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Optimal filtering of the LISA data
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The LISA time-delay-interferometry responses to a gravitational wave signal are rewritten in a form that
accounts for the motion of the LISA constellation around the Sun; the responses are given in closed analytic
forms valid for any frequency in the band accessible to LISA. We then present a complete procedure, based on
the principle of maximum likelihood, to search for stellar-mass binary systems in the LISA data. We define the
required optimal filters, the amplitude-maximized detection statistic~analogous to theF statistic used in pulsar
searches with ground-based interferometers!, and discuss the false-alarm and detection probabilities. We then
test the procedure in numerical simulations of gravitational-wave detection.
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I. INTRODUCTION

The Laser Interferometer Space Antenna~LISA! is a
deep-space mission aimed at detecting and studying gra
tional radiation in the millihertz frequency band. A join
American and European project, it is expected to
launched in the year 2011, and to start collecting scien
data approximately a year later, after reaching its orbital c
figuration of operation@1#. LISA consists of three widely
separated spacecraft, flying in a triangular, almost equilat
configuration, and exchanging coherent laser beams. In
trast to ground-based, equal-arm gravitational-wave~GW!
interferometers, LISA will have multiple readouts, corr
sponding to the six laser Doppler shifts measured betw
spacecraft. Modeling each spacecraft as carrying las
beam splitters, photodetectors, and drag-free proof masse
each of two optical benches, Armstrong, Estabrook, a
Tinto @2–4# showed that it is possible to combine, with su
able time delays, the six time series of the inter-spacec
Doppler shifts and the six time series of the intra-spacec
Doppler shifts~measured between adjacent optical bench!
to cancel the otherwise overwhelming frequency fluctuati
of the lasers (Dn/n.10213/AHz), and the noise due to th
mechanical vibrations of the optical benches~which could be
as large asDn/n.10216/AHz). The strain sensitivity leve
that then becomes achievable,h.10221/AHz, is set by the
buffeting of the drag-free proof masses inside each opt
bench, and by the shot noise at the photodetectors. Se
such laser-noise-free interferometric combinations are p
sible, and they show different couplings to gravitation
waves and to the remaining system noises@2–5#. The tech-
nique used to synthesize these combinations is known
time-delay interferometry~TDI!; in the case of a stationar
array, it was shown that the space of all the possible T
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observables can be constructed by combining four genera
@2,6#.

Recently, it was pointed out@7–10# that the rotational
motion of the LISA array around the Sun and the time d
pendence of light travel times introduced by the relat
~shearing! motion of the spacecraft have the effect of pr
venting the suppression of laser frequency fluctuations
least under the current stability requirements, to the leve
the secondary noisesin the TDI observables as derived for
stationary array. This problem was addressed by devisi
new combinations that are capable of suppressing the l
frequency fluctuations below the secondary noises for a
tating LISA array@7,8#, and for a rotating and shearing LIS
array @9,10#. In this context, the original stationary-arra
combinations are sometimes known as ‘‘TDI 1.0’’~or first-
generation TDI!, the rotating-LISA combinations as ‘‘TDI
1.5,’’ and the rotating and shearing-LISA combinations
‘‘TDI 2.0;’’ following Ref. @10#, we refer to the last as
second-generationTDI. Second-generation combinations a
essentially finite differences of first-generation combinatio
and as such they appear more complicated. However,
retain the same sensitivity to incoming GWs: this is beca
the corrections introduced in the original combinations
the changing array geometry are obviously important for
ser frequency fluctuations, but they are negligibly small
the GW responses and for the secondary noises; thus,
laser frequency noise is removed, the second-generation
servables become finite differences of the correspond
first-generation observables. At a fixed frequency, the ratio
GW response to secondary noises~and hence the sensitivity!
is then unchanged.

The GW responses of the TDI combinations depend
the relative orientation of the LISA array with respect to t
direction of propagation of the GW signal, on the streng
and polarization of the signal, and on its frequency com
nents. Analytic expressions for the TDI responses were
derived by Armstrong, Estabrook and Tinto@2#, for a station-
ary LISA array. A realistic model of LISA must howeve
include the motion of the array around the Sun, which int
duces slow modulations in the phase and amplitude of
GW responses~in addition, of course, to the modification
introduced by adopting second-generation TDI!. For in-
stance, the LISA responses to the sinusoidal signal emi

,
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KRÓLAK, TINTO, AND VALLISNERI PHYSICAL REVIEW D 70, 022003 ~2004!
by a binary system are not simple sinusoids, but rather
perpositions of many sinusoids of smaller amplitude.
maximize the likelihood of source detection, these effe
must be modeled in GW search algorithms, either by incl
ing the modulations in the theoretical models of the sign
~i.e., thetemplates!, or by demodulating the LISA data for
given set of sky positions as the first step of data anal
@11,12#.

In this paper we derive the response of the seco
generation TDI observables to the GW signals generated
binary system, and we describe how signal templates ba
on these responses can be used in a maximum-likelih
matched-filtering framework to search for binaries and
estimate their parameters once they are found. Other m
ods to analyze the LISA data for signals from binarie
implemented in the long-wavelength approximation, ha
been proposed in Refs.@13,14#. We work in the solar-system
baricentric frame, and we follow closely the derivation giv
by Jaranowski, Kro´lak, and Schutz@15# for continuous
sources and ground-based detectors. A similar formalism
used by Giampieri@16# to obtain the antenna pattern of a
arbitrary orbiting interferometer, in the long-wavelength a
proximation. The response of an orbiting equal-ar
Michelson interferometer to a sinusoidal signal was work
out by Cutler@17#, again in the long-wavelength limit. Set
@18# extended Cutler’s formalism to high frequencies~and to
noise-canceling observables!, in the context of studying
optimal-filtering parameter estimation for supermassi
black-hole binaries. Cornish, Rubbo, and Poujade@19,20#
obtained general expressions valid in the entire LISA f
quency band, and for arbitrary GW signals; these express
are given as integrals over the LISA arms, and they prov
the basic building blocks to assemble the TDI observab
By contrast, in this paper we work out explicit time-doma
expressions for the LISA response to moderately chirp
binary systems, for all the second-generation TDI combi
tions. These expressions are valid over the entire LISA
quency band, and they are written as linear combination
four time-dependent functions; this linear structure facilita
the computation of matched filters and the design of optim
filtering algorithms.

This paper is organized as follows. In Sec. II we give
brief overview of the derivation of the TDI responses
GWs for a stationary array, and we argue that the correct
introduced by the motion of the LISA array and by the tim
dependence of light travel times are negligibly small. Wo
ing in the solar-system-baricentric frame, we obtain gene
expressions for the GW responses of the Michelson (X1 , X2 ,
X3), Sagnac (a1 , a2 , a3), and optimal (Ā, Ē, T̄; see@21#!
second-generation TDI observables~expressions for the first
generation observables are given in Appendix C!; finally, we
derive the corresponding closed-form analytic expressi
for moderately chirping binary systems, valid at any fr
quency in the LISA band. In Sec. III we provide expressio
for the spectral densities of noise in the TDI combinations
Sec. IV we combine the results of Secs. II and III to des
optimal filters that can be applied to the LISA TDI data
search for binary stars; we take advantage of the linear st
ture of the responses to define an optimal detection stat
that does not depend on the effective polarization and on
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initial phase of the binary, in analogy to theF statistic
@15,22# used in searches for continuous GW sources w
ground-based interferometers. In Sec. V we derive the fa
alarm and false-dismissal probabilities for our LISAF sta-
tistic. Last, in Sec. 6 we describe an efficient algorithm
computeF, and we implement it numerically; we perform
simulation of GW detections in both the low and hig
frequency part of the LISA band, and for both Michelson a
optimal @21# TDI observables, and we show that our alg
rithm yields very accurate estimates of source parameter
the rest of this paper we shall use units wherec51.

II. TIME-DELAY INTERFEROMETRY

Figure 1 shows the overall LISA geometry. The spacec
are labeled 1, 2, and 3; the arms are labeled with the inde
the opposite spacecraft~e.g., arm 1 lies between spacecraft
and 3!. The light travel time~or, loosely, thearmlength!
along armi is denoted byLi @7–10#. The basic constituents
of the TDI observables are the time series of the relat
laser-frequency fluctuations measured between spacec
which are denoted byyi j (t), with iÞ j : for instance,y31(t) is
the time series of relative frequency fluctuations measu
for reception at spacecraft 1 with transmission from spa
craft 3 ~along arm 2!; similarly, y21(t) is the time series
measured for reception at spacecraft 1 with transmiss
from spacecraft 2~along arm 3!, and so on. Six more time
series result from comparing the laser beams exchanged
tween adjacent optical benches within each spacecraft; t
time series are denoted byzi j , with i , j 51,2,3, iÞ j ~see
@3,4,10# for details!. Delayed time series are denoted by co
mas: for instance,y31,25y31@ t2L2(t)#, and so on.

The frequency fluctuations introduced by the lasers,
the optical benches, by the proof masses, by the fiber op
and by the measurement itself at the photo-detector~i.e., the
shot-noise fluctuations! enter the Doppler observablesyi j
andzi j with specific time signatures; see Refs.@3,4,10# for a
detailed discussion. The contributionyi j

GW due to GW signals
was derived in Ref.@2# in the case of a stationary arra
~Note that in Ref.@2#, and indeed in all the literature o
first-generation TDI, the notationyi j indicates the one-way
Doppler measurement for the laser beam received at sp

FIG. 1. Schematic LISA configuration. The spacecraft are
beled 1, 2, and 3; each spacecraft contains two optical benc
denoted by 1,1* , . . . , asindicated. The optical paths are denote
by Li , where the indexi corresponds to the opposite spacecra

The unit vectorsn̂i point between pairs of spacecraft, with the o
entation indicated.
3-2
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OPTIMAL FILTERING OF THE LISA DATA PHYSICAL REVIEW D 70, 022003 ~2004!
craft j andtraveling along arm i. In this paper we conform to
the notation used in Refs.@7–10#.!

Since the motion of the LISA array around the Sun int
duces a difference between~and a time dependence in! the
corotating and counterrotating light travel times, the ex
expressions for the GW contributions to the various fir
generation TDI combinations will in principle differ from th
expressions valid for a stationary array@2#. However, the
magnitude of the corrections introduced by the motion of
array are proportional to the product between the time
rivative of the GW amplitude and the difference between
actual light travel times and those valid for a stationary arr
At 1 Hz, for instance, the larger correction to the signal~due
to the difference between the corotating and counterrota
light travel times! is two orders of magnitude smaller tha
the main signal. Since the amplitude of this correction sca
linearly with the Fourier frequency, we can completely d
regard this effect~and the weaker effect due to the tim
dependence of the light travel times! over the entire LISA
band@10#. Furthermore, since along the LISA orbit the thr
armlengths will differ at most by;1% –2%, the degradation
in signal-to-noise ratio introduced by adopting signal te
plates that neglect the inequality of the armlengths will be
most a few percent. For these reasons, in what follows
shall derive the GW responses of various second-genera
TDI observables by disregarding the differences in the de
times experienced by light propagating clockwise and co
terclockwise, and by assuming the three LISA armlength
be constant and equal toL553106 km.16.67 s @23#.
These approximations, together with the treatment of
moving-LISA GW response discussed at the end of Sec. I
are essentially equivalent to therigid adiabatic approxima-
tion of Ref. @20#, and to the formalism of Ref.@18#.

FIG. 2. Orbital motion of the LISA detector, shown in a sola
system baricentric ecliptic coordinate system. The trajecto
shown correspond to settingz52p/6, V52p/yr, and j05h0

50 in Eqs.~5! and ~6!.
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A. Geometry of the orbiting LISA array

We denote the positions of the three spacecrafts bypi and
the unit vectors along the arms byn̂i , wheren̂1 points from
spacecraft 3 to 2,n̂2 points from spacecraft 1 to 3, andn̂3
points from spacecraft 2 to 1. In the coordinate frame wh
the spacecraft are at rest, we can set without loss of gen
ity

pi
L5~L/A3!~2cos 2s i ,sin 2s i ,0!, ~1!

and

n̂i
L5~coss i ,sins i ,0!, ~2!

where

s i53p/222~ i 21!p/3. ~3!

Because the motion of the LISA guiding center~i.e., the
baricenter of the formation! is contained in the plane of th
ecliptic, it is convenient to work in a solar-system-baricent
~SSB! ecliptic coordinate system. We take thex axis of this
system to be directed toward the vernal point. A realistic
of orbits for the spacecraft@23#, shown in Fig. 2, is obtained
by setting

pi~ t !5r ~ t !1O2•pi
L , n̂i~ t !5O2•n̂i

L , ~4!

wherer is the vector from the origin of the SSB coordina
system to the LISA guiding center, as described by the S
components

r5R~cosh,sinh,0!, R51 AU; ~5!

the functionh5Vt1h0 returns the true anomaly of the mo
tion of the LISA guiding center around the Sun. The rotati
matrix O2 models the cartwheeling motions of the spacecr
along their inclined orbits, shown in Fig. 3; it is given by

s

o

s

FIG. 3. Cartwheeling motion
of the LISA array, as plotted in a
frame with center in the LISA
guiding center and axes parallel t
the SSB ecliptic frame. We show
three snapshots at different time
along the LISA orbital period, 1
yr.
3-3
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O25S sinh cosj2cosh sinz sinj 2sinh sinj2cosh sinz cosj 2cosh cosz

2cosh cosj2sinh sinz sinj cosh sinj2sinh sinz cosj 2sinh cosz

cosz sinj cosz cosj 2sinz
D ; ~6!

the functionj52Vt1j0 returns the phase of the motion of each spacecraft around the guiding center, whilez sets the
inclination of the orbital plane with respect to the ecliptic. For the LISA trajectory,V52p/yr and z52p/6 @23#. For
simplicity, we can seth05j050, so that at timet50 the LISA guiding center lies on the positivex axis of the SSB system
while p1 lies on the negativey axis. The spacecraft orbits described by Eq.~4! can be approximately mapped to those used
Cornish and Rubbo@19# by identifying our spacecraft 1, 2, and 3 with their spacecraft 0, 2, and 1, and by settingh05k,
j053p/22k1l, wherek andl are the parameters defined below Eqs.~56! and ~57! of Ref. @19#.

B. Generic plane waveform

At the origin of the SSB frame, the transverse-traceless metric perturbation due to a source located at ecliptic latitub and
longitudel can be written as

H~ t !5O1•HS~ t !•O1
21 , ~7!

where the metric perturbation in the source frame is taken to be

HS~ t !5S h1~ t ! h3~ t ! 0

h3~ t ! 2h1~ t ! 0

0 0 0
D , ~8!

with h1(t) andh3(t) the two GW polarizations, and where

O15S sinl cosc2cosl sinb sinc 2sinl sinc2cosl sinb cosc 2cosl cosb

2cosl cosc2sinl sinb sinc cosl sinc2sinl sinb cosc 2sinl cosb

cosb sinc cosb cosc 2sinb
D ; ~9!
p
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the dependence of the rotation matrixO1 on b and l en-
forces the transversality of the plane waves, which are pro
gating from a source located in the direction

k̂5~cosl cosb,sinl cosb,sinb!; ~10!

the polarization anglec encodes a rotation around the dire
tion of wave propagation,2 k̂, setting the convention used t
define the two polarizations,1 and 3. The polarizations
corresponding toc50 are shown in Fig. 4 for various sourc
positions in the sky. In the center of the LISA proper fram
~the frame where the spacecraft are at rest!, the transverse-
traceless metric perturbation is given by

HL~ t !5O2
21~ t !O1HS~ t !O1

21O2~ t !. ~11!

The time variablet that appears inh1(t) and h3(t) @and
therefore inH(t) andHL(t)] is the time at the origin of the
SSB frame. It is related to the time in the GW source fra
by a relativistic time dilation, due to the proper motion of t
source and to cosmological effects. It is however exped
to identify the two times, and to describe GW emission us
SSB time; the time dilation is then taken into account
mapping the apparent~measured! physical parameters of
source into its real parameters. The source positional par
02200
a-

e

nt
g
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etersb, l, and c can be mapped to the parametersu, f,
and c used in Ref.@19# by settingb5p/22u, l5f, and
c52c.

C. GW response of the LISA array

As derived in Ref.@2# for a stationary, equilateral-triangl
LISA array, the one-way Doppler responsesy21 andy31 ex-
cited by a plane transverse-traceless GW propagating f
the source directionk̂, are given by

FIG. 4. Conventional definition of the GW polarizations1
~dashed! and 3 ~solid! for various ecliptic latitudesb and longi-
tudesl.
3-4
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OPTIMAL FILTERING OF THE LISA DATA PHYSICAL REVIEW D 70, 022003 ~2004!
y21
GW~ t !5@12 k̂•n̂3#@C3~ t1 k̂•p22L !2C3~ t1 k̂•p1!#,

~12!

y31
GW~ t !5@11 k̂•n̂2#@C2~ t1 k̂•p32L !2C2~ t1 k̂•p1!#

~13!

@in the notation of Ref.@2#, oury21, y31, andk̂ correspond to
y31, y21, and2 k̂, respectively# where

C j~ t !5
F j~ t !

12~ k̂•n̂j !
2

, F j~ t !5
1

2
n̂j8•H~ t !•n̂j ~14!

@the prime denotes vector transposition#. The twoC i terms
in each of Eqs.~12! and ~13! correspond to the events o
emission~at spacecraft 2 and 3, respectively! and reception
~at spacecraft 1! of a laser photon packet; the time of th
emission event is therefore retarded by an armlengthL. The
k̂•pi terms represent the retardation of the gravitatio
wavefronts to the positions of the spacecraft. The other f
one-way Doppler responses are obtained by cyclical per
tation of the indices (1→2, 2→3, 3→1).

Our approximation to the GW response of the movi
LISA array is obtained simply by interpreting Eqs.~13! and
~14! as written in the SSB ecliptic frame, and by adopting t
time-dependent equations~4! for pi and n̂i . Note thatF j (t)
can then be written either asF j (t)5 1

2 n̂j8(t)•H(t)•n̂j (t), or

F j (t)5 1
2 (n̂j

L)8•HL(t)•n̂j
L . The time-dependent rotation o

the n̂i(t) introduces an amplitude modulation of the r
sponses, generating sidebands at frequency multiples of
the time dependence of the wavefront-retardation prod
k̂•pi(t) introduces a time-dependent Doppler shift caused
the relative motion of the spacecraft with respect to the S
frame.

D. Chirping-binary waveforms

In the Newtonian limit, the GW signal emitted by a bina
system located in the directionk̂ can be written in the form
of Eq. ~7!, with

h1~ t !5h0
1cos@fs~ t !1f0#, h3~ t !5h0

3sin@fs~ t !1f0#.
~15!

Heref0 is an arbitrary constant phase, and the constant
plitudesh0

1 andh0
3 are given by

h0
15h0~11cos2i !/2, h0

35h0cosi, ~16!

wherei is the angle between the normal to the orbital pla
of the binary and the direction of propagation2 k̂, and
where

h0.
4~GMc!

5/3

c4D
Fv2 G2/3

, ~17!

with Mc5m1
3/5m2

3/5/(m11m2)1/5 the chirp mass,v the an-
gular frequency of the GW att50, andD the luminosity
02200
l
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e

yr;
ts
y
B

-

e

distance to the source. Last, the phasefs(t) is given, to the
first post-Newtonian order, by@24#

fs~ t !.f̃s~ t !2f̃s~0!,

f̃s~ t !52
2M

m
Q5/8~ t !F11S 3715

8064
1

55

96

m

M DQ21/4~ t !G ,
~18!

where

Q~ t !5
mc3

5GM2
~ tc2t !, ~19!

tc5
GM2

mc3

5

256

1

x0
4 F11S 743

252
1

924

252

m

M D x0G ,
x05FGMv

2c3 G 2/3

, ~20!

with M5m11m2 the total mass of the binary, andm
5m1m2 /M the reduced mass. The timetc is the time to
coalescence of the binary from the initial instantt50.

In Table I, for binaries consisting of various combinatio
of white dwarfs ~WDs, with m50.35M (), neutron stars
~NSs, with m51.4M (), and black holes~BHs, with m
56M (), and for various fiducial GW frequencies within th
LISA band, we show the contributions to the evolution
GW frequency over one year caused by terms at the N
tonian ~N! and first post-Newtonian~1PN! order. The table
shows that at frequencies smaller or equal to 1023 Hz, the
evolution of frequency is negligible. At frequencies a
proaching 10 mHz, the change in frequency becomes sig
cant, and needs to be included in the model of the sig
however, only the first derivative of the frequency is need
up to about 50 mHz. In binaries with WDs of mas
;0.35M ( , above;20 mHz the WDs fill their Roche lobe
and the dynamical evolution of the system is then determi
by tidal interaction between the stars. In binaries with eith
a NS or a BH, post-Newtonian effects become importan
about ;50 mHz. At 1 Hz and above, these binaries w
coalesce in less than 1 yr; furthermore, population stud
@25# suggest that the expected number of binaries above
mHz containing neutron stars and black holes is negligib
~The effects of frequency evolution in the LISA response
GW signals from inspiraling binaries are also discussed
Ref. @26#.!

Therefore, for sufficiently small binary masses, for suf
ciently small GW frequencies~and definitely for all non-
tidally-interacting binaries that contain WDs!, we can ap-
proximate the phase of the signal by Taylor-expanding it, a
then neglecting terms of cubic and higher order. The res
ing expression for the signal phasefs(t) is

fs~ t !.vt1
1

2
v̇t2, where v̇5

48

5 S GM c

2c3 D 5/3

v11/3.

~21!
3-5
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KRÓLAK, TINTO, AND VALLISNERI PHYSICAL REVIEW D 70, 022003 ~2004!
E. TDI responses

The response of the second-generation TDI observables to a transverse-traceless, plane GW is obtained by setyi j (t)
5yi j

GW(t) @according to Eqs.~12! and ~13!# in the TDI expressions of Ref.@9,10#. For instance, the GW response of th
second-generation TDI observableX1 is given by

~22!

TABLE I. Contributions to the evolution of GW frequency for various types of compact, stellar-mass binaries~white dwarfs withm
50.35M ( , neutron stars withm51.4M ( , and black holes withm56M (), for selected~initial! GW frequencies within the LISA band. Th
contributions are expressed as GW cycles over one year of evolution, and the effects of Newtonian-order~N! and first post-Newtonian-orde
~1PN! terms are shown separately. The column labeled ‘‘Doppler’’ reports the integrated phase shift~in cycles! due to the increased Dopple
shifting of the source as the frequency increases@see Eq.~45!#, where significant. Atf 51023 Hz there is no significant evolution of GW
frequency over one year. The symbol † indicates that the Taylor expansion of the phase given by Eq.~21! is accurate to within a quarter o
a cycle. Numbers are not shown where a binary of a given class cannot exist at a given frequency. Some of the conclusions that ca
from this table are apparent also in Figs. 10 and 12 of Ref.@20#: up to about 1 mHz, LISA cannot differentiate~using 1 yr of data! between
a monochromatic binary and a chirping binary~see Fig. 10 of Ref.@20#!; above that frequency, chirping becomes appreciable~one additional
GW cycle over a year in this table corresponds to a frequency shift of one bin in Fig. 12 of Ref.@20#!, but we see that it can still be modele
faithfully by the linear-chirp model of Eq.~21!.

f 51023 Hz f 5231022 Hz f 5531022 Hz f 51021 Hz
Binary N 1PN N 1PN N 1PN Doppler N 1PN Doppler

WD-WD 0 0 24† 0 — —
WD-NS 0 0 69† 0 — —
WD–BH 0 0 190† 0 — —
NS-NS 0 0 240† 0 6.93103 3.4 0 9.33104 78 2.7
NS-BH 0 0 740 0.33 2.23104 19.0 0.66 3.53105 640 8.5
ec
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As anticipated above, here we are disregarding the eff
introduced by the time dependence of light travel times, a
by the rotation-induced difference between clockwise a
counterclockwise light travel times@27#. Each of the two
terms delimited by square brackets in Eq.~22! corresponds
to the GW response of the first-generation Michelson obs
ableX @2#. The TDI observablesX2 andX3 are obtained by
cyclical permutation of indices in Eq.~22!. Likewise, the
second-generation Sagnac observablesa1 , a2, and a3 can
be written in terms of the first-generation Sagnac observa
a, b, andg @9,10#:

a1
GW~ t !5aGW~ t !2aGW~ t2L12L22L3!

.aGW~ t !2aGW~ t23L !. ~23!

We shall now assemble the Doppler measurementsyi j
GW from

the various ingredients that enter Eqs.~12! and ~13!. We
begin with the functionsF j of Eq. ~14!, which can be rewrit-
ten as a linear combination of the two GW polarizatio
h1(t) andh3(t):
02200
ts
d
d

v-

es

F j~ t !5F j
1~ t !h1~ t !1F j

3~ t !h3~ t !, ~24!

where

F j
1~ t !5uj~ t !cos 2c1v j~ t !sin 2c, ~25!

F j
3~ t !5v j~ t !cos 2c2uj~ t !sin 2c. ~26!

The modulation functions ui(t) and v i(t) depend rather in-
tricately on the LISA-to-SSB (O2) and source-to-SSB (O1)
rotations; thus,ui(t) andv i(t) depend on time throughh(t)
andj(t), and on the position of the source in the sky, giv
by the ecliptic coordinatesb andl. Explicitly, we have

ui~ t !5U0cos~22g i !1U1cos~d22g i !1U2cos~2d22g i !

1U3cos~3d22g i !1U4cos~4d22g i !

1S 1

4
2

3

8
cos2z D cos2b2

1

8
sin 2z sin 2b cosd

1
1

4
cos2zS 12

1

2
cos2b D cos 2d, ~27!
3-6
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v i~ t !5V0sin~22g i !1V1sin~d22g i !1V3sin~3d22g i !

1V4sin~4d22g i !2
1

4
sin 2z cosb sind

1
1

4
cos2z sinb sin 2d, ~28!

where

d~ t !5l2h~ t !5l2h02Vt, ~29!

g i5l2h02j02s i ~30!

@see Eq.~3! for the definition ofs i , and remember thath
5Vt1h0 , j52Vt1j0], and where the coefficientsUI
andVI are given by

U05
1

16
~11sin2b!~12sinz!2, ~31!

U152
1

8
sin 2b cosz~12sinz!, ~32!

U25
3

8
cos2b cos2z, ~33!

U35
1

8
sin 2b cosz~11sinz!, ~34!

U45
1

16
~11sin2b!~11sinz!2, ~35!

V052
1

8
sinb~12sinz!2, ~36!
he

02200
V15
1

4
cosb cosz~12sinz!, ~37!

V35
1

4
cosb cosz~11sinz!, ~38!

V45
1

8
sinb~11sinz!2, ~39!

with z52p/6. Expanding the antenna patternsF j
1(t) and

F j
3(t) of Eq. ~24!, and using trigonometric identities to ab

sorb the initial phasef0 into constant coefficients, the func
tions F j (t) can be finally written as

F j~ t !5a(1)uj~ t !cosfs~ t !1a(2)v j~ t !cosfs~ t !

1a(3)uj~ t !sinfs~ t !1a(4)v j~ t !sinfs~ t !, ~40!

where the constant amplitudesa(k) are given by

a(1)5h0
1cosf0cos 2c2h0

3sinf0sin 2c, ~41!

a(2)5h0
1cosf0sin 2c1h0

3sinf0cos 2c, ~42!

a(3)52h0
1sinf0cos 2c2h0

3cosf0sin 2c, ~43!

a(4)52h0
1sinf0sin 2c1h0

3cosf0cos 2c. ~44!

Because the time scale of detector motion is much lon
than the typical GW period~and because we are neglectin
the evolution of the GW amplitudeh0), it is sufficient to
apply the retardationsk̂•pi(t) of Eqs. ~12! and ~13! to the
GW phase:
~45!
wheref(t) is the GW phase retarded to the position of t
LISA guiding center, and where we have defined

di~ t ![
k̂•@O2~ t !•pi

L#

2L
5

A3

8
cosb cosg i

1
1

4
sinb cos~d2g i !2

A3

24
cosb cos~2d2g i !

~46!
~settingz52p/6). Equations~12! and~13! contain also the
projection factorsk̂•n̂i(t), which are given explicitly by

ci~ t ![2 k̂•@O2~ t !•n̂i
L#5

3

4
cosb sing i

2
A3

2
sinb sin~d2g i !1

1

4
cosb sin~2d2g i !.

~47!
3-7
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The functions ci(t) and di(t) are related byd15(c2
2c3)/6, d25(c32c1)/6, andd35(c12c2)/6. Substituting
the expressions~13! @and similar ones# for the yi j

GW into Eq.
~22! for X1

GW, we get after some algebra

X1
GW~ t !54vL sin~vL !sin~2vL !(

k51

4

a(k)X1
(k)~ t !; ~48!

the functionsX1
(k)(t) are given by

FX1
(1)

X1
(2)G52Fu2~ t !

v2~ t !
G$sinc@~11c2!x/2#sin@f~ t !2xd227x/2#

1sinc@~12c2!x/2#sin@f~ t !2xd229x/2#%

1Fu3~ t !

v3~ t !
G$sinc@~11c3!x/2#sin@f~ t !2xd329x/2#

1sinc@~12c3!x/2#sin@f~ t !2xd327x/2#%, ~49!
02200
FX1
(3)

X1
(4)G5Fu2~ t !

v2~ t !
G$sinc@~11c2!x/2#cos@f~ t !2xd227x/2#

1sinc@~12c2!x/2#cos@f~ t !2xd229x/2#%

2Fu3~ t !

v3~ t !
G$sinc@~11c3!x/2#cos@f~ t !2xd329x/2#

1sinc@~12c3!x/2#cos@f~ t !2xd327x/2#%, ~50!

wherex5vL and sinc . . .5(sin . . . )/( . . . ). The GW re-
sponses forX2 andX3 can be obtained by cyclical permuta
tion of the spacecraft indices.

The GW response fora1 can be written in similar form:

a1
GW~ t !52vL sinS 3

2
vL D (

k51

k54

a(k)a1
(k)~ t !, ~51!

where
ke
Fa1
(1)

a1
(2)G5Fu1~ t !

v1~ t !
G$sinc@~11c1!x/2#cos@f~ t !2xd123x#2sinc@~12c1!x/2#cos@f~ t !2xd123x#%

1Fu2~ t !

v2~ t !
G$sinc@~11c2!x/2#cos@f~ t !2xd222x#2sinc@~12c2!x/2#cos@f~ t !2xd224x#%

1Fu3~ t !

v3~ t !
G$sinc@~11c3!x/2#cos@f~ t !2xd324x#2sinc@~12c3!x/2#cos@f~ t !2xd322x#%, ~52!

Fa1
(3)

a1
(4)G5Fu1~ t !

v1~ t !
G$sinc@~11c1!x/2#sin@f~ t !2xd123x#2sinc@~12c1!x/2#sin@f~ t !2xd123x#%

1Fu2~ t !

v2~ t !
G$sinc@~11c2!x/2#sin@f~ t !2xd222x#2sinc@~12c2!x/2#sin@f~ t !2xd224x#%

1Fu3~ t !

v3~ t !
G$sinc@~11c3!x/2#sin@f~ t !2xd324x#2sinc@~12c3!x/2#sin@f~ t !2xd322x#%. ~53!

The a2 anda3 combinations are again obtained by cyclical permutation of the spacecraft indices.
For the second-generation TDI observablez1 ~see Ref.@10#; z1 is uniquely determined in the equal-armlength limit, unli

in the general case! we find

z1
GW~ t !52vL sinS 1

2
vL D (

k51

4

a(k)z1
(k)~ t !, ~54!

with

F z1
(1)

z1
(2)G5Fu1~ t !

v1~ t !
G$sinc@~11c1!x/2#cos@f~ t !2xd123x#2sinc@~12c1!x/2#cos@f~ t !2xd123x#%

1Fu2~ t !

v2~ t !
G$sinc@~11c2!x/2#cos@f~ t !2xd223x#2sinc@~12c2!x/2#cos@f~ t !2xd223x#%

1Fu3~ t !

v3~ t !
G$sinc@~11c3!x/2#cos@f~ t !2xd323x#2sinc@~12c3!x/2#cos@f~ t !2xd323x#%, ~55!
3-8
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F z1
(3)

z1
(4)G5Fu1~ t !

v1~ t !
G$sinc@~11c1!x/2#sin@f~ t !2xd123x#2sinc@~12c1!x/2#sin@f~ t !2xd123x#%

1Fu2~ t !

v2~ t !
G$sinc@~11c2!x/2#sin@f~ t !2xd223x#2sinc@~12c2!x/2#sin@f~ t !2xd223x#%

1Fu3~ t !

v3~ t !
G$sinc@~11c3!x/2#sin@f~ t !2xd323x#2sinc@~12c3!x/2#sin@f~ t !2xd323x#%. ~56!
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Finally, the optimal TDI observables@21#, which here we
denote asĀ, Ē, andT̄ to distinguish them from the optima
combinationsA, E, and T derived within first-generation
TDI, are defined as linear combinations ofa1 , a2, anda3:

Ā5
1

A2
~a32a1!,

Ē5
1

A6
~a122a21a3!, ~57!

T̄5
1

A3
~a11a21a3!.

It is clear thatĀ, Ē, and T̄ are also optimal, in the sens
discussed in Ref.@21#: this is because they can be written
time-delayed combinations of the first-generation optim
TDI observables, such asĀ5A(t)2A(t23L), Ē5E(t)
2E(t23L), andT̄5T(t)2T(t23L); since by construction
the noises that enterA, E, andT are uncorrelated, it follows
that the noises that enterĀ, Ē, andT̄ are also uncorrelated
making these observables optimal.

We recall that in the high-frequency part of the LISA ba
~i.e., for frequencies equal to or larger than 5 mHz!, there
exist three independent TDI GW observables~such asĀ, Ē,
andT̄, or X1 , X2, andX3). However, for frequencies smalle
than 5 mHz, there are essentially only two independent
servables: this is especially obvious if we reason in terms
the optimal combinations, where we observe that for l
frequencies the GW signal response ofT̄ declines much
faster than the responses ofĀ and Ē @5,21#.

F. TDI responses in the long-wavelength limit

The long-wavelength~LW! approximation to the GW re
sponses is obtained by taking the leading-order terms of
generic expressions in the limit ofvL→0. For instance, for
X1 @Eqs.~48!–~50!#, we get

X1,LW
GW .16~vL !3$@u3~ t !2u2~ t !#

3@a(1)sinf~ t !2a(3)cosf~ t !#1@v3~ t !2v2~ t !#

3@a(2)sinf~ t !2a(4)cosf~ t !#%, ~58!
02200
l

b-
f

e

with a(k) given by Eqs.~41!–~44!, and ui(t),v i(t) by Eqs.
~27!, ~28!. The LW responses forX2 andX3 can be obtained
by cyclical permutation of the indices. Adopting the notati
of Ref. @2#, we find also that

X1,LW
GW ~ t !.8L3@~ n̂3

L!8•ĤL~ t !•n̂3
L2~ n̂2

L!8•ĤL~ t !•n̂2
L#,

~59!

where the triple overdot denotes the third time derivative,n̂i
L

is given by Eq.~2!, andHL(t) is given by Eq.~11!.
The GW responses of the Sagnac observablesa i ,LW

GW are
equal simply to3

8 Xi ,LW
GW . From Eqs.~57! we then get the LW

GW responsesĀLW
GW, ĒLW

GW, andT̄LW
GW:

ĀLW
GW.3A2~vL !3$@2u2~ t !2u1~ t !2u3~ t !#

3@a(1)sinf~ t !2a(3)cosf~ t !#1@2v2~ t !2v1~ t !

2v3~ t !#@a(2)sinf~ t !2a(4)cosf~ t !#%, ~60!

ĒLW
GW.3A6~vL !3$@u3~ t !2u1~ t !#

3@a(1)sinf~ t !2a(3)cosf~ t !#

1@v3~ t !2v1~ t !#@a(2)sinf~ t !2a(4)cosf~ t !#%,

~61!

T̄LW
GW.O@~vL !4#. ~62!

III. NOISE SPECTRAL DENSITY

The spectral density of noise for the first-generation T
observablesX, Y, Z, a, b, g, A, E, andT is given in Refs.
@3,21# in the case of an equilateral LISA array, assuming t
the noises appearing in all the proof masses and optical p
are uncorrelated. The finite-difference relations between fi
and second-generation TDI observables@such as X1(t)
5X(t)2X(t24L), a1(t)5a(t)2a(t23L)] imply simple
modifications to the first-generation noise densities: for
stance,

SX1
~v!54 sin2~2vL !SX~v!, ~63!

Sa1
~v!54 sin2~3vL/2!Sa~v!; ~64!

inserting the expression ofSX5SY5SZ from Ref. @3# into
Eq. ~63! yields
3-9
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FIG. 5. Spectral densities of noise for th
second-generation TDI observablesX1

~continuous!, a1 ~dashed!, Ā ~dotted!, and T̄
~dash-dotted!.
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SX1
5SX2

5SX3
564 sin2~vL !sin2~2vL !@2~11cos2vL !Spm

1Sop#, ~65!

where Spm52.54310248f 22 Hz21 and Sop51.76
310237f 2 Hz21 are the fractional-frequency-fluctuatio
spectral densities of proof-mass noise and optical-path no
respectively@3#. These values correspond to a rms sing
proof-mass acceleration noise of 3310215 m s22 Hz21/2,
and to a rms aggregate optical-path noise
310212 m Hz21/2, as quoted in the LISA Pre-Phase A Stu
@23#. For the other TDI observables we find

Sa1
5Sa2

5Sa3
58 sin2~3vL/2!$@4 sin2~3vL/2!

18 sin2~vL/2!#Spm13Sop%, ~66!

SĀ5SĒ532 sin2~vL/2!sin2~3vL/2!$@614 cos~vL !

12 cos~2vL !#Spm1@21cos~vL !#Sop%, ~67!

ST̄58@112 cos~vL !#2sin2~3vL/2!

3@4 sin2~vL/2!Spm1Sop#. ~68!

All the noise spectra are shown in Fig. 5. In the lon
wavelength approximation, the noise expressions simplify

SX1

LW5SX2

LW5SX3

LW.256~vL !2@4~vL !2Spm1~vL !2Sop#, ~69!

Sa1

LW5Sa2

LW5Sa3

LW.18~vL !2@11~vL !2Spm13Sop#, ~70!

SĀ
LW

5SĒ
LW.54~vL !2@4~vL !2Spm1~vL !2Sop#, ~71!

ST̄
LW.162~vL !2@~vL !2Spm1Sop#. ~72!
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IV. OPTIMAL FILTERING OF THE LISA DATA

In this section we develop amaximum-likelihood~ML !
formalism to detect GW signals from moderately chirpi
binaries and to estimate their parameters, by analyzing
time series of the TDI observables. ML detection is based
maximizing thelikelihood ratio L(u i) over the source pa
rametersu i ; this ratio is proportional to the probability tha
the observed detector output could have been produced
GW source with parametersu i , plus instrument noise. The
magnitude of the maximum indicates the probability tha
signal is indeed present, while its location indicates the m
likely parameters~the ML parameter estimators!. Under the
assumption of Gaussian, stationary, additive noise, logL(ui)
is computed by correlating the detector output,x(t), with the
expected GW detector responsehu i(t), while weighting the
correlation in the frequency domain by the inverse spec
density of instrument noise,Sn

21( f ). The family of GW re-
sponses$hu i(t)%, divided ~in the frequency domain! by
Sn( f ) to incorporate the noise weighting, are known asopti-
mal filters.

In Sec. IV A we describe the computation ofL and of the
ML parameter estimators for the optimal filters derived fro
the GW responses of Sec. II, and we show how to maxim
L algebraically over the four source amplitudesa(k). The
amplitude-maximized logL ~known asF) is then used as a
detection statisticto search for the most likely GW source
by maximizing it over the remaining source parameters@here
denoted byjm; thus,u i[(a(k),jm)]. In Sec. IV B we study
the statistical distribution ofF(jm) in the absence~or pres-
ence! of a GW signal of parametersjm; this distribution
determines the statistical significance of observing a cer
value ofF, for a fixedjm. In Sec. IV C we study the statis
tical significance of measuring a certain value of thecom-
pletely maximizedstatistic maxjmF(jm), which leads to the
total false-alarm probabilityfor a GW search over a range o
3-10
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intrinsic parameters. See Helstro¨m @28# for an extended dis-
cussion of ML detection and parameter estimation.

A. Maximum-likelihood search method

As discussed in Secs. I and II, the LISA Doppler measu
ments can be recombined into the laser-noise and opt
bench-noise free TDI observables, all of which can be
tained as time-delayed combinations of three genera
@2,6#. Thus, in the following we denote the TDI data as t
three-vectorx(t) ~we shall very shortly specify a convenie
vector basis!. In the case of additive noise, we can wri
x(t)5n(t)1h(t), wheren(t) represents detector noise an
h(t) the GW response. Idealizingn(t) as a zero-mean
Gaussian, stationary, continuous random process, we
@28#

logL5~xuh!2
1

2
~huh!, ~73!

where the scalar product ( . . .u . . . ) is defined by

~xuy!54 ReE
0

`

x̃†
•S̃n

21
• ỹd f ; ~74!

here the dagger denotes transposition and complex conj
tion, the tilde denotes the Fourier transform, andS̃ denotes
the one-sided cross spectral density matrix of detector no
defined by the expectation value

E@ ñ~ f !ñ†~ f 8!#5
1

2
d~ f 2 f 8!S̃n~ f !. ~75!

The larger the signal with respect to the noise, the hig
the probability that a ML search~performed with the appro
priate optimal filter! will yield a statistically significant de-
tection, and the better the accuracy of the ML parame
estimators. The accuracy of estimation is also better for
parameters on which the signal is strongly dependent. Si
strength is characterized by theoptimal signal-to-noise ratio
~optimal S/N!,

r25~huh!; ~76!

while the dependence of the instrument response on the
rameters is characterized by the Fisher information matr

G i j 5S ]h

]u i U ]h

]u j D . ~77!

By the Crame`r-Rao inequality@28#, the diagonal elements o
G i j

21 provide lower bounds on the variance of any unbias
estimators of theu i . In fact, the matrixG i j

21 is often called
the covariance matrix, because in the limit of high S/N th
ML estimators become unbiased, and their distribution te
to a jointly Gaussian distribution with covariance matr
equal toG i j

21 .
The optimal TDI observables@21# are obtained by diago

nalizing the cross spectrumS̃n ; it turns out that the eigen
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vectorsĀ, Ē, andT̄ are independent of frequency. The ne
observables are the linear combinations of the Sagnac
servablesa1 ,a2 ,a3 given by Eq. ~57!, and by definition
their noises are uncorrelated. With reference to Eq.~65!, we
define SĀĀ( f )5SĒĒ( f )[SĀ(v[2p f ) and ST̄T̄( f )[ST̄(v
[2p f ). It is convenient to use the optimal observablesĀ,
Ē, andT̄ as a basis for the LISA TDI observables, setting

x~ t !5F Ā~ t !

Ē~ t !

T̄~ t !
G , h~ t !5F ĀGW~ t !

ĒGW~ t !

T̄GW~ t !
G ; ~78!

the GW responsesĀGW, ĒGW, andT̄GW are given in Sec. II E
for the case of moderately chirping binaries. For the
sources,SĀ(v) and ST̄(v) are approximately constant ove
the signal bandwidth, so we can expand Eq.~73! as

logL>T0F ~ĀuuĀGW!2
1

2
~ĀGWuuĀGW!

1~ĒuuĒGW!2
1

2
~ĒGWuuĒGW!G Y SĀ~v!

1T0F ~ T̄uuT̄GW!2
1

2
~ T̄GWuuT̄GW!G Y ST̄~v!,

~79!

where T0 is the time of observation, and where we ha
introduced the time-domain scalar product

~BuuC![~2/T0!E
0

T0
B~ t !C~ t !dt. ~80!

Given the linear dependence@21# of Ā, Ē, andT̄ on a1 , a2,
anda3, from Eq. ~51! it follows that

F ĀGW~ t !

ĒGW~ t !

T̄GW~ t !
G

52x sinS 3

2
xD (

k51

4

a(k)F Ā(k)~ t !

Ē(k)~ t !

T̄(k)~ t !
G

52x sinS 3

2
xD (

k51

4

a(k)3
1

A2
~a3

(k)2a1
(k)!

1

A6
~a1

(k)22a2
(k)1a3

(k)!

1

A3
~a1

(k)1a2
(k)1a3

(k)!
4 ,

~81!
3-11
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where once againx5vL, the amplitudesa(k) are given by
Eqs.~41!–~44!, and the functionsa i

(k) are given by Eqs.~52!
and ~53!, and by similar equations obtained by cyclical pe
mutation of the indices. Note that the component functio
Ā(k)(t), Ē(k)(t), andT̄(k)(t) do not depend on the amplitude
a(k) ~or equivalently, onh0

1 , h0
3 , f0, andc); they do how-

ever depend on the remaining~intrinsic! source parameters
v, v̇, b, andl.

The ML parameter estimatorsû i are found by maximizing
logL with respect to the source parametersu i : that is, by
solving

] logL

]u i
50. ~82!

For thea(k) this is accomplished easily by solving the line
system

(
k51

4

M ( l )(k)a(k)5N( l ), l 51, . . . ,4, ~83!

where

N( l )52x sinS 3

2
xDT0@~ĀuuĀ( l )!/SĀ~v!1~ĒuuĒ( l )!/SĀ~v!

1~ T̄uuT̄( l )!/ST̄~v!#, ~84!

and whereM ( l )(k) is the 434 matrix with components

M ( l )(k)54x2sin2S 3

2
xDT0@~Ā( l )uuĀ(k)!/SĀ~v!

1~Ē( l )uuĒ(k)!/SĀ~v!1~ T̄( l )uuT̄(k)!/ST̄~v!#.

~85!

The solution of Eq.~83! is simplified by noticing that the
component functionsĀ(k)(t), Ē(k)(t), andT̄(k)(t) consist of
simple sines and cosines with period;2p/v, modulated by
the slowly changing functionsui(t) andv i(t) ~with periods
that are multiples of 1 yr!. By the approximate orthogonalit
of sine and cosine terms, forT0.1 yr the scalar products
(Ā(k)uuĀ( l )) can be approximated as

~Ā(1)uuĀ(3)!.~Ā(2)uuĀ(4)!.0, ~86!

and

~Ā(1)uuĀ(1)!.~Ā(3)uuĀ(3)![
1

2
UĀ , ~87!

~Ā(2)uuĀ(2)!.~Ā(4)uuĀ(4)![
1

2
VĀ , ~88!

~Ā(1)uuĀ(2)!.~Ā(3)uuĀ(4)![
1

2
QĀ , ~89!
02200
-
s

~Ā(1)uuĀ(4)!.2~Ā(2)uuĀ(3)![
1

2
PĀ , ~90!

with similar expressions for theĒ(k) and T̄(k). The matrix
M ( l )(k) then simplifies to

M ( l )(k)5
T0

2 S U Q 0 P

Q V 2P 0

0 2P U Q

P 0 Q V

D , ~91!

where the elementsU, V, Q, andP are given by

U54x2sin2S 3

2
xD @UĀ /SĀ~v!1UĒ /SĀ~v!1UT̄ /ST̄~v!#,

~92!

V54x2sin2S 3

2
xD @VĀ /SĀ~v!1VĒ /SĀ~v!1VT̄ /ST̄~v!#,

~93!

Q54x2sin2S 3

2
xD @QĀ /SĀ~v!1QĒ /SĀ~v!1QT̄ /ST̄~v!#,

~94!

P54x2sin2S 3

2
xD @PĀ /SĀ~v!1PĒ /SĀ~v!1PT̄ /ST̄~v!#.

~95!

Then the analytic expressions for the maximum likeliho
estimatorsâ(k) of the amplitudesa(k) are given by

S â(1)

â(2)

â(3)

â(4)

D 5
2

T0D S V 2Q 0 2P

2Q U P 0

0 P V 2Q

2P 0 2Q U

D •S N(1)

N(2)

N(3)

N(4)

D ,

~96!

whereD5UV2Q22P2.
Substituting the ML amplitude estimatorsâ(k) in the like-

lihood functionL yields thereduced likelihood functionL r .
The logarithm ofL r is known as theF statistic; using Eqs.
~79!, ~81!, ~84!, and~96!, we find

F5
1

2 (
l 51

4

(
k51

4

~M 21!( l )(k)N( l )N(k)

5~T0D!21$V@~N(1)!21~N(3)!2#1U@~N(2)!21~N(4)!2#

22Q@N(1)N(2)1N(3)N(4)#22P@N(1)N(4)2N(2)N(3)#%.

~97!

We adoptF as the detection statistic of our proposed sea
scheme. The statisticF is already maximized over the am
plitudesa(k), which are known in this context asextrinsic
parameters. By contrast, the ML estimators of the remainin
~intrinsic! source parameters (v, v̇, b, andl) are found by
3-12
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maximizing F. In practice, this is done by correlating th
detector output with abank of optimal filters precomputed
for many values of the intrinsic parameters.

Introducing the complex quantities

a(u)5a(1)1 ia (3), ~98!

a(v)5a(2)1 ia (4), ~99!

W5Q1 iP, ~100!

N(u)5N(1)1 iN (3), ~101!

N(v)5N(2)1 iN (4), ~102!

we can write the ML amplitude estimators and theF statistic
in the compact form

â(u)52~T0D!21@VN(u)2W* N(v)#, ~103!

â(v)52~T0D!21@UN(v)2WN(u)#, ~104!

~whereD5UV2uWu2) and

F5~T0D!21$VuN(u)u21UuN(v)u222 Re@WN(u)~N(v)!* #%.
~105!

In Sec. V we shall see that this expression is very suitable
numerical implementation. Equations~103!–~105! summa-
rize the proposed ML data-analysis scheme, which uses
the available LISA data. Similar expressions hold if we an
lyze a single interferometric combination, such asX1. In
Appendix A we describe a useful complex representation
the GW TDI responses that simplifies the integrals involv
in the computation ofF and of the ML amplitude estimators

In the LW approximation, Eqs.~103!–~105! simplify
somewhat: using theĀLW

GW(t) and ĒLW
GW(t) of Eqs. ~60! and

~61! @and remembering thatT̄LW
GW(t).0], we go through with

our formalism in parallel with Eqs.~84!–~91!, and find that
PLW.0, so WLW is real. The complex variablesN(u) and
N(v) are given by the integrals

NLW
(u)522i

~vL !3

SĀ
LW

~v!
E

0

T0
$3A2@2u2~ t !2u1~ t !2u3~ t !#Ā~ t !

13A6@u3~ t !2u1~ t !#Ē~ t !%eif(t)dt, ~106!

NLW
(v)522i

~vL !3

SĀ
LW

~v!
E

0

T0
$3A2@2v2~ t !2v1~ t !2v3~ t !#Ā~ t !

13A6@v3~ t !2v1~ t !#Ē~ t !%eif(t)dt. ~107!

Analogous LW expressions hold for a single TDI observab
such asX1.

B. Distribution of the F statistic

Crucial to a search scheme based on comparing the
statisticF with a predefined threshold is the determination
the false-alarm probabilityPF ~which determines how often
02200
or

all
-

f
d

,

L
f

F will exceed the threshold in presence of noise alone! and
of the detection probabilityPD ~which determines how often
F will exceed the threshold when a signal is present, res
ing in correct detection!. In this section we compute th
probabilitiesPF and PD for the correlation of detector dat
against a single optimal filter~i.e., for fixed values of the
intrinsic parameters!.

Under the assumption of zero-mean Gaussian noise,
weighted correlationsN(k) @Eq. ~84!# are Gaussian random
variables; sinceF is a quadratic form in theN(k) @see Eq.
~97!#, it must follow thex2 distribution. Following Sec. III B
of Ref. @22#, we can diagonalize the quadratic form to fin
that, in the absence of the signal, 2F follows the x2 distri-
bution with n543nc degrees of freedom, wherenc is the
number of independent observables included inF @29#. For
instance, if we useĀ, Ē, T̄ thenn512, while if we use only
X1, thenn54. In presence of the signal, 2F follows a non-
central x2 distribution with n543nc degrees of freedom
and with noncentrality parameterk equal to the optimal
(S/N)25r2 @see Eq.~76!#. For instance, if we useĀ, Ē, T̄,

k5r25~ĀGWuĀGW!1~ĒGWuĒGW!1~ T̄GWuT̄GW!
~108!

~which agrees with the result derived in Ref.@21#!, while if
we use onlyX1,

k5r25~X1
GWuX1

GW!. ~109!

The x2 probability density function is

p0~F!5
F n/221

~n/221!!
exp~2F! ~110!

for k50, or

p1~r;F!5
~2F!(n/221)/2

rn/221
I n/221~rA2F!expS 2F2

1

2
r2D
~111!

for k5r2, where I n/221 is the (n/221)th-order modified
Bessel function of the first kind. Thus, the false-alarm pro
ability for a thresholdF0 is

PF~F0!5E
F 0

`

p0~F!dF5exp~2F0! (
k50

n/221

F 0
k/k!

~112!

~for evenn; for odd n the result involves the error function!
while the detection probability, in the presence of a S/N5r
signal ~using the correct optimal filter!, is

PD~r;F0!5E
F0

`

p1~r,F!dF; ~113!

this integral cannot be evaluated in closed form in terms
known special functions, but it is clear that the higher t
optimal S/N, the higher the detection probability.
3-13
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C. False-alarm and detection probabilities for GW searches

In actual GW searches, the detector output will be cor
lated to a bank of optimal filters corresponding to differe
values of the intrinsic parametersjm. For a given set of
detector data, the statisticF(jm) is a generalized multipa
rameter random process known asrandom field~see Adler’s
monograph@30# for a comprehensive discussion!: we can use
the theory of random fields to get a handle on the total fa
alarm and detection probabilities for the entire filter bank

We define theautocovarianceC of the random field
F(jm) as

C~jm,j8m!5E0@F~jm!F~j8m!#2E0@F~jm!#E0@F~j8m!#,
~114!

where the expectation valueE0 is computed over an en
semble of realizations of noise~in absence of the signal!. In
Ref. @15# the total false-alarm probability was estimated
noticing that the autocovariance function tends to zero as
displacementDjm5j8m2jm increases~and in fact, it is
maximum for Djm50). The space of intrinsic paramete
may then be partitioned into a set ofelementary cells,
whereby the autocovariance is appreciably different fr
zero for within each cell, but negligible between cells. T
number of elementary cells needed to cover the param
space gives an estimate of the number of independent
izations of the random field~i.e., the number of statically
independent ways that pure noise can be strongly correl
with one or more of the optimal filters!.

There is of course some arbitrariness in choosing
boundary of the elementary cells; we define them by req
ing that the autocovariance between the center and the
face be one half of the autocovarianceat the center:

C~jm,j8m!5
1

2
C~jm,jm!, ~115!

for jm at cell center,j8m on cell boundary. Taylor-expandin
the autocovariance to second order inDjm, we obtain the
approximate condition

C~jm,j8m!.C~jm,jm!1
1

2

]2C~jm,j8m!

]j8r]j8s U
j8m5jm

DjrDjs

5
1

2
C~jm,jm!, ~116!

with implicit summation overr ands. Within the approxi-
mation ~necessary to obtain results in simple analyti
form!, the cell boundary is the~hyper-!ellipse defined by
GrsDjrDjs51/2, where@31#

Grs52
1

2

1

C~jm,jm!

]2C~jm,j8m!

]j8r]j8s U
j8m5jm

~117!

~in Appendix B we shall derive a relation between thisGrs

and the Fisher information matrix!. The volumeVcell of the
elementary cell is then
02200
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Vcell5
~p/2!K/2

G~K/211!AdetGrs

, ~118!

whereK is the number of intrinsic parameters, andG is the
gamma function. The total number of elementary cells with
the parameter volumeV is given by

Ncell5
G~K/211!

~p/2!K/2 E
V
AdetGrsdV. ~119!

As discussed above, we consider the values of the statistF
within each cell as independent random variables, which
the absence of signal are distributed according to Eq.~110!.
By our definition of false alarms, the probability thatF will
not exceed the thresholdF in a given cell is just 1
2PF(F0); the probability thatF will not exceed the thresh
old F0 in any of the cellsis

12PF,tot~F0!.@12PF~F0!#Ncell; ~120!

this PF,tot(F0) is therefore the total false-alarm probabili
for our detection scheme.

When the signal is present, a precise calculation of
probability distribution function ofF is nontrivial, since the
presence of the signal makes the random processx(t) non-
stationary. However, we can still use the detection proba
ity given by Eq.~113! for known intrinsic parameters as
substitute for the detection probability when the parame
are unknown. This is correct if we assume that, when
signal is present, the true values of the intrinsic parame
fall within the cell whereF is maximum. This approximation
is accurate for sufficiently large S/N.

V. FAST COMPUTATION OF THE F STATISTIC

The detection statisticF @Eq. ~105!# involves integrals of
the general form

E
0

T0
x~ t !m~ t;v,b,l!exp@ ifmod~ t;v,v̇,b,l!#exp@ ivt#dt

~121!

wherem is a combination of the complex modulation fun
tions defined in Appendix A, while the phase modulati
fmod is given by

fmod~ t !5
1

2
v̇t21vR cosb cos~Vt1h02l! ~122!

@Eq. ~45!#. We see that the integral~121! can be interpreted
as a Fourier transform@and computed efficiently with a fas
Fourier transform~FFT!#, if fmod and m do not depend on
the frequencyv. In fact, even in that case we can still us
FFTs by means of the procedure that we now present.

From the original data we generate several band-pas
data sets, choosing the bandwidth of each set so
m exp@ifmod# is approximately constant over the band. W
then search for GW signals in each band-passed data set
is done by computing theF statistic over a grid in the pa
3-14
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OPTIMAL FILTERING OF THE LISA DATA PHYSICAL REVIEW D 70, 022003 ~2004!
rameter space (v̇,b,l), set finely enough that we do no
miss any signal. We follow the grid-construction procedu
presented in Sec. III A of Ref.@32#. The phase modulation
can be usefully reparametrized as

fmod5p1t21A cos~Vt !1B sin~Vt !, ~123!

where

p15
1

2
v̇,

A5vR cosb cos~l2h0!,

B5vR cosb sin~l2h0!. ~124!

Sincem is a slowly changing function of time, we consider
constant for the purpose of constructing a grid over the
rameter space. The result is a uniform grid of prisms w
hexagonal bases, where the parameter subspaceA-B is tiled
by regular hexagons. The grid in the parametersv̇, b, andl
is then derived by applying the inverse transformation,

v̇52p1 ,

b56arccos~AA21B2/vR!,

l5h01arctan~B/A!, ~125!

where for each band-passed data set we set the unkn
frequencyv to the maximum frequency of the band. Th
computation of theF statistic includes both phase- an
amplitude-modulation effects, even if these were neglec
in the construction of the grid@in fact, the sign degenerac
for b in Eq. ~125! is resolved by amplitude modulation
which distinguishes between sources in opposite direct
with respect to the plane of the ecliptic#.

Once we have a detection, the accurate estimation of
nal parameters requires a second step. Since the coarse
search described above is performed by evaluating the f
tion m exp@ifmod# at the maximum frequency of each ban
our filters are not perfectly matched to the signal, and t
are not optimal; as a consequence, the location of the m
mum ofF does not correspond to the correct ML estimato
We therefore refine the coarse search by maximizingF near
the coarse-search maximum, this time without any appro
mation.

We have performed a few numerical simulations to ass
the performance of our optimal-filtering algorithm. Here w
report on three of them. In the first simulation we analyz
the X1 TDI data corresponding to two simultaneous mon
chromatic signals, of frequencyf 53 mHz and S/Ns of 24
and 10, emitted from sources at opposite positions with
spect to the plane of the ecliptic. We generated a one-y
long time series forX1 by implementing Eq.~58! numeri-
cally, and we included noise by adding a Gaussian rand
process~as realized by a random number generator! with
spectral density given by Eq.~65!. We narrowbanded theX1
data to a bandwidth of 0.125 mHz around 3 mHz, and
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analyzed the resulting data by implementing the two-s
procedure described above, using the Nelder-Mead max
zation algorithm@33# for the second step. The angular gr
for the all-sky search consisted of about 900 points. We t
performed the following operations:~i! detecting the stronge
signal and estimating its parameters;~ii ! reconstructing the
stronger signal and subtracting it from the data;~iii ! detect-
ing the weaker signal and estimating its parameters;~iv! sub-
tracting it from the data. Figure 6 shows the amplitude sp
trum of X1 before and after the subtraction of the tw
signals, as compared with the spectrum of noise alone.
ure 7 shows a comparison of the input signals with the
constructed signals~built with the parameters specified b
the ML estimators!. We see that the amplitude modulation
in the GW response enable us to determine the sky loca
of two sources of the same frequency, and also to resolve
two GW polarizations. Signal resolution will degenerate ra
idly as more sources of the same frequency are added, s
steps described above cannot be used as a general s
subtraction procedure@34#.

In the second simulation we analyzed theX1 TDI data
corresponding to a single signal of frequencyf 525 mHz,
S/N59.5, andḟ 56.5310213 Hz s21 ~corresponding to a bi-
nary of chirp massMc50.9M (). We generated a one-yea
long time series forX1 by implementing numerically the
exact GW response, Eq.~48!, and we added noise as de
scribed above. We narrowbanded theX1 data to a bandwidth
of 0.5 mHz, and again we analyzed the resulting data w
the two-step procedure described above. The sky search
performed on a small grid (;300 gridpoints! around the true
values of the signal parameters. In the third simulation
analyzed theĀ, Ē, and T̄ TDI data corresponding to the
same signal, for a total S/N519. The ML search procedur
was performed as in the second simulation. The top pane
Fig. 8 shows the TDI observableĀ(t) for the signal alone,
superimposed on the TDI observable for signal plus no
we see that the signal is more than one order of magnit
weaker than the noise. The bottom panel of Fig. 8 shows
F statistic ~already maximized overḟ , b, and l) near the
input signal frequency. We see that the statistical significa
is higher for the multiple-observable search than for theX1
search. Figure 9 shows a comparison of the input sign
with the reconstructed signals. We see that reconstructio
more accurate for the multiple-observable search, but in b
searches our procedure resolves the two GW polarizat
successfully.

We conclude that our proposed algorithm performs sa
factorily, detecting the simulated signals, accurately estim
ing their parameters, and resolving the two GW polariz
tions, both in the low-frequency regime~first simulation! and
high-frequency regime~second and third simulation!. In a
future paper, we plan to discuss in detail the expected er
in parameter estimation for a source with given frequen
sky position, and S/N.
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KRÓLAK, TINTO, AND VALLISNERI PHYSICAL REVIEW D 70, 022003 ~2004!
FIG. 6. Quality of signal re-
construction, as seen in the Fou
rier domain, in the first simula-
tion. The originalX1 time series
contains noise, plus two mono
chromatic signals of equal fre
quency~3 mHz! and ecliptic lon-
gitude, but opposite ecliptic
latitudes. We show theX1 ampli-
tude spectrum before and after th
subtraction of the reconstructe
signals, compared with the ampli
tude spectrum of noise alone.
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APPENDIX A: COMPLEX REPRESENTATION
OF THE RESPONSE

From Eqs.~52! and ~53! it is easy to see that the Sagn
TDI observablesa i can be rewritten in the complex form

a i
GW52x sinS 3

2
xDRe@a(u)* ma i

(u)~ t !eif(t)

1a(v)* ma i

(v)~ t !eif(t)#, ~A1!
02200
e
as
i-
-

wherex5vL, the complex amplitudesa(u) anda(v) are de-
fined in Eqs.~98! and ~99!, the phasef(t) by Eq. ~45!, and
the complexmodulation functions ma i

(u) andma i

(v) are given by

Fma i

(u)~ t !

ma i

(v)~ t !G5(
j 51

3 Fuj~ t !

v j~ t !
Ge2 ixdj$sinc@~11cj !x/2#na i

1 j

1sinc@~12cj !x/2#na i

2 j%, ~A2!

with uj (t), v j (t) given by Eqs.~27! and~28!, cj (t) anddj (t)
by Eqs.~47! and ~46!, and with the constantsna i

6 j given in

the left part of Table II.
The optimal combinationsĀGW, ĒGW, T̄GW are given by

formulas similar to Eq.~A1!, with modulation functions
3-16
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FIG. 7. Quality of signal re-
construction, as seen in the tim
domain, in the first simulation.
The panels show the input signa
~the stronger on the left, the
weaker on the right!, compared
with the reconstructed signals; th
two GW polarizations are plotted
together~top row!, and separately
~middle and bottom rows!.
a

mĀ
(u)

5
1

A2
~ma3

(u)2ma1

(u)!, ~A3!

mĒ
(u)

5
1

A6
~ma1

(u)22ma2

(u)1ma3

(u)!, ~A4!

mT̄
(u)

5
1

A3
~ma1

(u)1ma2

(u)1ma3

(u)!, ~A5!

and similar expressions formĀ
(u) , mĒ

(u) , andmT̄
(u) . The quan-

tities N(u), N(v), U, V, andW @Eqs.~101!, ~102!, ~92!, ~93!,
~100!# that are needed to compute the ML amplitude estim
02200
-

tors â( i ) and theF statistic @Eq. ~105!# can be written in
terms of the complex modulation functions as

N(u)54x sinS 3

2
xD E

0

T0F Ā~ t !mĀ
(u)

~ t !1Ē~ t !mĒ
(u)

~ t !

SĀ~v!

1
T̄~ t !mT̄

(u)
~ t !

ST̄~v!
Geif(t)dt, ~A6!

N(v)54x sinS 3

2
xD E

0

T0F Ā~ t !mĀ
(v)

~ t !1Ē~ t !mĒ
(v)

~ t !

SĀ~v!

1
T̄~ t !mT̄

(v)
~ t !

ST̄~v!
Geif(t)dt, ~A7!
3-17
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FIG. 8. Maximum-likelihood
detection in the second and thir
simulations. In the top panel we

plot Ā(t) for the input signal
alone, superimposed on the sam
observable for signal plus noise
In the bottom panel we plot theF
statistic ~already maximized over

ḟ , b, andl) near the input signal
frequency, for a single-observabl
search using X1, and for a
multiple-observable search usin

Ā, Ē, T̄. The frequency of the in-
put signals is correctly estimate
in both cases, but the statistica
significance of the multiple-
observable detection is higher.
m

and

U54x2sin2S 3

2
xD ~2/T0!E

0

T0F umĀ
(u)

~ t !u21umĒ
(u)

~ t !u2

SĀ~v!

1
umT̄

(u)
~ t !u2

ST̄~v!
Gdt, ~A8!

V54x2sin2S 3

2
xD ~2/T0!E

0

T0F umĀ
(v)

~ t !u21umĒ
(v)

~ t !u2

SĀ~v!

1
umT̄

(v)
~ t !u2

ST̄~v!
Gdt, ~A9!
02200
W54x2sin2S 3

2
xD

3~2/T0!E
0

T0FmĀ
(u)* ~ t !mĀ

(v)
~ t !1mĒ

(u)* ~ t !mĒ
(v)

~ t !

SĀ~v!

1
mT̄

(u)* ~ t !mT̄
(v)

~ t !

ST̄~v!
Gdt. ~A10!

The Xi TDI observables can be written in the complex for
as

Xi
GW54x sin~x!sin~2x!Re@ ia (u)* mXi

(u)~ t !eif(t)

1 ia (v)* mXi

(v)~ t !eif(t)#; ~A11!
3-18
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FIG. 9. Quality of signal re-
construction, as seen in the tim
domain, in the second and thir
simulations. The panels show th

input signals (X1 on the left,Ā on
the right!, compared with the re-
constructed signals; the two GW
polarizations are plotted togethe
~top row!, and separately~middle
and bottom rows!. Signal recon-
struction is more successful fo
the multiple-observable searc
~right! than for the single-
observable search~left!.
the modulation functionsmXi

(u)(t) and mXi

(v)(t) have exactly

the same functional form as the functionsma i

(u)(t), ma i

(v)(t)

defined in Eq.~A2!, except that the coefficientsnXi

6 j are those

given in the right part of Table II.For the single X1 observ-
able, the ML estimators for the amplitudes and forF are
again given by
02200
â(u)52~T0DX1
!21@VX1

NX1

(u)2WX1
* NX1

(v)#, ~A12!

â(v)52~T0DX1
!21@UX1

NX1

(v)2WX1
NX1

(u)#

~A13!

~whereDX1
5UX1

VX1
2uWX1

u2) and
TABLE II. Constants that appear in the complex representation of the GW responses of the TDI observables. The constantsna2

6 j andna3

6 j

are obtained fromna1

6 j by cyclical permutation of the indexj, as arenX2

6 j andnX3

6 j from nX1

6 j .

j na1

1 j na1

2 j na2

1 j na2

2 j na3

1 j na3

2 j nX1

1 j nX1

2 j nX2

1 j nX2

2 j nX3

1 j nX3

2 j

1 e2 i3x 2e2 i3x e2 i2x 2e2 i4x e2 i4x 2e2 i2x 0 0 e2 i7x/2 2e2 i9x/2 2e2 i9x/2 2e2 i7x/2

2 e2 i2x 2e2 i4x e2 i4x 2e2 i2x e2 i3x 2e2 i3x e2 i7x/2 e2 i9x/2 2e2 i9x/2 2e2 i7x/2 0 0
3 e2 i4x 2e2 i2x e2 i3x 2e2 i3x e2 i4x 2e2 i2x 2e2 i9x/2 2e2 i7x/2 0 0 e2 i7x/2 e2 i9x/2
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F5~T0D!21$VX1
uNX1

(u)u21UX1
uNX1

(v)u2

22 Re@WX1
NX1

(u)~NX1

(v)!* #%, ~A14!

with

NX1

(u)58x sin~x!sin~2x!E
0

T0FX1~ t !mX1

(u)~ t !

SX1
~v! G ieif(t)dt,

~A15!

NX1

(v)58x sin~x!sin~2x!E
0

T0FX1~ t !mX1

(v)~ t !

SX1
~v! G ieif(t)dt,

~A16!

and

UX1
516x2sin2~x!sin2~2x!~2/T0!E

0

T0F umX1

(u)~ t !u2

SX1
~v! Gdt,

~A17!

VX1
516x2sin2~x!sin2~2x!~2/T0!E

0

T0F umX1

(v)~ t !u2

SX1
~v! Gdt,

~A18!

WX1
516x2sin2~x!sin2~2x!

3~2/T0!E
0

T0FmX1

(u)* ~ t !mX1

(v)~ t !

SX1
~v! Gdt. ~A19!

APPENDIX B: REDUCED INFORMATION MATRIX

It is interesting to examine the relation between the ma
Gmn defined by Eq.~117! and the Fisher information matri
G i j . We consider the case of a single TDI observable; m
tiple observables can be treated in similar fashion. As see
Sec. II, the generic TDI GW responseh(t) can be written as
the linear combination
th

pa
M

02200
x

l-
in

h~ t !5 (
k51

4

a(k)h(k)~ t,jm!; ~B1!

as discussed in Sec. IV A, the amplitudesa(k) are extrinsic
parameters, while all the other parameters~denoted together
asjm) are intrinsic@all the parameters are denoted togeth
as u i[(a(k),jm)]. Note that in the case of the TDI observ
ablesX1

GW or ĀGW @Eqs.~48!,~81!#, the component functions
h(k)(t) would include the factors 4x sin(x)sin(2x) and

2x sin(3
2x), respectively.

In this notation, it is easy to show that the optimal S
and the Fisher matrix can be written as

r25aT
•M•a, ~B2!

and

G i j 5S M F•a

aT
•FT aT

•S•aD , ~B3!

where the top and left blocks correspond to the extrin
parameters, while the bottom and right blocks correspon
the intrinsic parameters. The superscriptT denotes transpo
sition over the extrinsic parameter indices. Furthermorea
[(a(1),a(2),a(3),a(4)), and the matricesM, F, and S are
given by

M (k)( l )5~h(k)uh( l )!, ~B4!

Fm
(k)( l )5S h(k)U ]h( l )

]jm D , ~B5!

Smn
(k)( l )5S ]h(k)

]jm U ]h( l )

]jn D . ~B6!

The covariance matrixCi j , which expresses the expecte
variance of the ML parameter estimators, is defined
(G21) i j . Using the standard formula for the inverse of
block matrix @35# we have
C5S M211M21
•~F•a!•Ḡ21

•~F•a!T
•M21 2M21

•~F•a!•Ḡ21

2Ḡ21
•~F•a!T

•M21 Ḡ21 D , ~B7!
t

where

Ḡ5aT
•~S2FT

•M21
•F!•a. ~B8!

We shall callḠmn ~theSchur complementof M) theprojected
Fisher matrix ~onto the space of intrinsic parameters!. Be-
cause the projected Fisher matrix is the inverse of
intrinsic-parameter submatrix of the covariance matrixCi j , it
expresses the information available about the intrinsic
rameters once the extrinsic parameters are set to their
e

-
L

estimators. Note thatḠmn is still a function of the putative
extrinsic parameters. Using Eq.~B2! we define thenormal-
ized projected Fisher matrix

Ḡn[Ḡ/r25
aT
•~S2FT

•M21
•F!•a

aT
•M•a

. ~B9!

From the Rayleigh principle@35#, it follows that the mini-
mum value of the componentḠn

mn is given by the smalles
eigenvalue~taken with respect to the extrinsic parameters! of
3-20
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the matrix @(S2FT
•M21

•F)•M21#mn. Similarly, the maxi-
mum value of the componentḠn

mn is given by the larges
eigenvalue of that matrix. Because the trace of a matrix
equal to the sum of its eigenvalues, the matrix

G̃5
1

4
Tr@~S2FT

•M21
•F!•M21#, ~B10!

where the trace is taken over the extrinsic-parameter indi
expresses the information available about the intrinsic
rameters, averaged over the possible values of the extr
parameters. Note that the factor1

4 is specific to the case o
four extrinsic parameters. We shall callG̃mn the reduced
Fisher matrix. This matrix is a function of the intrinsic pa
rameters alone.

Let us now compute the components ofGmn, defined by
Eq. ~117!. We start from logL, which in our notation is given
by

logL5aT
•N2

1

2
aT
•M•a, ~B11!

where N(k)5(xuh(k)), with x(t)5n(t)1h(t), and n(t) a
zero-mean Gaussian random process. The ML estimatorsâ(k)

are given byâ5M21
•N, so for theF statistic we haveF

5 1
2 NT

•M21
•N. Using the relations@22#

E$~nus1!~nus2!%5~s1us2!, ~B12!

E$~nus1!~nus2!~nus3!~nus4!%

5~s1us2!~s3us4!1~s1us3!~s2us4!1~s1us4!~s2us3!,

~B13!

wheres1 , s2 , s3, ands4 are deterministic functions, we fin
that the autocovariance functionC(jm,j8m) of Eq. ~114! is
given by

C~jm,j8m!5
1

2
Tr@QT

•M21
•Q•M821#, ~B14!

where

Qkl5~h(k)uh8( l )!, ~B15!

and the primes denote functions of the primed parame
j8m. Inserting Eq.~B14! into Eq. ~117!, after some lengthy
algebra~omitted here! we come to the final result

Gmn5
1

4 (
k,l ,m,n

@Smn
(k)( l )2Fm

(m)(k)~M 21!(m)(n)Fn
(n)( l )#

3~M 21!( l )(k)5G̃mn . ~B16!
02200
is

s,
-

sic

rs

Thus, theF-statistic metricGmn @31# is found to be exactly

equal to the reduced Fisher matrixG̃mn; that this should be
the case is understandable, since both matrices contain i
mation about the relatedness of waveforms with nearby
ues of their intrinsic parameters~while both assume that th
extrinsic parameters are being set to their ML estimato!.
For a related argument about the placement of templates
a partially maximized detection statistic, see Ref.@36#.

APPENDIX C: FIRST-GENERATION TDI RESPONSES

The GW response of the first-generation TDI observa
X is given by@2#

XGW5~y31
GW1y13,2

GW!1~y21
GW1y12,3

GW! ,22

2~y21
GW1y12,3

GW!2~y31
GW1y13,2

GW! ,33; ~C1!

after some algebra we get to

XGW~ t !52vL sin~vL !(
k51

4

a(k)X(k)~ t !, ~C2!

where the functionsX(k)(t) are given by

FX(1)

X(2)G5Fu2~ t !

v2~ t !
G$sinc@~11c2!x/2#cos@f~ t !2xd223x/2#

1sinc@~12c2!x/2#cos@f~ t !2xd225x/2#%

2Fu3~ t !

v3~ t !
G$sinc@~11c3!x/2#cos@f~ t !2xd325x/2#

1sinc@~12c3!x/2#cos@f~ t !2xd323x/2#%, ~C3!

FX(3)

X(4)G5Fu2~ t !

v2~ t !
G$sinc@~11c2!x/2#sin@f~ t !2xd223x/2#

1sinc@~12c2!x/2#sin@f~ t !2xd225x/2#%

2Fu3~ t !

v3~ t !
G$sinc@~11c3!x/2#sin@f~ t !2xd325x/2#

1sinc@~12c3!x/2#sin@f~ t !2xd323x/2#%, ~C4!
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wherex5vL and sinc . . .5(sin . . . )/( . . . ). The GW re-
sponses forY andZ can be obtained by cyclical permutatio
of the spacecraft indices.

The GW response fora can be written in similar form:
02200
aGW~ t !5vL (
k51

k54

a(k)a (k)~ t !, ~C5!

where
Fa (1)

a (2)G5Fu1~ t !

v1~ t !
G$sinc@~11c1!x/2#sin@f~ t !2xd123x/2#2sinc@~12c1!x/2#sin@f~ t !2xd123x/2#%

1Fu2~ t !

v2~ t !
G$sinc@~11c2!x/2#sin@f~ t !2xd22x/2#2sinc@~12c2!x/2#sin@f~ t !2xd225x/2#%

1Fu3~ t !

v3~ t !
G$sinc@~11c3!x/2#sin@f~ t !2xd325x/2#2sinc@~12c3!x/2#sin@f~ t !2xd32x/2#%, ~C6!

Fa (3)

a (4)G52Fu1~ t !

v1~ t !
G$sinc@~11c1!x/2#cos@f~ t !2xd123x/2#2sinc@~12c1!x/2#cos@f~ t !2xd123x/2#%

2Fu2~ t !

v2~ t !
G$sinc@~11c2!x/2#cos@f~ t !2xd22x/2#2sinc@~12c2!x/2#cos@f~ t !2xd225x/2#%

2Fu3~ t !

v3~ t !
G$sinc@~11c3!x/2#cos@f~ t !2xd325x/2#2sinc@~12c3!x/2#cos@f~ t !2xd32x/2#%. ~C7!

The b andg combinations are again obtained by cyclical permutation of the spacecraft indices.
For the TDI observablez we find

zGW~ t !5vL (
k51

4

a(k)z (k)~ t !, ~C8!

with

F z (1)

z (2)G5Fu1~ t !

v1~ t !
G$sinc@~11c1!x/2#sin@f~ t !2xd123x/2#2sinc@~12c1!x/2#sin@f~ t !2xd123x/2#%

1Fu2~ t !

v2~ t !
G$sinc@~11c2!x/2#sin@f~ t !2xd223x/2#2sinc@~12c2!x/2#sin@f~ t !2xd223x/2#%

1Fu3~ t !

v3~ t !
G$sinc@~11c3!x/2#sin@f~ t !2xd323x/2#2sinc@~12c3!x/2#sin@f~ t !2xd323x/2#%, ~C9!

F z (3)

z (4)G52Fu1~ t !

v1~ t !
G$sinc@~11c1!x/2#cos@f~ t !2xd123x/2#2sinc@~12c1!x/2#cos@f~ t !2xd123x/2#%

2Fu2~ t !

v2~ t !
G$sinc@~11c2!x/2#cos@f~ t !2xd223x/2#2sinc@~12c2!x/2#cos@f~ t !2xd223x/2#%

2Fu3~ t !

v3~ t !
G$sinc@~11c3!x/2#cos@f~ t !2xd323x/2#2sinc@~12c3!x/2#cos@f~ t !2xd323x/2#%. ~C10!
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Finally, the optimal TDI observablesA, E, and T @21# are
defined as linear combinations ofa, b, andg:

A5
1

A2
~g2a!,

E5
1

A6
~a22b1g!, ~C11!

T5
1

A3
~a1b1g!.

The long-wavelength approximation to the GW respon
is obtained by taking the leading-order terms of the gen
expressions in the limit ofvL→0. For instance, forX @Eqs.
~C2!–~C4!#, we get

XLW
GW.4~vL !2$@u2~ t !2u3~ t !#@a(1)cosf~ t !1a(3)sinf~ t !#

1@v2~ t !2v3~ t !#@a(2)cosf~ t !1a(4)sinf~ t !#%,

~C12!

with a(k) given by Eqs.~41!–~44!, andui(t), v i(t) by Eqs.
~27!, ~28!. The LW responses forY andZ can be obtained by
cyclical permutation of the indices. Adopting the notation
Ref. @2#, we find also that
d

J

D

D

D

D

g

D

02200
s
ic

f

XLW
GW~ t !.2L2@~ n̂3

L!8•ḦL~ t !•n̂3
L2~ n̂2

L!8•ḦL~ t !•n̂2
L#,

~C13!

where the double dot denotes the second time derivativen̂i
L

is given by Eq.~2!, andHL(t) is given by Eq.~11!.
The GW response of the Sagnac observableaLW

GW is equal
simply to 1

2 XLW
GW. From Eqs.~C11! we then get the LW GW

responsesALW
GW, ELW

GW, andTLW
GW:

ALW
GW.A2~vL !2$@22u2~ t !1u1~ t !1u3~ t !#

3@a(1)cosf~ t !1a(3)sinf~ t !#

1@22v2~ t !1v1~ t !1v3~ t !#

3@a(2)cosf~ t !1a(4)sinf~ t !#%, ~C14!

ELW
GW.A6~vL !2$@u1~ t !2u3~ t !#

3@a(1)cosf~ t !1a(3)sinf~ t !#

1@v1~ t !2v3~ t !#@a(2)cosf~ t !

1a(4)sinf~ t !#%, ~C15!

TLW
GW.O@~vL !3#. ~C16!
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