U1n(ξ, t) = Re

{
1
2π

dZ

dξ

∫ 1

−1

γ1(ξ′, t)
Z′ − Z

dξ′
}

(Z = Z(ξ, t) ∈ Sb), (10)

Ww(ξ, t) =
1

2πi

dZ

dξ

∫

Sb+Sw

γ(ξ′, t)
Z′ − Z

dξ′ (Z = Z(ξ, t) ∈ Sw), (11)

where Ww(ξ, t) = Uws − iUwn is the (complex) flow velocity on the wake.
The problem can now be recast to delineate the course for solution as follows. Equation (8) results from

invoking condition that un(ξ, t) = Un(ξ, t), which is given at Sb, to give an integral equation for γ0 which is to
be solved, with time t frozen and without any unsteady wake, by applying steady airfoil theory. The velocity
induced on Sb by wake vorticity γw (while being transported with velocity Ww of the fluid particles on the wake)
has the normal component U1n given by (9), which is canceled out as is required of γ1 on Sb according to (10)
so that the sum (9)+(10) gives an integral equation for γ1 in terms of γw. This solution for γ1, which is to be
determined under the Kutta condition (on the continuity of vorticity at the trailing edge) may be expressed, in
principle, symbolically with a kernel K(ξ′; ξ, t) in the form

γ1(ξ, t) =
∫ ξm

1

K(ξ′; ξ, t)γw(ξ′, t) dξ′ (|ξ| ≤ 1). (12)

Finally, we apply Kelvin’s theorem that the total circulation around Sb+Sw must vanish ∀t ≥ 0, i.e. Γ0+Γ1+Γw =∫
Sb

(γ0 + γ1) dξ +
∫
Sw

γw dξ = 0 (if it is zero initially), or, symbolically,

Γ0 +
∫ ξm

1

{
1 +

∫ 1

−1

K(ξ′; ξ, t) dξ

}
γw(ξ′, t) dξ′ = 0. (13)

This is in essence the desired form of “generalized Wagner’s integral equation” for wake vorticity γw. Its original
linear version has been attained by Wagner[3] and shown by him and by von Kármán and Sears[2] to play a key
role in providing accurate solutions for the entire vorticity distributions and hence for the final solution to the
linearized problem.

For the present nonlinear theory, it is of interest to derive the kernel K(ξ, ξ′, t) in closed form for efficient
applications to wing movement in arbitrary manner. Such a desired integral equation has been first explicitly
given by Wu[1], however in a rather lengthy series form by perturbation expansion. Another attempt has been
made by Wu[3] to obtain an integral equation for γw which can be resolved efficiently by iteration, however with
the body shape function still imbedded with a linear approximation. The present work attempts to achieve the
theory fully generalized by including all possible nonlinear effects exactly.

3. A unified method of solution
Here, the method proposed by Wu[1-3] based on a unified analytical-and-numerical scheme is further pursued

to completion. Thus, following Wu[3], we first rewrite (8) as

Un(ξ, t) =
1
2π

∫ 1

−1

{1 + g(ξ′, ξ, t)}γ0(ξ′, t)
ξ′ − ξ

dξ′,

g(ξ′, ξ, t) = Re

{
dZ

dξ

ξ′ − ξ

Z′ − Z

}
− 1 (∀(ξ, ξ′) ∈ Sb). (14)

As has been noted, if Sb is a flat wing, held at an arbitrary angle θ with the x-axis, we have

Z(ξ) − Z(ξ′) = eiθ(t)(ξ − ξ′) −→ g(ξ′, ξ, t) = 0, (15)

valid for arbitrary movement of the flat wing. For wing with small camber, as is usually seen, g(ξ′, ξ, t) is found
to be regular and quadratic in the camber (see (19)). We can therefore call g(ξ′, ξ, t) the residual kernel, and its
integral, the residual integral, which is of a form apt for iteration with rapid convergence. This is the principle
we shall follow in this unified approach.

[Figure 2 here]
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For the body shape, Sb can always assume a shape function Z(ξ, t) and a general camber function Ẑ(ξ, t) ∈
C1 ∀ ξ[−1, 1] pertaining to the ‘frame of reference’ of the deformable wing so that Z(ξ, t) can be prescribed as

Z(ξ, t) = Z0(t) + eiθ Ẑ(ξ, t) (−1 ≤ ξ ≤ 1),
Ẑ(ξ, t) = X̂(ξ, t) + iŶ (ξ, t) = X̂(ξ, t) + iF (X̂(ξ, t), t), (16)

(see Fig. 2). Here, Z0(t) is a reference point to be chosen as the origin of Ẑ(ξ, t), θ(t) is the slope angle measured
from the x-axis to the wing chord which passes through the leading edge at Z(−1, t) and the trailing edge at
Z(+1, t) of the wing, and Ŷ (ξ, t) = F (X̂(ξ, t), t) stands for the real camber function, assumed regular. For
convenience, we choose Z0(t) to be

Z0(t) = Z(0, t) − ieiθ Ŷ (0, t), (17)

which is the projection of the wing center point Z(0, t) onto the chord, which is at the mid-chord if the wing
has the fore-and-aft symmetry (X̂(ξ, t) being odd, Ŷ (ξ, t) even in ξ). In the wing frame, the leading edge is at
Ẑ(−1, t) = −a(t), and the trailing edge at Ẑ(+1, t) = b(t), ordinarily with 0 < a, b ≤ 1, and a = b for symmetric
wings.

Next, for the inextensibility condition on the wing arc, we invoke |∂Z/∂ξ| = |∂Ẑ/∂ξ| = 1, giving

{
1 +

(
∂F

∂X̂

)2
}1/2 ∣∣∣∣∣

∂X̂

∂ξ

∣∣∣∣∣ = 1.

For ∂X̂/∂ξ > 0, which is ordinarily the case, we have

ξ =
∫ X̂

0

{
1 +

(
∂F

∂X̂

)2
}1/2

dX̂ (−1 < ξ < 1), (18)

from which follows X̂(ξ, t) by quadrature and inversion, and Ŷ (ξ, t) = F (X̂(ξ, t), t). This relation of providing
X̂(ξ, t), Ŷ (ξ, t) is of importance to applying the boundary conditions exactly. In some particular cases with certain
symmetry, e.g. a circular arc wing, suitable parametric representations of the camber function may prevail for
possible simplification of the analysis and computations involved.

With X̂(ξ, t), Ŷ (ξ, t) so determined, the residual kernel becomes

g(ξ, ξ′, t) =
δX̂∆X̂ + δŶ ∆Ŷ

(∆X̂)2 + (∆X̂)2
− 1 (δX̂ ≡ ∂X̂

∂ξ
, ∆X̂ ≡ X̂(ξ, t) − X̂(ξ′, t)

ξ − ξ′
), (19)

and similarly for δŶ and ∆Ŷ , (−1 ≤ ξ, ξ′ ≤ 1). For a flat wing, X̂(ξ, t) = ξ, Ŷ (ξ, t) = 0, hence g(ξ, ξ′, t) = 0.
For wings of small camber, (19) shows g being quadratic in the camber.

For given Z(ξ, t) of Sb(t), its surface (complex) velocity is, with using (16), given by

Wb(ξ, t) =
∂

∂t
Z(ξ, t) =

∂

∂t
(X − iY ) = [(U0 − iV0) + iΩ(X̂ − iŶ ) + (X̂t − iŶt)]e−iθ. (20)

This Wb prescribes the wing movement consisting in general of a translation with velocity dZ0/dt = (U0 +
iV0) exp iθ, a rotation of the wing chord about Z0 with clockwise angular velocity Ω = −dθ/dt (+ive for nose-up
by convention), and a camber variation at the rate (X̂t+iŶt)] exp(iθ). This wing surface velocity has its tangential
component Us(ξ, t) and normal component Un(ξ, t) given by Wb∂Z/∂ξ = Us − iUn (see (3)), where

Us(ξ, t) = (U0 + ΩŶ + X̂t)X̂ξ + (V0 − ΩX̂ + Ŷt)Ŷξ , (21)

Un(ξ, t) = (V0 − ΩX̂ + Ŷt)X̂ξ + (U0 + ΩŶ + X̂t)Ŷξ . (22)

The normal component Un will provide the kinematic flow condition (8) at Sb, and the tangential component Us

may be used to verify the wing being inextensible, if needed. Of course, with body motion (16) given, the surface
velocity is completely determined.
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After substituting the exact expression (22) for Un(ξ, t) in integral equation (14) for γ0(ξ, t), the leading term
with the Cauchy kernel can be inverted by steady airfoil theory[10], i.e.

Un(ξ, t) =
1
2π

∫ 1

−1

γ0(ξ′, t)
ξ′ − ξ

dξ′ ≡ G0γ0, −→ γ0(ξ, t) = G−1
0 Un (|ξ| < 1), (23)

γ0(ξ, t) = − 2
π

√
1 − ξ

1 + ξ

∫ 1

−1

√
1 + ξ′

1 − ξ′
Un(ξ′, t)
ξ′ − ξ

dξ′ ≡ G−1
0 Un, (24)

where G0 denotes the integral operator and G−1
0 its inverse (i.e. G−1

0 G0 = 1) as designated. Applying this
inversion to (14) in its entirety yields the following reduced integral equation for γ0 as

γ0(ξ, t) = γ00(ξ, t) + Hγ0, γ00(ξ, t) = G−1
0 Un,

Hγ0 ≡
∫ 1

−1

γ0(ξ′, t)h(ξ′, ξ, t)dξ′, h(ξ′, ξ, t) =
1
π2

√
1 − ξ

1 + ξ

∫ 1

−1

√
1 + ζ

1 − ζ

g(ξ′, ζ, t) dζ

(ξ′ − ζ)(ζ − ξ)
. (25)

The above expression for h(ξ′, ξ, t) arrived at with interchanging the order of integration is justified by the
Poincare-Bertrand formula[10]. For a flat wing, the solution for γ0 terminates with Hγ0 = 0, due to g = 0
by (15). For cambered wings, γ0 can be readily solved by iteration, either numerically or analytically using
γ

(k)
0 (ξ, t) = γ00(ξ, t) + Hγ

(k−1)
0 , (k = 1, 2, · · ·) under the integral operator H, with γ

(0)
0 = 0. In fact, this iterative

scheme by analysis is easily seen, by successive substitutions, to yield

γ0(ξ, t) = (1 + H + H2 + · · ·)γ00(ξ, t) = (
∑∞

m=0 Hm)G−1
0 Un,

which we write, for convenience, as

γ0(ξ, t) = G−1
0 (1 + N0)Un(ξ, t) (N0 = G0(

∑∞
m=1 Hm)G−1

0 ) (26)

in which N0 is the nonlinear integral operator as has been determined exactly by iteration to represent the
nonlinear effects due to the camber distribution which is instantaneously frozen at each time step. Being quadratic
in the wing camber, N0 vanishes for flat wing and its series expansion for cambered wings is expected to converge
reasonably rapidly in general. This solution for γ0 contributes a circulation Γ0(t) around the wing as

Γ0(t) =
∫ 1

−1

γ0(ξ, t)dξ = −2
∫ 1

−1

√
1 + ξ

1 − ξ
(1 + N0)Un(ξ, t)dξ, (27)

in which the multi-integrals have all been reduced in number by one (with G−1
0 integrated out), leaving the term

with N0 to give the nonlinear camber effects on Γ0(t).
For the wake-induced bound vortex γ1, the complete analogy between (10) and (8) can be used to imply for

γ1 the solution which can first be written formally by analogy with (26) as

γ1(ξ, t) = −G−1
0 (1 + N0)U1n(ξ, t),

followed by having the unknown U1n(ξ, t) eliminated by applying (9) which we rewrite, like (14) for (8), as

U1n(ξ, t) =
1
2π

∫ ξm

1

{1 + g1(ξ′, ξ, t)}
γw(ξ′, t)
ξ′ − ξ

dξ′, (28)

where g1(ξ′, ξ, t) has the same expression as g(ξ′, ξ, t) of (14) but differs from it in range by having ξ ∈ Sb but
ξ′ ∈ Sw . As a result, unlike g(ξ′, ξ, t) being always small for Sb with a small camber, as shown by (19), g1(ξ′, ξ, t)
in general can be finite in magnitude, especially when Sb displaces itself by finite amount at fast rate from a
straight trajectory in the space. It is in such general cases that the wake vortices can give rise to finite nonlinear
effects on the flow field in addition to the local nonlinear effects due to changes in body shape according to (14).

In general, substituting (28) for U1n in the former equation, we can derive for the total circulation around the
wing due to γ1, Γ1 =

∫
Sb

γ1(ξ, t)dξ, to obtain the following result

Γ1(t) =
∫ ξm

1

{√
ξ + 1
ξ − 1

− 1 + Nw(ξ, t) + Nb(ξ, t)

}
γw(ξ, t) dξ, (29)
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Nw(ξ, t) =
1
π

∫ 1

−1

√
1 + ξ′

1 − ξ′
g1(ξ, ξ′, t)

ξ − ξ′
dξ′, (30)

Nb(ξ, t) =
1
2π

∫ 1

−1

√
1 + ξ′

1 − ξ′
N0(ξ′, t)

1 + g1(ξ, ξ′, t)
ξ − ξ′

dξ′. (31)

Finally, we apply Kelvin’s theorem as we have expounded for (13) to obtain for γw the equation

Γ0(t) +
∫ ξm

1

{√
ξ + 1
ξ − 1

+ Nw(ξ, t) + Nb(ξ, t)

}
γw(ξ) dξ = 0. (32)

This is the nonlinear wake-vorticity integral equation for wake vorticity γw in closed form. It generalizes Wagner’s
integral equation for linear case to fully account for a flexible wing in arbitrary movement. Of the different terms
in this equation, Γ0(t) has a component in its integral with kernel N0(ξ, t) representing a local nonlinear effect
on the flow due to changes in body shape. In the wake integral, the term with Nw(ξ, t) represents the nonlinear
wake effects primarily due to non-uniformity of the wake vorticity resulting from finite changes in orientation and
velocity of body movement. The other term with Nb(ξ, t) represents the nonlinear effects due jointly to changes
in body shape and their wake effects, since it vanishes completely for flat wing (by virtue of (15)). In the linear
limit, Nw and Nb both vanish, reducing (32) to Wagner’s integral equation. The foregoing is a simple unified
derivation of Wu’s results[1-3], here brought to completion with the new comprehensive exact representations
provided for arbitrary wing movement.

In computation, it is convenient to start with the motion of Sb prescribed for t ≥ 0. In a small time interval
δtk at t = tk > 0 (k = 1, 2, · · ·), a new segment of Sw is created (due to body moving forward) in the wake just
beyond the trailing edge (at ξ = 1), namely δz(1, t) = W (1, t)δtk. The wake vorticity shed into this small segment
of Sw can be obtained, by analysis and numerics, accurately by applying (32). Once the local γw of that fluid
particle (leaving the trailing edge at t = tk) is determined, its value will remain invariant with the particle, by
Helmholtz’s theorem, and move on with wake fluid at velocity Ww(ξ, t) of (11) for t > tk (k = 1, 2, · · ·). Therefore,
the key step in using the nonlinear wake-vorticity integral equation (32) is at the initial time step in which the
starting vortex is shed from the trailing edge and at each successive time steps when a new vortex element is shed
continuously into the wake.

In conclusion, we have addressed all the issues concerning the generation of entire vortex distribution over a
flexible wing moving in arbitrary manner, with all the various nonlinear effects identified for general applications
to self-propulsion and related future studies. The final exact form (32) is based on series expansion of the residual
term to all orders in camber, its rapid convergence is expected (primarily due to the smallness of the kernel g as
stressed by Wu[3]) and can be easily assessed in practice for the contributions from consecutive orders to finding
the nonlinear effects accurately in increasing orders, which should be straightforward by computation. These
nonlinear effects are expected to play an active and important role in aerial and aquatic animal locomotion.
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References
1. Wu, T.Y. On theoretical modeling of aquatic and aerial animal locomotion. Advances in Appl. Mech. 38,

291-353 (2001) Academic Press.
2. Wu, T.Y. Reflections for resolution to some recent studies on fluid mechanics. In Advances in

Engineering Mechanics – Reflections and Outlooks. (2005) World Scientific.
3. Wu, T.Y. A nonlinear unsteady flexible wing theory. Struct. Control Health Monit. 13, 553-560. (2006).
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6. Stredie, V.G. Mathematical modeling and simulation of aquatic and aerial animal locomotion.

Ph.D. Thesis, California Institute of Technology, Pasadena, CA (2005).
7. Hou, T.Y., Stredie, V.G., Wu, T.Y. A 3D Numerical Method for Studying Vortex Formation Behind a Moving

Plate. (To appear in Communication in Computational Physics 1.)
8. Hou, T.Y., Stredie, V.G., Wu, T.Y. Mathematical Modeling and Simulation of Aquatic and Aerial Animal

Locomotion. (To appear.)
9. Lighthill, M.J. Large-amplitude elongated-body theory of fish locomotion. Proc. R. Soc. Lond. B. 179,

6



125-138 (1971)
10. Muskhelishvili, N.I. Singular Integral Equations. (1953) P. Noordhoff N.V.

Figure 1: The Lagrangian coordinates (ξ, η) adopted to describe arbitrary motion of a two-dimensional flexible lifting
surface moving along arbitrary trajectory through fluid in an inertial frame fixed with the fluid at infinity.

Figure 2: The wing movement consists of (i) rectilinear translation with velocity (Ub, Vb) at incidence angle α(t), (ii)
rotation with angular velocity Ω(t), and (iii) unsteady camber function Ẑ(ξ, t) = X̂+iŶ , Ŷ = F (X̂, t), shown as ξ+if(ξ, t).
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