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Detection of Pre-Shock Dense Circumstellar Material of SN 1978K
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ABSTRACT

The supernova SN 1978K has been noted for its lack of emission lines broader

than a few thousand km s−1 since its discovery in 1990. Modeling of the radio

spectrum of the peculiar SN 1978K indicates the existence of H ii absorption along

the line of sight. To determine the nature of this absorbing region, we have obtained

a high-dispersion spectrum of SN 1978K at the wavelength range 6530–6610 Å.

The spectrum shows not only the moderately broad Hα emission of the supernova

ejecta but also narrow nebular Hα and [N ii] emission. The high [N ii]λ6583/Hα

ratio, 0.8–1.3, suggests that this radio absorbing region is a stellar ejecta nebula.

The expansion velocity and emission measure of the nebula are consistent with

those seen in ejecta nebulae of luminous blue variables. Previous low-dispersion

spectra have detected a strong [N ii]λ5755 line, indicating an electron density

of 3–12×105 cm−3. We argue that this stellar ejecta nebula is probably part of

the pre-shock dense circumstellar envelope of SN 1978K. We further suggest that

SN 1997ab may represent a young version of SN 1978K.

1Visiting astronomer, Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatories,

operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement

with the National Science Foundation.
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Subject headings: supernovae: individual: SN 1978K - stars: circumstellar matter

stars: mass-loss - galaxies: individual: NGC1313

1. Introduction

Massive stars lose mass via stellar winds throughout their lifetime. Stellar winds expand

away from the stars and form circumstellar envelopes. As a massive star ends its life in a

supernova (SN) explosion, the SN ejecta plows through the circumstellar material, driving a

forward shock into the circumstellar material and a reverse shock into the SN ejecta. Optical

emission is generated in the ionized SN ejecta, cooled SN ejecta behind the reverse shock,

shocked circumstellar material, and the ambient ionized circumstellar material (Chevalier &

Fransson 1994). These four regions have different physical conditions and velocity structures.

Consequently, optical luminosities and spectral characteristics of Type II SNe not only vary

rapidly for individual SNe, but also differ widely among SNe with different progenitors.

Optical spectra of Type II SNe older than a few years are characterized by broad hydrogen

Balmer lines and oxygen forbidden lines, with FWHM greater than a few thousand km s−1,

reflecting the rapid expansion of the SN ejecta (e.g., SN 1979C and SN 1980K - Fesen et

al. 1998; SN 1986E - Cappellaro, Danziger, & Turatto 1995; SN 1987F - Filippenko 1989;

SN 1994aj - Benetti et al. 1998). Some Type II SNe, however, do not seem to show such broad

emission lines. The most notable case is SN 1978K.

SN 1978K in NGC1313 was discovered in 1990 during a spectrophotometric survey of

extragalactic H ii regions (Ryder & Dopita 1993). Ryder et al. (1993) examined archival optical

images of NGC1313 and established that the optical maximum of the supernova occurred in

1978, possibly two months before July 31. However, the optical spectra of SN 1978K obtained

in 1990–1992 do not show any emission line broader than 600 km s−1 (Ryder et al. 1993;

Chugai, Danziger, & Della Valle 1995). This is in sharp contrast to SN 1980K, which shows

broad, 6000 km s−1 emission lines in spectra obtained in 1988 and 1997 (Fesen et al. 1998).

SN 1978K is intriguing at radio wavelengths as well. While its radio flux shows temporal

variations consistent with the expectation of a typical Type II SN, its radio spectrum shows a

low-frequency turnover that is most plausibly caused by free-free absorption from an H ii region

along the line of sight (Ryder et al. 1993). Montes, Weiler, & Panagia (1997) re-analyzed the

radio observations of SN 1978K, and find that the intervening H ii region has an emission

measure EM = 8.5 × 105(Te/104K)1.35 cm−6 pc, where Te is the electron temperature.

To determine the nature of this “H ii region” toward SN 1978K, we have obtained a

high-dispersion echelle spectrum at the wavelength range of 6530–6610 Å. This spectrum

clearly resolves the narrow [N ii]λλ6548, 6583 lines and a narrow Hα component from a
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moderately broad Hα component. The narrow Hα and [N ii] lines must arise from the “H ii

region”, and the broad Hα component from the SN ejecta. In this paper, we report the echelle

observation (§2), compare our spectrum with previous low-dispersion spectra (§3), argue that

the “H ii region” toward SN 1978K is circumstellar, and suggest a feasible explanation for

SN 1978K’s apparent lack of very broad emission lines (§4).

2. High-Dispersion Spectrum of SN 1978K

We obtained a high-dispersion spectrum of SN 1978K using the echelle spectrograph on

the 4-m telescope at Cerro Tololo Inter-American Observatory (CTIO) on 1997 February 27.

The spectrograph was used in a long-slit, single-order mode; the cross disperser was replaced

by a flat mirror and a broad Hα filter (FWHM = 75 Å) was inserted behind the slit. The

slit width was 250 µm, or 1.′′64. The data were recorded with the red long-focus camera and

a Tektronix 2048 × 2048 CCD. The pixel size was 0.08 Å pixel−1 along the dispersion and

0.′′26 pixel−1 in the spatial axis. The instrumental FWHM was 14±1 km s−1. The data were

wavelength-calibrated but not flux-calibrated.

The echelle observation of SN 1978K was made with a 10-min exposure. SN 1978K

and two unrelated H ii regions are detected. No spatially extended H ii features exist at the

position of SN 1978K. A spectrum extracted from a 5′′ slit length2 centered on SN 1978K is

presented in Figure 1. The high-dispersion spectrum shows three sets of lines with distinct

velocity widths. The narrowest (unresolved) are the telluric Hα and OH λ6553.617 and

λ6577.285 lines (Osterbrock et al. 1996). The broadest is the Hα emission from the supernova

ejecta. It is centered at 6572.76±0.22 Å, corresponding to a heliocentric velocity (Vhel) of

455±10 km s−1; its FWHM is ∼450 km s−1 and FWZI ∼1,100 km s−1.

The third set of lines consists of the narrow [N ii]λλ6548, 6583 lines and a narrow Hα

component. The narrow Hα component is superimposed near the peak of the broad Hα

emission of the supernova, hence its central velocity, Vhel ∼ 419 km s−1, and FWHM, 75–100

km s−1, are somewhat uncertain. The [N ii]λ6583 line, at Vhel = 419±5 km s−1, shows a line

split of ∼70 km s−1; its FWHM is ∼125 km s−1. The [N ii]λ6548 line, being weaker, does

not show an obvious line split; however, its asymmetric line profile indicates the presence of

a brighter red component and a weaker blue component, consistent with those seen in the

[N ii]λ6583 line.

The narrow Hα component and the narrow [N ii] lines most likely originate from the

same emitting region, and will be referred to as “nebular” emission. We have measured the

nebular [N ii]λ6583/Hα ratio to be 0.8–1.3. The large uncertainty in this ratio is caused by

2This large slit length is necessary to include all the light from SN 1978K, as the telescope was slightly out

of focus for this observation. When the focus problem was resolved (2 hours later), SN 1978K had already set.



– 4 –

the uncertainty in the nebular Hα flux, as it is difficult to separate the nebular and supernova

contributions to the observed Hα emission. The possible range of nebular [N ii]/Hα ratio is

derived from the lower and upper limits of the nebular Hα flux, estimated by assuming high

and low peaks of supernova emission, respectively.

3. Comparison with Previous Low-Dispersion Spectra

A relatively low-dispersion spectrum of SN 1978K was obtained on 1990 Jan 23 by Ryder

et al. (1993). That spectrum showed an Hα line centered at 6570.2±0.6 Å with a FWHM

of 563 km s−1. It also detected the [N ii]λ6583 line at 6589.6±1.0 Å. As this spectrum has

a resolution of ∼5 Å and a pixel size of 1.5 Å pixel−1, the [N ii] lines are not well resolved

from the Hα line and consequently the velocity and flux measurements might not be very

accurate. The [N ii]λ6583/Hα flux ratio, 0.049, derived from this low-dispersion spectrum is

really the ratio of nebular [N ii]λ6583 flux to the combined supernova and nebular Hα flux.

The [N ii]λ5755 line is also detected and the [N ii]λ5755/Hα flux ratio is 0.025.

Another low-dispersion spectrum of SN 1978K was obtained on 1992 October 22 by

Chugai et al. (1995). The resolution of this spectrum is 10 Å. Thus the redshifts and widths of

spectral lines cannot be reliably determined. The [N ii]λ6583/Hα flux ratio is 0.072, and the

[N ii]λ5755/Hα flux ratio is 0.016.

Using our echelle spectrum, we have measured the ratio of nebular [N ii]λ6583 flux to

the combined supernova and nebular Hα flux to be 0.06. This is different from the previous

measurements, 0.049 and 0.072. While our measurement should be more accurate because of

our higher spectral resolution, the supernova Hα flux might have varied from 1990 to 1997

(Chugai et al. 1995). It is not clear whether the [N ii] flux itself has changed.

Nebular lines toward SN 1978K are also detected in the UV spectra of SN 1978K

obtained with the Faint Object Spectrograph on board the Hubble Space Telescope on 1994

September 26 and 1996 September 22–23 (Schlegel et al. 1998). The Lyα line and the blended

[Ne iv]λλ2421, 2424 doublet are detected. Both lines have FWHMs comparable to the

instrumental resolution, 7 Å, corresponding to 1727 km s−1 at Lyα and 866 km s−1 at [Ne iv].

These [Ne iv] lines have critical densities of 8×104 and 2.5×105 cm−3, respectively (Zheng

1988); therefore, these [Ne iv] lines must originate from the nebula. The Lyα line emission,

like the Hα emission, contains both the supernova ejecta and nebular components.

4. Discussion
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4.1. Origin of the Narrow Hα and [N ii] Lines

The most intriguing features detected in our high-dispersion spectrum of SN 1978K are

the narrow nebular Hα and [N ii] lines, which are presumably emitted by the “H ii region along

the line of sight” implied by the radio spectrum of SN 1978K (Ryder et al. 1993). However, as

we argue below, the [N ii] line strengths suggest that this “H ii region” is circumstellar, rather

than interstellar.

The nebular [N ii]λ6583/Hα line ratio, 0.8–1.3, is unusually high for normal interstellar

H ii regions in a spiral galaxy. For example, H ii regions in M101 have [N ii]λ6583/Hα

ratios ≤0.3 (Kennicutt & Garnett 1996). SN 1978K is at the outskirts of NGC1313, where

abundances are expected to be low and the H ii excitation is expected to be high. If the

nebular Hα and [N ii] lines toward SN 1978K originate in an interstellar H ii region, we would

expect the [N ii]λ6583/Hα ratio to be ∼0.1 or lower. A low interstellar [N ii]/Hα ratio is

confirmed by the bright H ii region detected along the slit at ∼ 90′′ east of SN 1978K. This

H ii region is brighter than the nebula toward SN 1978K in the Hα line, but its [N ii]λ6583 line

is not detected. We may rule out an interstellar H ii region explanation for the narrow nebular

lines seen in SN 1978K.

The high [N ii]λ6583/Hα ratio may be caused by a high electron temperature or a high

nitrogen abundance. These conditions can be easily provided by SN 1978K and its progenitor.

If the nebula was ionized by the UV flash of SN 1978K, the electron temperature may be

higher than that of a normal H ii region, as in the case of SN 1987A’s outer rings (Panagia

et al. 1996). However, the [N ii]λ6583 line intensity increases by only a factor of 2 for an

electron temperature increase from 10,000 K to 15,000 K. This increase cannot explain fully

the observed high [N ii]/Hα ratio. A higher nitrogen abundance is needed. An elevated

nitrogen abundance is characteristic of ejecta nebulae around evolved massive stars, such as

luminous blue variables (LBVs) and Wolf-Rayet (WR) stars; the [N ii]λ6583/Hα ratios of

these ejecta nebulae are frequently observed to be ∼1 (Esteban et al. 1992; Smith et al. 1998).

Therefore, the most reasonable origin of the nebular emission lines toward SN 1978K would

be a circumstellar ejecta nebula. The observed high [N ii]/Hα ratio may be caused by the

combination a high nitrogen abundance and a high electron temperature.

SN 1978K’s circumstellar ejecta nebula has a very high density, as strong [N ii]λ5755 line

is observed in SN 1978K’s spectrum. The [N ii] (λ6548+λ6583)/λ5755 ratio is measured to

be 2.55 by Ryder et al. (1993), and 6.0 by Chugai et al. (1995), indicating that collisional

de-excitation is significant for the 1D2 level of N+. If we assume an electron temperature of

1–1.5×104 K, the observed [N ii] line ratios imply electron densities of 3–12×105 cm−3.

The circumstellar ejecta nebula of SN 1978K can be compared to those observed around

LBVs and WR stars. The density of SN 1978K’s nebula is higher than those of WR nebulae,

but within the range for LBV nebulae (Stahl 1989; Esteban et al. 1992). We adopt the emission

measure EM = 8.5 × 105(Te/104K)1.35 cm−6 pc determined from the radio observations
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(Montes et al. 1997) for SN 1978K’s nebula. This emission measure is much higher than those

observed in ejecta nebulae around WR stars, typically a few ×102 to 103 cm−6 pc (Esteban et

al. 1992; Esteban & V́ılchez 1992), but lies toward the high end of the range typically seen in

LBV nebulae, a few ×103 to 105 cm−6 pc (Hutsemékers 1994; Smith et al. 1998). Finally, the

Hα and [N ii] velocity profiles seen in our SN 1978K spectrum suggest an expansion velocity3

of 40–55 km s−1, which is lower than those of most ejecta nebulae around WR stars but is

within the range for LBV nebulae (Nota et al. 1995; Chu, Weis, & Garnett 1999). It is thus

likely that the observed nebula toward SN 1978K was ejected by the progenitor during a LBV

phase before the SN explosion.

This ejecta nebula could be either part of the circumstellar envelope that the SN ejecta

expands into, or a shell that is detached from the circumstellar envelope. We will demonstrate

below that the latter is unlikely. If the ejecta nebula is a detached shell, the observed emission

measure and density imply that the shell thickness is only 4×10−5 to 4×10−6 pc. The thickness

of a detached, dense shell will be broadened by diffusion, and may be crudely approximated

by (c/Vexp)R, where c is the isothermal sound velocity, Vexp is the expansion velocity, and R is

the radius. We find that the radius of SN 1978K’s free-expanding ejecta shell would have to

be no greater than ∼ 2 × 10−4 pc, which is smaller than the expected radius of the SN ejecta.

This is impossible. Therefore, we conclude that the narrow Hα and [N ii] lines must originate

in the pre-shock, ionized circumstellar envelope of SN 1978K.

The narrow nebular lines from the pre-shock, ionized circumstellar envelope of SN 1978K

are not unique among SNe. The high-dispersion spectrum of SN 1997ab shows narrow P-Cygni

Hα and narrow [N ii]λ6583 lines, and the FWZI of the P-Cygni Hα line, 180 km s−1, is

comparable to that of SN 1978K’s Hα line (Salamanca et al. 1998). The P-Cygni profile of

SN 1997ab’s narrow Hα line indicates a high density, ≥ 107 cm−3. This density exceeds the

critical density of the 1D2 level of N+, and causes a weak [N ii]λ6584 line (see Figure 1 of

Salamanca et al. 1998). If SN 1997ab’s circumstellar material is nitrogen-rich like that of

SN 1978K, we predict that its [N ii]λ5755 line is strong and should be detectable as well.

SN 1997ab is very likely a younger version of SN 1978K, and SN 1978K’s nebular Hα line may

have exhibited a P-Cygni profile in 1979-1980.

4.2. SN Evolution in a Very Dense Circumstellar Envelope

The most notable SN characteristic of SN 1978K is its apparent lack of very broad (a

few thousand km s−1) emission lines. Adopting canonical expansion velocities and sizes for

SN 1978K, Ryder et al. (1993) has derived a mass of >80 M⊙ for the circumstellar envelope.

3The expansion velocity implied by the line split in the [N ii] line is >35 km s−1. The expansion velocity can

also be approximated by the HWHM of the Hα and [N ii] lines, 40–55 km s−1.
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This mass is too large to reconcile with the current understanding of massive stellar evolution.

To lower the circumstellar mass, Chugai et al. (1995) propose that the circumstellar envelope

is clumpy.

We consider that the large size ∼0.1 pc adopted by Ryder et al. (1993) is over-estimated

and inconsistent with the expansion velocity implied by our observed Hα FWHM of 450

km s−1. There is no need to assume an unseen, larger expansion velocity. We suggest that the

small expansion velocity of SN 1978K is caused by the dense circumstellar envelope, which

has quickly decelerated the expansion of SN ejecta. If optical spectra had been obtained

immediately after the SN explosion in 1978, very broad emission lines would have been

detected.

Rapid deceleration of SN ejecta has been observed in two other SNe, SN 1986J and

SN 1997ab. SN 1986J has been noted to have very similar spectral properties as SN 1978K4.

SN 1986J probably exploded four years before its initial discovery in 1986 (Rupen et al. 1987;

Chevalier 1987). Its optical spectra obtained soon after the discovery show narrow hydrogen

Balmer lines and nitrogen forbidden lines, indicating an expansion velocity < 600 km s−1

(Leibundgut et al. 1991). SN 1997ab is the only other SN for which narrow nebular emission

lines from the dense circumstellar envelope have been unambiguously resolved and detected.

SN 1997ab’s light curve peaked in 1996; the FWHM of its Hα line decreased rapidly from 2500

km s−1 on 1997 March 2 to 1800 km s−1 on 1997 May 30 (Hagen et al. 1997; Salamanca et al.

1998).

Clearly, SN 1978K, SN 1986J, and SN 1997ab all possess very dense circumstellar

envelopes, and we may expect them to evolve similarly. The expansion of SN 1978K might

have slowed down to below 1000 km s−1 within the first ∼2 years after the explosion, and

the SN ejecta could not have reached a radius greater than ∼0.02 pc in 1990. A factor of 5

reduction in the radius would lower Ryder et al.’s (1993) estimate of mass to a reasonable

value, and the hypothesis of a clumpy circumstellar envelope will no longer be necessary.

4.3. Future Work

Previous spectrophotometric observations of SNe were rarely made with spectral

resolutions better than 2 Å. Our echelle observation of SN 1978K has demonstrated that

high-dispersion spectroscopy is powerful in resolving pre-shock, ionized circumstellar material.

A high-dispersion spectroscopic survey of young SNe in nearby galaxies may detect more

circumstellar envelopes and even detached ejecta ring nebulae, such as the rings around

4We have examined a large number of SN spectra reported in the literature. SN 1986J appears to be the

only SN besides SN 1978K that shows strong [N ii]λ5755 line, indicating a very high density and possibly an

enhanced nitrogen abundance.
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SN 1987A (Burrows et al. 1995). The density and velocity structures of these circumstellar

envelopes would shed light on the mass loss history as well as physical properties of the massive

progenitors.

Our spectrum of SN 1978K unfortunately covers only the [N ii] and Hα lines. In order to

measure the density, temperature, and abundances of the circumstellar material, it is necessary

to obtain high-dispersion spectra covering a large wavelength range. It is also important to

monitor the spectral changes indicative of density changes in the circumstellar envelope. A

large change at all wavelengths is expected when the SN ejecta expands past the outer edge of

the circumstellar envelope.
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Figure Captions

Fig. 1.— High-dispersion spectrum of SN 1978K taken with the echelle spectrograph on the

CTIO 4 m telescope. The spectrum has been smoothed with a boxcar of 5 pixels, or 0.4 Å.

The telluric lines are indicated by the ⊕ symbol.
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