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Optimal filtering of the LISA data
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The LISA time-delay-interferometry responses to a gravitational wave signal are rewritten in a form that
accounts for the motion of the LISA constellation around the Sun; the responses are given in closed analytic
forms valid for any frequency in the band accessible to LISA. We then present a complete procedure, based on
the principle of maximum likelihood, to search for stellar-mass binary systems in the LISA data. We define the
required optimal filters, the amplitude-maximized detection statiatialogous to thé statistic used in pulsar
searches with ground-based interferometeand discuss the false-alarm and detection probabilities. We then
test the procedure in numerical simulations of gravitational-wave detection.
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[. INTRODUCTION observables can be constructed by combining four generators
[2,6].
The Laser Interferometer Space AntenidSA) is a Recently, it was pointed oyt7—10Q] that the rotational

deep-space mission aimed at detecting and studying gravitaiotion of the LISA array around the Sun and the time de-
tional radiation in the millihertz frequency band. A joint pendence of light travel times introduced by the relative
American and European project, it is expected to be(shearing motion of the spacecraft have the effect of pre-
launched in the year 2011, and to start collecting scientifizzenting the suppression of laser frequency fluctuations, at
data approximately a year later, after reaching its orbital conleast under the current stability requirements, to the level of
figuration of operatior[1]. LISA consists of three widely the secondary noises the TDI observables as derived for a
separated spacecraft, flying in a triangular, almost equilateratationary array This problem was addressed by devising
configuration, and exchanging coherent laser beams. In coMew combinations that are capable of suppressing the laser
trast to ground-based, equal-arm gravitational-wé@dy)  frequency fluctuations below the secondary noises for a ro-
interferometers, LISA will have multiple readouts, corre- tating LISA array{7,8], and for a rotating and shearing LISA
sponding to the six laser Doppler shifts measured betwee"@Y [9,10l. In this context, the original stationary-array
spacecraft. Modeling each spacecraft as carrying Iaserg,omb'ne.ltlorls are sometlmes known as .TD.I 1.er f|r“st-
beam splitters, photodetectors, and drag-free proof massesﬁ n?ratlon TD), the rotating-LISA combinations as "TDI
each of two optical benches, Armstrong, Estabrook, and-: and the rotating and shearing-LISA combinations as

. o . . . .. “TDI 2.0;” following Ref. [10], we refer to the last as
Tinto [.2_4] showed that. I IS possple 0 compme, with suit- econd-generatiomDI. Second-generation combinations are
able time delays, the six time series of the inter-spacecra

ssentially finite differences of first-generation combinations,

Doppler shifts and the six time series of the intra-spacecra nd as such they appear more complicated. However, they
Doppler shifts(measured between adjacent optical benches;etain the same sensitivity to incoming GWs: this is because

to cancel the otherwise overwhelming frequency fluctuationgpe corrections introduced in the original combinations by
of the lasers 4 v/v=10""¥/Hz), and the noise due to the the changing array geometry are obviously important for la-
mechanical vibrations of the optical bencltesich could be  ser frequency fluctuations, but they are negligibly small for
as large as\v/v=10"'%\/Hz). The strain sensitivity level the GW responses and for the secondary noises; thus, once
that then becomes achievable=10"2Y\Hz, is set by the laser frequency noise is removed, the second-generation ob-
buffeting of the drag-free proof masses inside each opticadervables become finite differences of the corresponding
bench, and by the shot noise at the photodetectors. Seveifiist-generation observables. At a fixed frequency, the ratio of
such laser-noise-free interferometric combinations are possW response to secondary noigasd hence the sensitivity
sible, and they show different couplings to gravitationalis then unchanged.
waves and to the remaining system noig2s5]. The tech- The GW responses of the TDI combinations depend on
nique used to synthesize these combinations is known abe relative orientation of the LISA array with respect to the
time-delay interferometryTDI); in the case of a stationary direction of propagation of the GW signal, on the strength
array, it was shown that the space of all the possible TDland polarization of the signal, and on its frequency compo-
nents. Analytic expressions for the TDI responses were first
derived by Armstrong, Estabrook and Tiri®), for a station-
*Also at Institute of Mathematics, Polish Academy of Sciences,ary LISA array. A realistic model of LISA must however
Warsaw, Poland. Electronic address: A .krolak@impan.gov.pl include the motion of the array around the Sun, which intro-
TAlso at Space Radiation Laboratory, California Institute duces slow modulations in the phase and amplitude of the
of Technology, Pasadena, CA 91125. Electronic addressGW responsesin addition, of course, to the modifications
Massimo.Tinto@jpl.nasa.gov introduced by adopting second-generation JIDFor in-
*Electronic address: Michele.Vallisneri@jpl.nasa.gov stance, the LISA responses to the sinusoidal signal emitted
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by a binary system are not simple sinusoids, but rather su-
perpositions of many sinusoids of smaller amplitude. To
maximize the likelihood of source detection, these effects
must be modeled in GW search algorithms, either by includ-
ing the modulations in the theoretical models of the signals
(i.e., thetemplateg, or by demodulating the LISA data for a
given set of sky positions as the first step of data analysis
(11,12

In this paper we derive the response of the second-
generation TDI observables to the GW signals generated by a
binary system, and we describe how signal templates based
on these responses can be used in a maximum_"ke”hood, FIG. 1. Schematic LISA configuration. The Spacecraft are la-
matched-filtering framework to search for binaries and toPeled 1, 2, and 3; each spacecraft contains two optical benches,
estimate their parameters once they are found. Other metldenoted by 11, ..., asindicated. The optical paths are denoted
ods to analyze the LISA data for signals from binaries,by Li, where the index corresponds to the opposite spacecraft.
implemented in the long-wavelength approximation, haverhe unit vectorsy; point between pairs of spacecraft, with the ori-
been proposed in Reflsl3,14). We work in the solar-system- entation indicated.
baricentric frame, and we follow closely the derivation given
by Jaranowski, Krak, and Schutz[15] for continuous injtial phase of the binary, in analogy to th& statistic
sources and ground-based detectors. A similar formalism wgg 5 27 used in searches for continuous GW sources with
used by Giampier[16] to obtain the antenna pattern of an ground-based interferometers. In Sec. V we derive the false-
arbitrary orbiting interferometer, in the long-wavelength ap-ajarm and false-dismissal probabilities for our LISAsta-
proximation. The response of an orbiting equal-arm-istic. Last, in Sec. 6 we describe an efficient algorithm to
Michelson interferometer to a sinusoidal signal was workettomputeZ, and we implement it numerically; we perform a
out by Cutler[17], again in the long-wavelength limit. Seto simylation of GW detections in both the low and high-
[18] extended Cutler’s formalism to high frequenciesd to  frequency part of the LISA band, and for both Michelson and
noise-canceling observabjesin the context of studying optimal [21] TDI observables, and we show that our algo-
optimal-filtering parameter estimation for supermassiveyithm yields very accurate estimates of source parameters. In
black-hole binaries. Cornish, Rubbo, and Poujgli®,20  the rest of this paper we shall use units whetel.
obtained general expressions valid in the entire LISA fre-

quency band,_ and for arbitrary GW signals; these expressi.ons Il TIME-DELAY INTERFEROMETRY
are given as integrals over the LISA arms, and they provide
the basic building blocks to assemble the TDI observables. Figure 1 shows the overall LISA geometry. The spacecraft
By contrast, in this paper we work out explicit time-domain are labeled 1, 2, and 3; the arms are labeled with the index of
expressions for the LISA response to moderately chirpinghe opposite spacecrdf.g., arm 1 lies between spacecraft 2
binary systems, for all the second-generation TDI combinaand 3. The light travel time(or, loosely, thearmlength
tions. These expressions are valid over the entire LISA frealong armi is denoted byL; [7—10]. The basic constituents
guency band, and they are written as linear combinations aff the TDI observables are the time series of the relative
four time-dependent functions; this linear structure facilitatedaser-frequency fluctuations measured between spacecraft,
the computation of matched filters and the design of optimalhich are denoted by;; (t), with i #j: for instanceys,(t) is
filtering algorithms. the time series of relative frequency fluctuations measured
This paper is organized as follows. In Sec. Il we give afor reception at spacecraft 1 with transmission from space-
brief overview of the derivation of the TDI responses tocraft 3 (along arm 2; similarly, y,,(t) is the time series
GWs for a stationary array, and we argue that the correctionsmeasured for reception at spacecraft 1 with transmission
introduced by the motion of the LISA array and by the timefrom spacecraft Zalong arm 3, and so on. Six more time
dependence of light travel times are negligibly small. Work-series result from comparing the laser beams exchanged be-
ing in the solar-system-baricentric frame, we obtain generafween adjacent optical benches within each spacecraft; these
expressions for the GW responses of the Michelson X5, time series are denoted lg;, with i,j=1,23,i#] (see
X3), Sagnac &;, a,, a3), and optimal A, E, T; see[21])  [3,4,10 for detail9. Delayed time series are denoted by com-
second-generation TDI observablegpressions for the first- mas: for instanceys; ,=ysi[t—L,(t)], and so on.
generation observables are given in Appendjxfidally, we The frequency fluctuations introduced by the lasers, by
derive the corresponding closed-form analytic expressionte optical benches, by the proof masses, by the fiber optics,
for moderately chirping binary systems, valid at any fre-and by the measurement itself at the photo-deteeter, the
quency in the LISA band. In Sec. Il we provide expressionsshot-noise fluctuationsenter the Doppler observablgs;
for the spectral densities of noise in the TDI combinations. Inandz;; with specific time signatures; see Réf3,4,1( for a
Sec. IV we combine the results of Secs. Il and Il to designdetailed discussion. The contributigrﬁW due to GW signals
optimal filters that can be applied to the LISA TDI data to was derived in Ref[2] in the case of a stationary array.
search for binary stars; we take advantage of the linear stru¢Note that in Ref.[2], and indeed in all the literature on
ture of the responses to define an optimal detection statistiirst-generation TDI, the notatioy; indicates the one-way
that does not depend on the effective polarization and on thBoppler measurement for the laser beam received at space-
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pes A. Geometry of the orbiting LISA array

We denote the positions of the three spacecraftg;and
the unit vectors along the arms by, wheren; points from

spacecraft 3 to 2, points from spacecraft 1 to 3, amg
points from spacecraft 2 to 1. In the coordinate frame where
the spacecraft are at rest, we can set without loss of general-

ity
pF=(L/\/3)(—cos 20, ,sin 20;,0), (&)
FIG. 2. Orbital motion of the LISA detector, shown in a solar-
system baricentric ecliptic coordinate system. The trajectoriegnd
shown correspond to setting=— /6, Q=2x/yr, and &,= 7,
=0 in Egs.(5) and(6).
n-= (coso; ,sino;,0), 2)

craftj andtraveling along arm.iIn this paper we conform to

the notation used in Ref§7-10].) W
Since the motion of the LISA array around the Sun intro-

duces a difference betwedand a time dependence)ithe

corotating and counterrotating light travel times, the exact o =3m2—2(i— 1) 7/3. 3

expressions for the GW contributions to the various first-

generation TDI combinations will in principle differ from the

expressions valid for a stationary arrgg]. However, the Because the motion of the LISA guiding centée., the
magnitude of the corrections introduced by the motion of thebaricenter of the formatioris contained in the plane of the
array are proportional to the product between the time deecliptic, it is convenient to work in a solar-system-baricentric
rivative of the GW amplitude and the difference between thqSSB ecliptic coordinate system. We take tkexis of this
actual light travel times and those valid for a stationary arraysystem to be directed toward the vernal point. A realistic set

At 1 Hz, for instance, the larger correction to the sigfthle  of orbits for the spacecraf23], shown in Fig. 2, is obtained
to the difference between the corotating and counterrotatingy setting

light travel timeg is two orders of magnitude smaller than

the main signal. Since the amplitude of this correction scales

linearly with the Fourier frequency, we can completely dis-

regard this effecttand the weaker effect due to the time pi(t)=r(t)+0,-p-, ni(t)=0,-nk, (4)
dependence of the light travel timesver the entire LISA

band[10]. Furthermore, since along the LISA orbit the three

armlengths will differ at most by-1%—2%, the degradation wherer is the vector from the origin of the SSB coordinate

in signal-to-noise ratio introduced by adopting signal tem-system to the LISA guiding center, as described by the SSB
plates that neglect the inequality of the armlengths will be atomponents

most a few percent. For these reasons, in what follows we

shall derive the GW responses of various second-generation

TDI observables by disregarding the differences in the delay

times experienced by light propagating clockwise and coun- r=R(cosy,siny,0), R=1 AU; (5)
terclockwise, and by assuming the three LISA armlengths to

be constant and equal th=5x10° km=16.67 s [23].

These approximations, together with the treatment of theéhe functionn=Qt+ 7, returns the true anomaly of the mo-
moving-LISA GW response discussed at the end of Sec. Il Ction of the LISA guiding center around the Sun. The rotation
are essentially equivalent to thigid adiabatic approxima- matrix O, models the cartwheeling motions of the spacecraft
tion of Ref.[20], and to the formalism of Ref18]. along their inclined orbits, shown in Fig. 3; it is given by

[=iw] » [=2ix] -

here

FIG. 3. Cartwheeling motion
of the LISA array, as plotted in a
frame with center in the LISA
guiding center and axes parallel to
the SSB ecliptic frame. We show
three snapshots at different times
along the LISA orbital period, 1

yr.
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siny cosé—cosysingsinég  —sinysiné—cosnysin{ cosé —coszny cosl
0,=| —cosy cosé—sinysinZsiné cosysiné—sinysin{cosé  —sinycos? | . 6)
2 )
cos{ siné cos{ cosé —sin¢

the functioné=—Qt+ &, returns the phase of the motion of each spacecraft around the guiding center{veeits the
inclination of the orbital plane with respect to the ecliptic. For the LISA traject@y; 27/yr and {=—«/6 [23]. For
simplicity, we can setyg=£&,=0, so that at tim&=0 the LISA guiding center lies on the positixeaxis of the SSB system,
while p; lies on the negativg axis. The spacecraft orbits described by Ej.can be approximately mapped to those used by
Cornish and Rubbd19] by identifying our spacecraft 1, 2, and 3 with their spacecraft 0, 2, and 1, and by ss{ting,
&o=3m/2— k+\, wherex and\ are the parameters defined below E@®) and (57) of Ref. [19]

B. Generic plane waveform

At the origin of the SSB frame, the transverse-traceless metric perturbation due to a source located at eclipti@ latitlde
longitude\ can be written as

H(t)=0,-H%1)- 0y ", )
where the metric perturbation in the source frame is taken to be

h*(t) h*(t) O
HS(t)=| h™*(t) —h*(t) O], (8)
0 0 0

with h*(t) andh*(t) the two GW polarizations, and where

Sin\ cosy—Ccos\ sinBsinygs  —sin\ sinyg— CoS\ SinB Ccosyy — COSA COSB
O.—| —cosn cosy—sink sinBsing  cos\ sing—sin\ sinBcosy  —sin\ cosB | . 9)
1 ,
cosBsinys COSpB cosys —sing

the dependence of the rotation matd¢ on B8 and\ en-  etersB, \, and ¢ can be mapped to the parametérse,
forces the transversality of the plane waves, which are propaand ¢ used in Ref[19] by settingB8=w/2— 6, \= ¢, and
gating from a source located in the direction =—i.

k=(cosh cosf,sin\ cosp,sinB); (10 C. GW response of the LISA array

the polarization angley encodes a rotation around the direc-  As derived in Ref[2] for a stationary, equilateral-triangle
tion of wave propagation; k, setting the convention used to LISA array, the one-way Doppler responses andys,; ex-
define the two polarizationst and X. The polarizations cited by a plane transverse-traceless GW propagating from
corresponding t@y=0 are shown in Fig. 4 for various source the source directiok, are given by

positions in the sky. In the center of the LISA proper frame

(the frame where the spacecraft are at)rebte transverse- T 24
traceless metric perturbation is given by X

H-(t)= 0 }(1)O;H(1)O; "Ox(1). (1)
A=m,B=0"
The time variablet that appears irh*(t) and h*(t) [and chf
therefore inH(t) andH(t)] is the time at the origin of the A =Tn/6,5
SSB frame. It is related to the time in the GW source frame bid

by a relativistic time dilation, due to the proper motion of the A= 7"//6 B= —/8

source and to cosmological effects. It is however expedient
to identify the two times, and to describe GW emission using
SSB time; the time dilation is then taken into account by FIG. 4. Conventional definition of the GW polarizations
mapping the apparerimeasuref physical parameters of a (dashedl and X (solid) for various ecliptic latitudes3 and longi-
source into its real parameters. The source positional parantidesh.
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GW iy —T1_[. N Fon—1 ) — " distance to the source. Last, the phdsét) is given, to the
t)y=[1-k-ng][¥5(t+k- L)—Ws(t+k- , . -
yar (=l sl P2-L) 3l pl)](lz) first post-Newtonian order, bj24]
VSO =1+ k-] Wa(t-+K-ps— L) ~Wo(t+K-py)] PoU= 0040,
(13 0= 2M @5’8(t)[1+<3715+ 55 “)@1’4(0}
[in the notation of Ref[2], oury,;, ys;, andk correspond to ST 8064 96 M '
Va1, Y21, and —k, respectively where (18)
where
W (t)= ;1) D (1) = L H(t)-n  (14)
j 1_(|2'ﬁj)2, j 2" i ucd
®(t)=w(tc—t), (19
[the prime denotes vector transposifiohe two WV, terms
in each of Eqs(12) and (13) correspond to the events of )
emission(at spacecraft 2 and 3, respectivefnd reception t :GM ii +<7i3+ %ﬁ)x
(at spacecraft )lof a laser photon packet; the time of the ¢ ucd 256 xé 252 252M)7°)
emission event is therefore retarded by an armlehgthhe
k-p; terms represent the retardation of the gravitational GMw|??
wavefronts to the positions of the spacecraft. The other four Xo= 203 ; (20

one-way Doppler responses are obtained by cyclical permu-

tation of the indices (%2, 2—3, 3—1). . .
S . with M=m;+m, the total mass of the binary, and
Our approximation to the GW response of the movmg:mlmle the reduced mass. The tintg is the time to

LISA array is obtained simply by interpreting Eq4.3) and ; LT
(14) as written in the SSB ecliptic frame, and by adopting thecoalescence of thg bmary from Fhe initial _mst&imo. S
In Table I, for binaries consisting of various combinations

time-dependent equatiorié) for p; a”qﬁi- Note that®;(t)  of white dwarfs (WDs, with m=0.35V.), neutron stars
can then be written either aB;(t)=2zn;(t)-H(t)-n;(t), or  (NSs, with m=1.4M), and black holes(BHs, with m
®;(t)=3(n)’-H-(t)-nf. The time-dependent rotation of =6Mg), and for various fiducial GW frequencies within the
the ni(t) introduces an amplitude modulation of the re- LISA band, we show the contributions to the evolution of

sponses, generating sidebands at frequency multiples of 1V frequency over one year caused by terms at the New-

the time dependence of the wavefront-retardation product©nian (N) and first post-NewtoniaflPN) order. The table

k-p;(t) introduces a time-dependent Doppler shift caused b)?hows that at frequencies smaller or equal t0°18iz, the

the relative motion of the spacecraft with respect to the SSIfVOIu“Qn of frequency is neg.I|g|bIe. At frequencies ap-
frame. proaching 10 mHz, the change in frequency becomes signifi-

cant, and needs to be included in the model of the signal;
however, only the first derivative of the frequency is needed
up to about 50 mHz. In binaries with WDs of mass
In the Newtonian limit, the GW signal emitted by a binary ~0.35M , above~20 mHz the WDs fill their Roche lobe,
system located in the directidncan be written in the form @nd the dynamical evolution of the system is then determined
of Eq. (7), with by tidal interaction between the stars. In binaries with either
a NS or a BH, post-Newtonian effects become important at
h*(t)=hg cod ¢s(t) + pol,  h™(t)=hgsin ds(t) + bl about ~50 mHz. At 1 Hz and above, these binaries will
(15)  coalesce in less than 1 yr; furthermore, population studies
[25] suggest that the expected number of binaries above 50
Here ¢, is an arbitrary constant phase, and the constant aninHz containing neutron stars and black holes is negligible.

D. Chirping-binary waveforms

plitudeshy andhg are given by (The effects of frequency evolution in the LISA response to
GW signals from inspiraling binaries are also discussed in
hg =ho(1+coge)/2, hg=hgcost, (16 Ref.[26].)

) . Therefore, for sufficiently small binary masses, for suffi-
where. is the angle between the normal to the orAbltaI planecienﬂy small GW frequenciegand definitely for all non-
of the binary and the direction of propagationk, and tidally-interacting binaries that contain WDswe can ap-
where proximate the phase of the signal by Taylor-expanding it, and
then neglecting terms of cubic and higher order. The result-

. 4(GM,)®P[ w]?? an ing expression for the signal phagg(t) is
o= |3]
c¢'b p—ots Lo where o 28[ M I,
= -wt?, where w=—|—Ffr .
with Mg=m3®m3%/(m; +m,) the chirp massw the an- R R EPYCR B
gular frequency of the GW at=0, andD the luminosity (21
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TABLE I. Contributions to the evolution of GW frequency for various types of compact, stellar-mass bitahits dwarfs withm
=0.35M¢, neutron stars witm=1.4M ¢, and black holes witm=6M ), for selectedinitial) GW frequencies within the LISA band. The
contributions are expressed as GW cycles over one year of evolution, and the effects of NewtonidN)addrfirst post-Newtonian-order
(1PN) terms are shown separately. The column labeled “Doppler” reports the integrated phasim slyifles due to the increased Doppler
shifting of the source as the frequency incredses Eq.(45)], where significant. Af =102 Hz there is no significant evolution of GW
frequency over one year. The symbol T indicates that the Taylor expansion of the phase giveri2dy Ecaccurate to within a quarter of
a cycle. Numbers are not shown where a binary of a given class cannot exist at a given frequency. Some of the conclusions that can be drawn
from this table are apparent also in Figs. 10 and 12 of R&f: up to about 1 mHz, LISA cannot differentiatesing 1 yr of databetween
a monochromatic binary and a chirping bin&sge Fig. 10 of Ref.20]); above that frequency, chirping becomes appreciaiie additional
GW cycle over a year in this table corresponds to a frequency shift of one bin in Fig. 12 ¢2Bjgfbut we see that it can still be modeled
faithfully by the linear-chirp model of Eq21).

f=10"°% Hz f=2%x10"2 Hz f=5%x10"2 Hz f=10"! Hz
Binary N 1PN N 1PN N 1PN Doppler N 1PN Doppler
WD-WD 0 0 24 0 — —
WD-NS 0 0 69 0 — —
WD-BH 0 0 190 0 — —
NS-NS 0 0 249 0 6.9x 10° 34 0 9.3« 10" 78 2.7
NS-BH 0 0 740 0.33 2210 19.0 0.66 3.X10° 640 8.5

E. TDI responses

The response of the second-generation TDI observables to a transverse-traceless, plane GW is obtainedypy(tyetting
=yﬁ‘W(t) [according to Eqs(12) and (13)] in the TDI expressions of Ref9,10]. For instance, the GW response of the
second-generation TDI observai){g is given by

XlGW=[(yale+y1G3v,Vz)+(y§1W+ylev,V3 ,22_()’%\7&’“‘)’?2]3)_(yg}fv“‘ygg),m]
XGW()‘)
GW_ . GW GW__ . GW GW__ . GW GW__ . GW
—[(y31 +)’13,2)+()’21 +)’12,3),22_()’21 +)’12,3)_()’31 +)’13,2),33],2233-

XOW(r—2L,-204)=xW(r-4L)

(22)
|
As anticipated above, here we are disregarding the effects QJj(t):Ff(t)h*(t)+FjX(t)hX(t), (24)
introduced by the time dependence of light travel times, and
by the rotation-induced difference between clockwise andvhere
counterclockwise light travel timeg27]. Each of the two N )
terms delimited by square brackets in EB2) corresponds Fi (t)=uj(t)cos 2+ v;(t)sin 24, (25
to the GW response of the first-generation Michelson observ- « i
ableX [2]. The TDI observableX, and X5 are obtained by Fi ()=vj(t)cos 2h—u;(t)sin 2¢. (26)

cyclical permutation of indices in Eq22). Likewise, the
second-generation Sagnac observables «,, and a3 can
be written in terms of the first-generation Sagnac observabl
a, B, andy [9,10

The modulation functions gft) andv;(t) depend rather in-
tricately on the LISA-to-SSB@®,) and source-to-SSBJ;)
er%tations; thusy;(t) andv;(t) depend on time through(t)
and£(t), and on the position of the source in the sky, given
by the ecliptic coordinateg and\. Explicitly, we have

GW i\ GWry_ GWir 1 | _

ay ()=a () —a”"(t—L;—L—Ly)

ui(t)=Ugcog —2y;) + U cog6—27;) +U,co0826—27;)

=a®W(t)— a®W(t—3L). (23
+Uzco936—2y;)+U,c0846—27;)

We shall now assemble the Doppler measurem?\‘féfrom 1 3 2 2 1 or sin 2

the various ingredients that enter Eq42) and (13). We + 2 g% ¢jco B‘gs'” ¢sin2p coss
begin with the functions; of Eq. (14), which can be rewrit- . .

ten as a linear combination of the two GW polarizations

h* (1) andh*(0): P +Zc052§ l—zcosz,B)cosZS, (27)
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vi(t)=Vosin(—2;) + V,Sin(6—21y;) + V3sin(35— 2 ;) Vl:%wsﬂ cosz(1-sin) -
+V4sin(45—27i)—%sin 2 cospBsiné .
1 Vs= Zcos,B cos{(1+sin¢), (38
+ Zcoszg’sinﬁ sin 26, (29
where V,= %sin[g’(lJrsing“)z, (39
() =A—n(t)=N— 79— Ot, (29)

with {=—#/6. Expanding the antenna pattenﬁﬁ(t) and
Yi=\N— 19— Eo— O (30) FJ-X(t) of Eq. (24), and using trigonometric identities to ab-
sorb the initial phase, into constant coefficients, the func-
[See Eq(3) for the definition Of(Ti , and remember thaf] tions (I)](t) can be f|na||y written as
=Qt+ 7y, €=—Qt+&y], and where the coefficientd,

andV, are given by ®;(t)=aMuj(t)cosegy(t) +a®v;(t)cosey(t)
1 +a®u (t)singg(t)+a®u (t)singg(t), (40
Uym E(1+sin2,8)(1—sin§)2, (31) j(D)singg(t) vj(t)singg(t), (40)
where the constant amplitude&? are given by
1 )
Uy=— gsin2p cos{(1-sin{), (32 aM=hg coseocos 24— h{' sin ¢esin 24, (41)
3 a®=hg cosgosin 2+ h{ sin ¢ocos 24, 42
U,= §C0§/3 co¢, (33 0 COS¢hg Y+hg singocos 2 (42)
a® = —h{ sin ¢ocos 25— h cosesin 244, (43
1
=—sin2 1+si 4
Us=gsin2g cos((1+sing), 39 a®=—h sin dosin 20+ h}; COSeh,COS 2. (44)
1 . . Because the time scale of detector motion is much longer
- 2
Ua= 16(1+S|n2,8)(1+sm§) ' (39 than the typical GW periodand because we are neglecting
the evolution of the GW amplitudl), it is sufficient to
1 ionk
T 2 apply the retardationk- p;(t) of Egs.(12) and (13) to the
Vo 8slnﬁ(l sin{)“, (36) GW phase:

d(t+k-p)=wt+ o’ +(0+ot)k-[r+0,(¢)-pH]

~wt+ $ 01>+ (w+ ot)R cos B cos(Qt+ 7,—\) + wk-[O,(2) - p-],

#(1) 20Ld 1)

(45

where ¢(t) is the GW phase retarded to the position of the(setting{= — 7/6). Equationg12) and(13) contain also the

LISA guiding center, and where we have defined projection factorsk- n;(t), which are given explicitly by
k-[O4(t)-pF] V3 . . 3
di(t)= M = \/——cos,B COSY; Ci(t)y=—Kk-[O,(t)- niL] = —cosB sinvy;
2L 8 4
1 NE] NCI. 1 .
+ Zsm,B cogd— ;) — zcosﬁ cog25— ;) - 73|n,8 sin(6— ;) + Zcosﬁ Sin(26— ;).
(46) (47)
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The functions c;(t) and d;(t) are related byd;=(c, X U, (t)
—C3)/6, dy=(c3—c1)/6, andd;=(c,—C,)/6. Substituting ®|= ¢ {sind (1+c,)x/2]cog ¢(t) —xd,— 7x/2]
the expression&l3) [and similar onekfor the yi(j3W into Eq. 1 va(t)
(22) for X$%, we get after some algebra +sind (1—c,)x/2]cog ¢(t) —xd,— 9x/2]}
. K us(t)
XSW(t)=4wL sin(wl)sin(2wL) >, a®x{(t); (48) o {sind (1+ c3)x/2]cog ¢(t) — xdz— 9x/2]
k=1 3
X(ll) [Uy(t)] wherex=wL and sinc..=(sin...)/(...). The GW re-
2= {sind (1+c,)x/2]sin ¢(t) —xd,—7x/2] sponses foiX, and X5 can be obtained by cyclical permuta-
X3 [va(1)) tion of the spacecraft indices.
+sind (1— ¢,)x/2]sin () —xdy— 9x/2]} The GW response fatt; can be written in similar form:
- ; k=4
Us(t) .
+ 3(t) {sind (1+ c4)x/2]sin ¢(t) — xdz— 9x/2] a?M(t) =20l Sln<§wL>k21 a®af(t), (51
LU3(L)] -

+sind (1—cg)x/2]sin ¢(t) —xd;—7x/2]}, (49  where

(1)

t
Z(lz) :[slitﬂ{sind(l+cl)x/Z]COi¢(t)—xd1—3x]—sinc[(l—cl)x/2]cos{¢(t)—xdl_3x]}
1 1
+[228}{9”‘“”CZ)X’Z]COWU—X%—ZXJ—sinc{(l—CZ)x/Z]cosM(t)—xd2—4x]}
2
+zljgitﬂ{s"“““°s>xf2]co$¢<t>—xd?,—4x]—sinc[(l—c3>x/2]cos{¢<t>—xo|3—zx]}. (52
3
(3
@ us(t)
(4) :[ {sind (1+cq)x/2]sin ¢(t) —xd; —3x]—sind (1 —c;)x/2]sin ¢(t) —xd; — 3x]}
aj v(t)
t
+ szit; {sind (1+c,)x/2]sin ¢(t) —xdy— 2x]—sind (1 — c,)x/2]sin ¢(t) —xdy—4x]}
2
t
+ :Et; {sind (1+ c3)x/2]sin ¢(t) —xdz—4x]—sind (1 — c3)x/2]sin ¢(t) —xdz—2x]}. (53)

The «, and @z combinations are again obtained by cyclical permutation of the spacecraft indices.
For the second-generation TDI observablesee Ref[10]; £, is uniquely determined in the equal-armlength limit, unlike
in the general casave find

4
SVt =20L sin(%wL)gl a9, (54)

with
{4y _[Ul(t)

(2| vad

+[Uz(t)

va(t)

u

3(t)
v3(t)

{sind (1+c)x/2]cog ¢(t) —xd;—3x]—sind (1—c,)x/2]cog ¢(t) —xd;—3x]}

{sind (1+cy)x/2]cog ¢(t) —xd,—3x]—sind (1—c,)x/2]cog ¢(t) —xd,— 3x]}

+ {sind (1+c3)x/2]cog ¢(t) —xd3— 3x]—sind (1—c3)x/2]cog ¢(t) —xd3— 3x]}, (55
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&P [uat)
49 Loa)
_{Uz(t)
vo(t)
_{Us(t)
v3(t)

Finally, the optimal TDI observableqg21], which here we
denote as\, E, andT to distinguish them from the optimal
combinationsA, E, and T derived within first-generation
TDI, are defined as linear combinations ®f, a5, and as:

— 1

A:E(as_al),

— 1

E=%(a1—2a2+a3), (57
— 1

T=ﬁ(al+a2+a3).

It is clear thatA, E, and T are also optimal, in the sense
discussed in Ref21]: this is because they can be written as

{sind (1+c3)x/2]sin ¢(t) —xd;—3x]—sind (1— c3)x/2]sin ¢(t) —xdz— 3x]}.

PHYSICAL REVIEW D 70, 022003 (2004

{sind (1+cq)x/2]sin ¢(t) —xd;—3x]—sind (1—cq)x/2]sin ¢(t) —xd; —3x]}

{sind (1+cy)x/2]sin ¢(t) —xd,— 3x]—sind (1—c,)x/2]sin ¢(t) —xd,—3x]}

(56)

with a® given by Eqgs.(41)—(44), andu;(t),v;(t) by Egs.
(27), (28). The LW responses foX, and X5 can be obtained
by cyclical permutation of the indices. Adopting the notation
of Ref.[2], we find also that

XSO =8LIL(Ak)" - F*(1)- A (R5) - Ait(1) -],

(59
where the triple overdot denotes the third time derivathfe,
is given by Eq.(2), andH"(t) is given by Eq.(11).

The GW responses of the Sagnac observab@gv are
equal simply to3 X\, . From Eqs(57) we then get the LW
GW responsedSy/, ESY, and TSy :

ASH=32(wL)3{[2u,(t) — uy(t) — us(t)]
x[a®sing(t) —a®cosp(t)]+[2v(t) —v4(t)
—va()[a@sing(t) —acose (1)1}, (60)

time-delayed combinations of the first-generation optimal

TDI observables, such a8=A(t)—A(t—3L), E=E(t)

—E(t—3L), andT= T(t)—T(t—3L); since by construction
the noises that enteX, E, andT are uncorrelated, it follows
that the noises that ent&, E andT are also uncorrelated,

Efn=3V6(wL)*{[uz(t) —uy(t)]
x[aWsing(t)—aPcose(t)]

+[va(t)—v1(t)][aPsing(t) —a®cose(t) ]},

making these observables optimal.
We recall that in the high-frequency part of the LISA band
(i.e., for frequencies equal to or larger than 5 mHhere

exist three independent TDI GW observablssch asA, E,

andT, or X1, X,, andX3). However, for frequencies smaller
than 5 mHz, there are essentially only two independent ob-
servables: this is especially obvious if we reason in terms of The spectral density of noise for the first-generation TDI
the optimal combinations, where we observe that for lowobservables, Y, Z, a, 8, v, A, E, andT is given in Refs.
frequencies the GW signal response Pfdeclines much [3,21] in the case of an equilateral LISA array, assuming that

faster than the responsesEfandE[S 21]. the noises appearing in all the proof masses and optical paths
' are uncorrelated. The finite-difference relations between first-

and second-generation TDI observablesich as Xy(t)

=X(t)—X(t—4L), a;(t)=a(t)— a(t—3L)] imply simple
The long-wavelengtliLW) approximation to the GW re- modifications to the first-generation noise densities: for in-

sponses is obtained by taking the leading-order terms of thstance,

generic expressions in the limit efL— 0. For instance, for

(61)

To=0[(wL)*]. (62

Ill. NOISE SPECTRAL DENSITY

F. TDI responses in the long-wavelength limit

X, [Egs.(48)—(50)], we get Sx (@) =4 sif(2wL)S(w), (63
XElw=16(wL)*{[ug(t) — us(t)] Sy (@) =4 SIF(30L/2)S,(w); (64)

x[aWsin(t) —aPcosg(t)]+[v3(t) —va(t)]
x[a@sing(t)—a®cosep(t)]}, (59

inserting the expression @y=Sy=S, from Ref.[3] into
Eq. (63) yields
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Sx, = Sx,= Sx,= 64 sirf(wL)si(2wL)[2(1+ cofwl)SP™ IV. OPTIMAL FILTERING OF THE LISA DATA
+ S°P] (65) In this section we develop maximum-likelihoodML)

formalism to detect GW signals from moderately chirping
where SP"=254x10% 2Hz ! and <P=17g Pinaries and to estimate their parameters, by analyzing the
X10 32 Hz"! are the fractional-frequency-fluctuation time series of the TDI observables. ML detection is based on

spectral densities of proof-mass noise and optical-path noisg}aximizing thelikelihood ratio A(¢") over the source pa-
respectively[3]. These values correspond to a rms single-fameterse'; this ratio is proportional to the probability that
proof-mass acceleration noise ofx30 ®ms 2Hz Y2 the observed detector output could have been produced by a
and to a rms aggregate optical-path noise 20GW source with parameter®, plus instrument noise. The

X 1072 mHz 2, as quoted in the LISA Pre-Phase A Study magnitude of the maximum indicates the probability that a

[23]. For the other TDI observables we find signal is indeed present, while its location indicates the most
likely parametergthe ML parameter estimatoys Under the
S,.=S,.=S,.=8 sirt(3wL/2){[4 sirf(3wL/2) assumption of Gaussian, stationary, additive noiseAl@)
' 2 * is computed by correlating the detector outpft), with the
+ 8 sirf(wL/2)]SP™+ 3S%P}, (66)  expected GW detector resporisg(t), while weighting the
correlation in the frequency domain by the inverse spectral
Sa=Se=32sif(wlL/2)sir?(3wL/2){[6+4 cogwl) density of instrument noise, (f). The family of GW re-

sponses{h,i(t)}, divided (in the frequency domajnby
(€7 S,(f) to incorporate the noise weighting, are knownogasi-
- mal filters
Sr=8[1+2 cogwl)]’sin(3wL/2) In Sec. IV A we describe the computation &fand of the
- ML parameter estimators for the optimal filters derived from
X P . L
[4Sirf(wL/2)S+ 5] €8) the GW responses of Sec. Il, and we show how to maximize
All the noise spectra are shown in Fig. 5. In the Iong-A algebraically over the four source amplitudes®. The

wavelength approximation, the noise expressions simpli t@mplitude-maximized log. (known as7) 's then used as a
gth app P plity detection statistido search for the most likely GW source,

IW_ oW _ alW__ 2 2apm 2 by maximizing it over the remaining source paramefbese

=S, =S"=256 wL)4(wL)*S"™+ (wlL)“S°?], (69 i
S, = 5% =X Qob)T4(wl) (0L)°S], (69 denoted by&#: thus, '=(a®,£#)]. In Sec. IV B we study
the statistical distribution ofF(£#) in the absencéor pres-

+2 cog2wl)]S"M+[2+ coq wl )]S°},

Sey =Sa) =Spn =18(wL) ] 11wl )*S™+ 3], (700 ence of a GW signal of parameterg®; this distribution
determines the statistical significance of observing a certain
S;—W:SE—W254(wL)2[4(wL)2Spm+(wL)ZSO”], (72) value of F, for a fixedé”. In Sec. IV C we study the statis-

tical significance of measuring a certain value of tien-
LW ) 2 com pletely maximizedtatistic max.7(£*), which leads to the
S =162 wl)T(wl)* S+ S, (72 total false-alarm probabilityfor a GW search over a range of
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intrinsic parameters. See HelSmI([ZS] for an extended dis- VectorsK’ E’ and?are independent of frequency_ The new

cussion of ML detection and parameter estimation. observables are the linear combinations of the Sagnac ob-
servablesa,,a,,a3 given by Eq.(57), and by definition
A. Maximum-likelihood search method their noises are uncorrelated. With reference to ([8§), we

As discussed in Secs. | and II, the LISA Doppler measure3€fin€ Saa(f) =Sege(f) =Sa(w=27f) and Srr(f)=Sr(w

ments can be recombined into the laser-noise and opticaF 2 f). It is convenient to use the optimal observables
bench-noise free TDI observables, all of which can be obE, andT as a basis for the LISA TDI observables, setting
tained as time-delayed combinations of three generators

[2,6]. Thus, in the following we denote the TDI data as the A(t) ASW(t)
three-vectox(t) (we shall very shortly specify a convenient — ——

vector basis In the case of additive noise, we can write x()=| E(t) |, ht)y=] EZ(1) |; (78
x(t)=n(t) +h(t), wheren(t) represents detector noise and T(t) TOW(t)

h(t) the GW response. Idealizing(t) as a zero-mean,
Gaussian, stationary, continuous random process, we ha\(ﬁe GW responsegew ECW andTeW

[28] are given in Sec. Il E

for the case of moderately chirping binaries. For these
1 sourcesSa(w) and St(w) are approximately constant over
log A=(x|h)— §(h|h)’ (73)  the signal bandwidth, so we can expand Etp) as

where the scalar product (.| ...) isdefined by log A =T, (A]|ACW)— AGW||AGW)

(xly)=4 Ref:?-”sgl-’ydf; (74)

/SK(w)

_ 1 —
+ (EJ[ES™)— 5 (B [E)

here the dagger denotes transposition and complex conjuga-

_ 1
tion, the tilde denotes the Fourier transform, @&denotes +To (T||TGW)—§(TGW||TGW) / St(w),
the one-sided cross spectral density matrix of detector noise,
defined by the expectation value (79
- 1 - where T, is the time of observation, and where we have
n(Hn'(f)]=75 o(f = 1) S(f). (75 introduced the time-domain scalar product

The larger the signal with respect to the noise, the higher _ To
the probability that a ML searcfperformed with the appro- (B”C)_(ZNO)f B(OC(HL. (80
priate optimal filtey will yield a statistically significant de-

tection, and the better the accuracy of the ML parametesjyen the linear dependenf2d] of A, E, andT on ay, a,,
estimators. The accuracy of estimation is also better for thg g as, from Eq.(51) it follows that

parameters on which the signal is strongly dependent. Signal

strength is characterized by tbgtimal signal-to-noise ratio “EW
. ARY(t)
(optimal S/N, o
) EGW(t)
p?=(hlh); (76) —ew
T=0()

while the dependence of the instrument response on the pa- _

rameters is characterized by the Fisher information matrix, 3 |4 AW(t)
=2xsin 5 x a®| EW(t
[ oh| sh 2 );1 _ ©
L=\ 5|24 )" (77 L TO(1)
. . . : [ ]
By the CrameRao inequality{ 28], the diagonal elements of _2(a(3k)_ af)

! provide lower bounds on the varlance of any unbiased
estlmators of thg'. In fact, the matrix";; s often called
the covariance matrixbecause in the I|m|t of high S/N the =2Xsin
ML estimators become unbiased, and their distribution tends
to a jointly Gaussian distribution with covariance matrix

3 4 1

Z K| —_( K _ o (K (k)
X a a 25+«

2 ) kz /_6( 1 2 3 )

1
equal tol';;*. — ({4 a0+ o)
The optimal TDI observabld®1] are obtained by diago- L V3
nalizing the cross spectru®,; it turns out that the eigen- (81
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where once again=wL, the amplitudes® are given by
Eqgs.(41)—(44), and the function&i(k) are given by Eqs52)
and (53), and by similar equations obtained by cyclical per-
mutation of the indices. Note that the component functionsyith similar expressions for the® and T, The matrix
AW(t), EM(t), andT®(t) do not depend on the amplitudes MK then simplifies to

o 1
(AW||AW) = — (A |A®) = 5Pa, (90

a® (or equivalently, orh§ , hg , ¢, and); they do how-
ever depend on the remainirioptrinsic) source parameters,
w, w, B, and\.

The ML parameter estimato#s are found by maximizing
log A with respect to the source paramet#ts that is, by
solving

dlogA

: (82
a6
For thea® this is accomplished easily by solving the linear
system
4

S MO®aW=NO, =1, ... 4, (83)

k=1
where

NO = 2x sin(gx)To[<K||K<'>>/s,:(w)+<E||E“>>/S;(w>

+(T|ITO)/SH( )], (84)

and whereM () is the 4x 4 matrix with components
(N (k) 2g;j 3 A AK
M D) = 4x2sir? X Tl (AD| A /S w)

+(EVJ|EW)/Sa(w) + (T TW)/SH w)].
(85)

The solution of Eq.(83) is simplified by noticing that the
component function&®(t), E®(t), andT®(t) consist of
simple sines and cosines with perie® 7/ w, modulated by
the slowly changing functions;(t) anduv;(t) (with periods
that are multiples of 1 yr By the approximate orthogonality
of sine and cosine terms, fary=1 yr the scalar products

(A®||AMY can be approximated as

(AW[|A®) = (AR[A) =0, (86)
and
— o — o — 1
(AW[|A®) = (A®||A®)=ZUg, (87)
—y— — . — 1
(AR|AR) = (AW[|AW) = S vy, (88)
L — o — 1
(AW[|A®) = (AP)|A®)=5 Qg (89)

Uu Q 0O P
T,/ Q VvV —-P 0
Mk =_09
M 2{0 -P U Q' (%)

P 0 Q V

where the elementd, V, Q, andP are given by

u =4xzsin2(;x) [Ua/Sa(w)+Ug/Sa(w)+UT/SH(w)],
(92

V:4xzsin2<§x) [Va/Sa(w)+VE/Sa(w)+VT/SHw)],
(93

3
Q=4X23in2(zx) [Qa/Salw) +Qg/Salw) + Q7/Sr(w)],
(94

P=4xzsir12(gx) [Pa/Sa(w)+ Pg/Sa(w) + P7/SHw)].
(95)

Then the analytic expressions for the maximum likelihood
estimatorsa® of the amplitudesa® are given by

al® V -Q 0 -P, [N®
a®| 2 |-Q u P o0 N®
a® | TAl 0 P V. —-Qf [ N®
54 -P 0 -Q U N()

(96)

whereA=UV—Q?— P2,

Substituting the ML amplitude estimatoaé® in the like-
lihood functionA yields thereduced likelihood function, .
The logarithm ofA, is known as theF statistic using Egs.
(79), (81), (84), and(96), we find

4 4
S S (M YORNON®
I=1 k=1

=(ToA) HVL(IND)2+(N®)2]+ U[(N®)2+(N®)?]
_ ZQ[N(l)N(2)+ N(3)N(4)] _ ZP[N(l)N(4)_ N(Z)N(3)]}_
(97)

We adoptF as the detection statistic of our proposed search
scheme. The statisti¢ is already maximized over the am-
plitudesa®, which are known in this context asxtrinsic
parametersBy contrast, the ML estimators of the remaining

(intrinsic) source parameterss( w, 8, and\) are found by

N| =

F=
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maximizing F. In practice, this is done by correlating the F will exceed the threshold in presence of noise ajared
detector output with dank of optimal filters precomputed of the detection probabilitf?y (which determines how often

for many values of the intrinsic parameters. F will exceed the threshold when a signal is present, result-
Introducing the complex quantities ing in correct detection In this section we compute the
W) — a(D) 1 a(3) prol_)abilitiesz_PF and F_’D for_the_ correlati_on of detector data
ari=ariiaty, (98 against a single optimal filtefi.e., for fixed values of the
) — A(2) 1 i 2 (4) intrinsic parametejs
arl=ari+iaty, (99 Under the assumpti(%n of zero-mean Gaussian noise, the
_ . weighted correlation®N' [Eq. (84)] are Gaussian random
W=Q+iP, (100 | ariables: sinceF is a quadratic form in th&\® [see Eq.
NW=ND 1 iN®G) (101) (97)], it must follow the_)(2 distribution. Following Sec. Il B
' of Ref.[22], we can diagonalize the quadratic form to find
N@ =N®@ 4+ iN®@) (102 that, in the absence of the signalF Zollows the y? distri-

bution with n=4Xn. degrees of freedom, wherg, is the
we can write the ML amplitude estimators and thstatistic ~ number of independent observables includedrif29]. For

in the compact form instance, if we usd, E, T thenn=12, while if we use only
. X1, thenn=4. In presence of the signal,/follows a non-
a=2(ToA) T [VNW—W*NO], (103 central 2 distribution with n=4xn. degrees of freedom
. and with noncentrality parametet equal to the optimal
al)=2(ToA) T UN® —WNWT, (104 (s/N)2=p2? [see Eq(76)]. For instance, if we ush, E, T,

(whereA=UV—|W|?) and K= p2=(ACW ACW) + (EGWECW) + (TOW|TOW)

F=(ToA) Y V|NW|2+ U|N®)|2—2 REWNW(N®)* ]}, (108)

(105

(which agrees with the result derived in RE21]), while if

In Sec. V we shall see that this expression is very suitable fowe use onlyXy,

numerical implementation. Equatior{$03)—(105 summa- WG

rize the proposed ML data-analysis scheme, which uses all k=p?=(X$"XEY). (109

the available LISA data. Similar expressions hold if we ana-

lyze a single interferometric combination, such Ys In The x? probability density function is

Appendix A we describe a useful complex representation of nf2—1

the GW TDI responses that simplifies the integrals involved _ exp — 110

in the computation ofF and of the ML amplitude estimators. Po(F) (n/2—1)! =7 (110
In the LW approximation, Egs(103—(105 simplify

somewhat: using thaS (t) and EGY(t) of Egs. (60) and  for «=0, or

(61) [and remembering thats (t) 0], we go through with (2F) (212

1
our formalism in parallel Wlth Eq984)—(91), and find that pi(p;F)= Tlnml(p\/Zﬂexy{ -F- §p2)
P.w=0, soW,y is real. The complex variabled and p

N®) are given by the integrals (111

L)3 for k=p2, wherel,,_, is the (/2—1)th-order modified
Niw=— {3\/—[2u2(t) uq(t)— u3(t)]A(t) Bessel function of the first kind. Thus, the false-alarm prob-

S ( )Jo ability for a thresholdF; is
+36[ug(t) —uy () JE(t) e *Mdt, (106) ni2—1
( L)3 Pe(Fo)= J Po(FdF=exp(—Fo) 2, Fo/k!
w
N =—2i f {3V2[205(t) ~v1(1) —v3(DIA(D) (112
600 (for evenn; for odd n the result involves the error functipn
+3\/—[Us(t) vi(D)]E()}e*Odt. (109 while the detection probability, in the presence of a S/

Analogous LW expressions hold for a single TDI observableSIgnaI (using the correct optimal filtgris

such asX;. o
D(P;]:O)Zf p1(p, F)dF, (113
B. Distribution of the F statistic o

Crucial to a search scheme based on comparing the Mthis integral cannot be evaluated in closed form in terms of
statisticF with a predefined threshold is the determination ofknown special functions, but it is clear that the higher the
the false-alarm probability?- (which determines how often optimal S/N, the higher the detection probability.
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C. False-alarm and detection probabilities for GW searches (m/2)K2
In actual GW searches, the detector output will be corre- Vce”:p(K/2+ 1) /detGpU' (118

lated to a bank of optimal filters corresponding to different

values of the intrinsic parametegd‘. For a given set of whereK is the number of intrinsic parameters, alids the
detector data, the statisti€(£*) is a generalized multipa- gamma function. The total number of elementary cells within
rameter random process knownrasdom field(see Adler’s  the parameter volum¥ is given by

monograph 30] for a comprehensive discussjowe can use

the theory of random fields to get a handle on the total false- I'(K/2+1)

alarm and detection probabilities for the entire filter bank. Ncen=W VVdEtGpadV- (119
We define theautocovarianceC of the random field m

F(&") as As discussed above, we consider the values of the stafistic
CLEM €)= Eo[ FUEM FE'™) ] — E F(E*) 1E[ FE'™)], within each cell as independent random variables, which in

(114 the absence of signal are distributed according to(EtQ).
By our definition of false alarms, the probability thatwill

where the expectation valu& is computed over an en- Nnot exceed the threshold™ in a given cell is just 1
semble of realizations of noigén absence of the signalln ~ — Pr(Fo); the probability thatF will not exceed the thresh-
Ref. [15] the total false-alarm probability was estimated byold o in any of the cellss

noticing that the autocovariance function tends to zero as the N
displacementA £#= ¢"#— ¢* increases(and in fact, it is 1—Pg 1ol Fo)=[1—Pg(Fp) ] eel; (120

maximum forA&#=0). The space of intrinsic parameters , . . o
may then be partitioned into a set elementary cells this Ppytot(}‘o).ls therefore the total false-alarm probability
for our detection scheme.

whereby the autocovariance is appreciably different from When the signal is present, a precise calculation of the

zero for within each cell, but negligible between cells. The - . X o .
number of elementary cells needed to cover the parametgerbab'“ty distribution function ofF is nontrivial, since the

space gves an stimate of the number of independent edi 5216 O 1 =07} nekes e o PosSIor
izations of the random fieldi.e., the number of statically Y. ! P

. ; ity given by Eq.(113 for known intrinsic parameters as a
wl?ﬁ %ildgPtmvg?é/so:,ht?]tepggﬁrggﬁﬁtg;n be strongly COrreIatésglubstitute for the detection probability when the parameters

There is of course some arbitrariness in choosing th&'€ unknown. This is correct if we assume that, when the

boundary of the elementary cells; we define them by requir_signal is present, the true values of the intrinsic parameters

ing that the autocovariance between the center and the SJF}" W'th'ntthf cell \f’f\{hereﬁ'? mangl\llm. This approximation
face be one half of the autocovariaraiethe center IS accurate for suthiciently large )

1 V. FAST COMPUTATION OF THE Z STATISTIC
C(gH, &' = 5C(&",&"), (115 _ - . .
2 The detection statisti& [Eq. (105] involves integrals of

) the general form
for ¢* at cell centeg’#* on cell boundary. Taylor-expanding

the autocovariance to second orderAg*, we obtain the To ) ) )
approximate condition Jo X(H)m(t; w,B,N)exg i dmodt; w,w,8,N)]exd i wt]dt
12
C(&EM &MY =(C(&EM M +E—azc(§ﬂ’§m) AEPAEC e
(6,6")=C(£",¢") 2 GEPIET §Ag wherem is a combination of the complex modulation func-
gri=gr tions defined in Appendix A, while the phase modulation
1 ®mod IS given by
=5C(£",69), (116

1.
o . - . Pmod t) = s0t*+ wRcosp cog Qt+ 79— \) (122
with implicit summation ovep ando. Within the approxi- 2
mation (necessary to obtain results in simple analytical

form), the cell boundary is théhyperellipse defined by LEG- (45)]. We see that the integrél2]) can be interpreted

PA £O_ as a Fourier transforrfand computed efficiently with a fast
CpoAePALT=1/2, where[31] Fourier transform(FFT)], if ¢m0q andm do not depend on
1 1 PC(E", &) the frequencyw. In fact, even in that case we can still use
po=" % ' (117 FFTs by means of the procedure that we now present.
2.0(gm, 6" 9EPIE'” £ gn From the original data we generate several band-passed

data sets, choosing the bandwidth of each set so that
(in Appendix B we shall derive a relation between tlig,  mexdidnoq4l iS approximately constant over the band. We
and the Fisher information matjixThe volumeV, of the  then search for GW signals in each band-passed data set: this
elementary cell is then is done by computing thé statistic over a grid in the pa-
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rameter spaced,3,\), set finely enough that we do not analyzed the resulting data by implementing the two-step
miss any signal. We follow the grid-construction procedureProcedure described above, using the Nelder-Mead maximi-
presented in Sec. Il A of Ref32]. The phase modulation Zzation algorithm[33] for the second step. The angular grid

can be usefully reparametrized as for the all-sky search consisted of about 900 points. We then
performed the following operation§) detecting the stronger
Dmod= P1t2+ A cog Qt) + B sin(Qt), (123 signal and estimating its paramete(s) reconstructing the
stronger signal and subtracting it from the ddia) detect-
where ing the weaker signal and estimating its paramet@rg;sub-
tracting it from the data. Figure 6 shows the amplitude spec-
_ 1. trum of X; before and after the subtraction of the two
P1 29 signals, as compared with the spectrum of noise alone. Fig-
ure 7 shows a comparison of the input signals with the re-
A= wRcosB cog\— 7g), constructed signalgbuilt with the parameters specified by
the ML estimators We see that the amplitude modulations
B=wR cosB sin(A — 7). (1249 in the GW response enable us to determine the sky location

of two sources of the same frequency, and also to resolve the
Sincemis a slowly changing function of time, we consider it two GW polarizations. Signal resolution will degenerate rap-
constant for the purpose of constructing a grid over the paidly as more sources of the same frequency are added, so the
rameter space. The result is a uniform grid of prisms withsteps described above cannot be used as a general signal
hexagonal bases, where the parameter subshdes tiled  subtraction procedurid4].

by regular hexagons. The grid in the parametersg, andx In the second simulation we analyzed te TDI data
is then derived by applying the inverse transformation, corresponding to a single signal of frequenfcy 25 mHz,
_ SIN=9.5, andf=6.5x 10" 3 Hzs™* (corresponding to a bi-
w=2p;, nary of chirp mass\i;=0.9M ). We generated a one-year-
long time series forX; by implementing numerically the
B=*+arcco$JAZ+ B2/ wR), exact GW response, E¢48), and we added noise as de-
scribed above. We narrowbanded edata to a bandwidth
A= 7yo+arctariB/A), (125  of 0.5 mHz, and again we analyzed the resulting data with

the two-step procedure described above. The sky search was
where for each band-passed data set we set the unknowerformed on a small grid~ 300 gridpoint$ around the true
frequencyw to the maximum frequency of the band. The values of the signal parameters. In the third simulation we
computation of theF statistic includes both phase- and analyzed theA, E, and T TDI data corresponding to the
amplitude-modulation effects, even if these were neglected e signal, for a total SAN19. The ML search procedure
in the construction of the grifin fact, the sign degeneracy a5 performed as in the second simulation. The top panel of

for B in Eq. (1295 is resolved by amplitude modulation, _. — .

which distinguishes between sources in opposite directionglg' 8. shows the TDI observabl(t) for the _5|gnal alone,_ )
with respect to the plane of the ecliptic Superimposed on the TDI observable for signal plus noise:
Oncepwe have a%etection the atr:)curate estimation of sigrc oo that the signal is more than one order of magnitude
nal parameters requires a second step. Since the coarse signé\alake_r than the noise. Th? bottom_ panel of Fig. 8 shows the
search described above is performed by evaluating the fung- Statistic (already maximized ovef, B, and\) near the

tion mexgidmed at the maximum frequency of each band input signal frequency. We see that the statistical significance
our filters are not perfectly matched to the signal, and thudS higher for the multiple-observable search than forxhe

are not optimal: as a consequence, the location of the maxgearch. Figure 9 shows a comparison of the input signals
mum of F does not correspond to the correct ML estimators With the reconstructed signals. We see that reconstruction is
We therefore refine the coarse search by maximizingear ~ More accurate for the multiple-observable search, but in both
the coarse-search maximum, this time without any approXi_searches our procedure resolves the two GW polarizations
mation. successfully.

We have performed a few numerical simulations to assess Ve conclude that our proposed algorithm performs satis-
the performance of our optimal-filtering algorithm. Here we factorily, detecting the simulated signals, accurately estimat-
report on three of them. In the first simulation we analyzednd their parameters, and resolving the two GW polariza-
the X, TDI data corresponding to two simultaneous mono-tions, both in the low-frequency regintgrst simulation and
chromatic signals, of frequendy=3 mHz and S/Ns of 24 high-frequency regimdsecond and third simulatipnin a

and 10, emitted from sources at opposite positions with re!future paper, we plan to discuss in detail the expected errors

spect to the plane of the ecliptic. We generated a one-yeal Parameter estimation for a source with given frequency,
long time series forX; by implementing Eq(58) numeri-  SKY Position, and S/N.

cally, and we included noise by adding a Gaussian random
process(as realized by a random number genernatwith
spectral density given by E¢65). We narrowbanded thx; A.K. acknowledges support from the National Research
data to a bandwidth of 0.125 mHz around 3 mHz, and weCouncil at the Jet Propulsion Laboratory, Caltech. M.V.’s
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mi(0)

-2

—i d' . +i
mg’i)(t) 2 e X J{smc[(1+cj)x/2]nai'

APPENDIX A: COMPLEX REPRESENTATION
OF THE RESPONSE

{Uj(t)
vj(t)

+sind (1—c¢))x/2]n, )},

From Egs.(52) and(53) it is easy to see that the Sagnac (A2)

TDI observablesy; can be rewritten in the complex form
with u;(t), vj(t) given by Eqs(27) and(28), c;(t) andd(t)
by Egs.(47) and (46), and with the constannscfi' given in
the left part of Table II.

The optimal combinationa®W, ECW, T6W are given by
formulas similar to Eq(A1), with modulation functions

(3
aPWV=2x sm(ix
+a@*ml)(t)eleM], (A1)
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tors a) and theF statistic[Eq. (105] can be written in

(A3)

(A4)

(A5)

andm(T—”) . The quan-

tities NW, N®, U, V, andW [Egs.(101), (102, (92), (93),
(100)] that are needed to compute the ML amplitude estima-
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and

W= 4xzsin2(gx)

3 of Im§(0)] 24+ mE (1)2 m* (HmP (1) +mE* (HmP (1)
U =4x2sir?| =x (2rro)f x(zrro)f
2 0 Sa() 0 Sa(w)
ImP(1)]2 m®* ()md(1)
——|dt, (A8) +——|dt (A10)
St(w) St(w)
The X; TDI observables can be written in the complex form
(V) 4v[2 (V) 412 as
3 T 0%+ |mg (1]
vz4x2sin2(—x)(2rr0)f ° E
2 0 Sa(w)
| OIE xiGW=4xsin(x)sin(2x)Re[ia<U>*m‘X“i>(t)ei¢(t>
, A9 _
St(w) 1 (A9 +ia®*m)(t)e'*O]; (A11)
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the same functional form as the functioms.’(t), m{!(t)

defined in Eq(A2), except that the coeﬁicientﬁij

are those

given in the right part of Table lIFor the single X observ-
able, the ML estimators for the amplitudes and f@r are

again given by

a)=2(ToAx ) [V NE)— Wi NEJ,

FIG. 9. Quality of signal re-
construction, as seen in the time
domain, in the second and third
simulations. The panels show the
input signals X, on the left,A on
the righd, compared with the re-
constructed signals; the two GW
polarizations are plotted together
(top row), and separatelymiddle
and bottom rowps Signal recon-
struction is more successful for
the multiple-observable search
(right) than for the single-
observable searctteft).

(A12)

a)=2(ToAx) " [Ux NE— Wy N

(A13)

(whereAy =Uy Vx —[Wy |?) and

TABLE II. Constants that appear in the complex representation of the GW responses of the TDI observables. The n@zhamﬁ;

are obtained fromn(flj by cyclical permutation of the

index as areny! andn! from ny!.

i +] =] +] =] +] =] +] =i =] +] =i
! Moy Moy Na, Na, Nay Moy M, M, Nx, Mx, Nx,

1 e—i3x _e—i3x e—i2x _e—i4x e—i4x _e—i2x 0 0 e _e—i9x/2 _e—i9x/2 _e—i7x/2
2 ef|2x _ef|4x ef|4x _ef|2x ef|3x _ef|3x ef|7x/2 ef|9x/2 —e _e*I7X/2 0 0

3 efi4x _efi2x efi3x _efi3x efi4x _efi2x _efigx/2 _efi7x/2 0 efi7xI2 e7i9x/2
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=(ToA) " Vy |NE|2+ Uy NP2 4
F=(ToA) ¥ x1| X1| ><1| x1| ht)=S alontot, gu): (B1)
—2 RgWy NSI(NE)* 1}, (A14) =
. as discussed in Sec. IV A, the amplitud&® are extrinsic
with parameters, while all the other paramet@snoted together
X (Mm@ ()] as &) are intrinsiclall the parameters are denoted together
(t)my (1) as 0'=(a®,£*)]. Note that in the case of the TDI observ-

— " ligiegt, )
Sx, (@) | ablesx$" or A®W [Egs.(48),(81)], the component functions
(A15)  h®(t) would include the factors Xsin(x)sin(2) and

2x sin(3x), respectively.

To
N§<”1)=8x sin(x)sin(zx)f
0

i ©)/en]
To Xa (UMM | In thi ion, it i how that the optimal S/N
) — . . 1 i) n this notation, it iIs easy to show that the optima
le 8xsinx)sin(2x) fo le(w) e, and the Fisher matrix can be written as
(A16) p?=a’-M-a, (B2)
and and
U, — 16CSC0SI(20(2T JT0'|m§<ul)(t)|2‘d ) M F.a
= sinf(x)si X ——|dt, r= , B3
X1 ( (2x)(2/To) 0 | Sx (o) | a.-F' a'-S-a B3
(A17) _
where the top and left blocks correspond to the extrinsic
T '|m§(")(t)|2' parameters, while the bottom and right blocks correspond to
Vy =16x23in2(x)sin2(2x)(2fro)f N dt, the intrinsic parameters. The supersciiptlenotes transpo-
! 0 | le(“’) | sition over the extrinsic parameter indices. Furthermare,
(A18) =(a®,a®,a® a®), and the matrice, F, and S are
iven b
Wy = 16x2sir?(x)sir?(2x) g y
! M®O=(LO[[O), (B4)
[T M O] N
X(2 ——|dt. A19 dh
(2ol | Sk, (@) (A9 FROO = | pt , (B5)
M
IEH
APPENDIX B: REDUCED INFORMATION MATRIX o0 sh® | gh®
It is interesting to examine the relation between the matrix Suv = oer | agr | (B6)

G*" defined by Eq(117) and the Fisher information matrix
I'l. We consider the case of a single TDI observable; mul-The covariance matrixC'/, which expresses the expected
tiple observables can be treated in similar fashion. As seen imariance of the ML parameter estimators, is defined as
Sec. II, the generic TDI GW responké¢t) can be written as (' %), Using the standard formula for the inverse of a

the linear combination block matrix[35] we have
|
M +M L (F-a-T L (Fa"-M! —M 1 (Fa !
C= — — : (B7)
- t(Fa'-m!? r-1
|
where estimators. Note thaf“* is still a function of the putative
o extrinsic parameters. Using E(B2) we define thenormal-
r=a"-(s-F"-M%F.a (B8) ized projected Fisher matrix
Y . — a-(S—-F"-M1.F).a
We shall calll'*” (the Schur complemeratf M) the projected I'.=TI/p?*= ) (B9)

Fisher matrix (onto the space of intrinsic parameterBe- a-M-a
cause the projected Fisher matrix is the inverse of the

intrinsic-parameter submatrix of the covariance ma@iix it ~ From the Rayleigh principl¢35], it follows that the mini-
expresses the information available about the intrinsic pamum value of the componeiit,” is given by the smallest
rameters once the extrinsic parameters are set to their Meigenvalugtaken with respect to the extrinsic parameterfs
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the matrix[(S—F"-M~ 1. F)-M~1]#*. Similarly, the maxi- Thus, theZ-statistic metricG*" [31] is found to be exactly

mum value of the componerit”” is given by the largest equal to the reduced Fisher matiix”; that this should be
eigenvalue of that matrix. Because the trace of a matrix i¢he case is understandable, since both matrices contain infor-
equal to the sum of its eigenvalues, the matrix mation about the relatedness of waveforms with nearby val-
ues of their intrinsic paramete(while both assume that the
extrinsic parameters are being set to their ML estimators
B 1_|_ S—ET.M-L.F). M1 5810 For a related argument about the placement of templates for
=7 T P Ir (B10 4 partially maximized detection statistic, see R&6).
where the trace is taken over the extrinsic-parameter indices,
expresses the information available about the intrinsic pa- APPENDIX C: FIRST-GENERATION TDI RESPONSES
rameters, averaged over the possible values of the extrinsic
parameters. Note that the factpris specific to the case of  The GW response of the first-generation TDI observable
four extrinsic parameters. We shall cdll*” the reduced X is given by[2]
Fisher matrix This matrix is a function of the intrinsic pa-
rameters alone.
Let us now compute the components@f”, defined by
E; (117). We start from log\, which in our notation is given XMW= (yq ' +y 3o + (Y21 + Y59 22
L — (YR YD — (Y Y529 s (C1)
IogA=aT-N—§aT-M-a, (B11)
after some algebra we get to
where N®W=(x|h(®), with x(t)=n(t)+h(t), and n(t) a
zero-mean Gaussian random process. The ML estimattrs

are given bya=M~1-N, so for theF statistic we haveF

—INT.M-L. i i ‘
5N'-M™*-N. Using the relation$22]

XOW(t) =2l sin(wL)k}_‘,l a®x®(t), (C2

El(n[sp(nlsy)}=(s4]s2), (B12
where the functionX(t) are given by

E{(n]sy)(n[sz)(n[sz)(n[sy)}

=(S1/82)(S3|S4) +(81]S3) (S2]S4) + (S1]84) (5] S3), e
(B13) [

uy(t)

vo(t)

+sind (1—c,)x/2]cog ¢(t) —xd,— 5x/2]}

{sind (1+c,)x/2]cog ¢(t) —xd,— 3x/2]

x|~

wheres;, s,, S, ands, are deterministic functions, we find
that the autocovariance functia@i{&*,£'#) of Eq. (114 is

given by
us(t)

v3(t)

+sind (1—cs)x/2]cod (1) —xds—3x/2]}, (C3)

{sind (1+c3)x/2]cog ¢(t) — xd3—5x/2]

C(é"f’“)=%TF[QT-Mle-M’*l], (B14)

where
Qu=(h®Ih'®), (B15)  [X®)] [uy(t)
LXM) = {sind (1+ cy)x/2]sin ¢(t) —xd,— 3x/2]
and the primes denote functions of the primed parameter va(t)
&¢'*. Inserting Eq.(B14) into Eq. (117), after some lengthy ) )
algebra(omitted herg we come to the final result +sind (1—cp)x/2]sin ¢(t) —xdp—5x/2]}
1 us(t)
G’”:Z > [S(k)(l) Lm)(k)(M’1)(”‘)(”)F(y”)(')] vs(t) {sind (1+ c3)x/2]sin ¢(t) —xd3—5x/2]
k,I,m,n
X(M-HOo=T . (B16) +sind (1—cz)x/2]sin ¢(t)—xds—3x/2]},  (C4)
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wherex=wlL and sinc.. =(sin...)/(...). The GW re- k=4
sponses folf andZ can be obtained by cyclical permutation a®V(t) =L Y, a®al(t), (C5)
k=1

of the spacecraft indices.

The GW response fo can be written in similar form:  where

ZE: - Sl(:) {sind (1+cq)x/2]sin ¢(t) —xd; — 3x/2] —sind (1~ c;)x/2]sir ¢(t) —xd; — 3x/2]}
+:szz:;:{Sinc[(1+Cz)X/Z]Sir[¢(t)—xd2—x/2]—sinc[(1—cz)x/2]sir[¢(t)—xd2—5x/2]}
+:328:{Sinc[(1+Ca)X/Z]Sif'[¢(t)—de—5X/2]—SinC[(l—Cg)XIZ]Sir{d>(t)—xd3—x/2]}, (C6)

) Tuv)] |

@[ —_vl(t)_{smc[(1+cl)x/2]cos[¢(t)—xdl—3x/2]—smc{(1—cl)xlz]cos{d,(t)_Xdl_gxlz]}
_:322;:{Si”‘[(”cz)"/z]cow(t)‘Xdz—X/2]—Sind(l—Cz)xl2]cos{¢(t)—xd2—5x/2]}
_::i:;:{Sinf[(1+Cs)X/Z]coi¢(t)—xd3—5x/2]—sinc[(1—c3)x/2]coi¢(t)_XdB_X/Z]}_ C7)

The 8 and y combinations
For the TDI observablé

with

us(t)
v(t)
[uy(1)]
Lva(t) ]
[us(t)]
Lvs(t) ]

g(l)
[ (@

{® [u ()]
[ }: Lua(o)]
ua(t)]
Lva(t) ]
[uz(D)]

Lva(t) ]

are again obtained by cyclical permutation of the spacecraft indices.
we find

4
()= kagl a0y, (C9

}{Sin([(l'F C1)X/2]sin ¢(t) —xd; —3x/2] —sind (1 — cq)x/2]sin ¢(t) —xd;— 3x/2]}

{sind (1+c,)x/2]sin ¢(t) —xd,—3x/2]—sind (1— c,)x/2]sin ¢(t) —xd,— 3x/2]}

{sind (1+c3)x/2]sin ¢(t) —xd;—3x/2]—sind (1 — cg)x/2]sin ¢(t) —xdz— 3x/2]}, (C9

{sind (1+c)x/2]cog ¢(t) —xd;—3x/2] —sind (1—c,)x/2]cog ¢(t) —xd;—3x/2]}

{sind (1+cy)x/2]cog ¢(t) —xd,— 3x/2] —sind (1—c,)x/2]cog ¢(t) —xd,— 3x/2]}

{sind (1+c3)x/2]cog ¢(t) —xdz— 3x/2] —sind (1—c3)x/2]cog ¢(t) —xdz—3x/2]}. (C10
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Flnglly, the .optlmal TD.I opservabIeA, E, alndT [21] are XEV\O/(t)ZZLZ[(ﬁlé)/_HL(t)_ﬁlé_(ﬁlé)/.HL(t).ﬁIE],
defined as linear combinations af B, andy: (c13
1 R
A= E(Y— @), where the double dot denotes the second time derivaifve,

is given by Eq.(2), andH"(t) is given by Eq.(11).
The GW response of the Sagnac observalf{f is equal
E— i(a_ 28+ ), (c1y  simply to $XSY . From Egs(C11) we then get the LW GW
J6 responsed\Sy, ESY, andTay

T %W B4y, A= V2( L) ([~ 2u5(t) + Uy (1) + (1)

x[aMcose(t) +a®sinp(t)]
The long-wavelength approximation to the GW responses

is obtained by taking the leading-order terms of the generic Fl=2v2(t) +ua(t) +ua(t)]

((aég)rf(scs:g?,sv\llr; tg:tllmlt obL—0. For instance, foK [Egs. x[a@cose(t) +a®sing (1), (C14)
X =4(wL)X[ua(t) —us(t)[aPcose(t) +aPsinp(1)] Eqw'= V6(wL)%{[uy(t)—us(t)]
+[va(t)—vs(t)][a®Pcose(t) +asing(t)]}, x[aMcosp(t)+aPsing(t)]
(C12 +[v1(t)—v5(t)][aPcose(t)
with a® given by Eqs(41)—(44), andu;(t), vi(t) by Egs. +a®sing(t)], (C15

(27), (28). The LW responses for andZ can be obtained by
cyclical permutation of the indices. Adopting the notation of ow 3
Ref.[2], we find also that Tiv =O[(wL)"]. (C1g
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