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THE RANDOM PAVING PROPERTY FOR

UNIFORMLY BOUNDED MATRICES

JOEL A. TROPP

Abstract. This note presents a new proof of an important result due to Bourgain and Tzafriri
that provides a partial solution to the Kadison–Singer problem. The result shows that every unit-
norm matrix whose entries are relatively small in comparison with its dimension can be paved by
a partition of constant size. That is, the coordinates can be partitioned into a constant number
of blocks so that the restriction of the matrix to each block of coordinates has norm less than one
half. The original proof of Bourgain and Tzafriri involves a long, delicate calculation. The new
proof relies on the systematic use of symmetrization and (noncommutative) Khintchine inequalities
to estimate the norms of some random matrices.

1. Introduction

This note presents a new proof of a result about the paving problem for matrices. Suppose that
A is an n × n matrix. We say that A has an (m, ε)-paving if there exists a partition of the set
{1, 2, . . . , n} into m blocks {σ1, σ2, . . . , σm} so that

∥

∥

∥

∑m

j=1
Pσj

APσj

∥

∥

∥
≤ ε ‖A‖

where Pσj
denotes the diagonal projector onto the coordinates listed in σj . Since every projector

in this note is diagonal, we omit the qualification from here onward. As usual, ‖·‖ is the norm on
linear operators mapping ℓn

2 to itself.
The fundamental question concerns the paving of matrices with a zero diagonal (i.e., hollow

matrices).

Problem 1 (Paving Problem). Fix ε ∈ (0, 1). Is there a constant m = m(ε) so that, for sufficiently

large n, every hollow n × n matrix has an (m, ε)-paving?

Anderson [And79] has shown that the Paving Problem is equivalent with the Kadison–Singer
problem, a major open question in operator theory. It is closely related to significant problems in
harmonic analysis and other areas of mathematics and engineering. See [CT06] for an intriguing
discussion.

At present, the strongest results on the paving problem are due to Bourgain and Tzafiri [BT91].
For a fixed ε, they established that

(1) every hollow matrix of size n × n can be paved with at most m = O(log n) blocks and

(2) every square matrix whose entries are relatively small compared with its dimension can be
paved with a constant number of blocks.
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2 JOEL A. TROPP

Let us present a precise statement of their second result. We use the notation JnK
def

= {1, 2, . . . , n}.
Theorem 2 (Bourgain–Tzafriri). Fix γ > 0 and ε ∈ (0, 1). There exists a positive integer m =
m(γ, ε) so that, for all n ≥ N(γ, ε), the following statement holds. Suppose that A is an n × n
unit-norm matrix with uniformly bounded entries:

|ajk| ≤
1

(log n)1+γ
for j, k = 1, 2, . . . , n.

Then there is a partition of the set JnK into m blocks {σ1, σ2, . . . , σm} such that
∥

∥

∥

∑m

j=1
Pσj

APσj

∥

∥

∥
≤ ε

where Pσj
is the projector onto the coordinates listed in σj . The number m satisfies the bound

m ≤ Cε−C/ min{1,γ}

where C is a positive universal constant.

The proof of this result published in [BT91] hinges on a long and delicate calculation of the
supremum of a random process. This computation involves a difficult metric entropy bound based
on some subtle iteration arguments.

This note shows that the central step in the known proof can be replaced by another approach
based on symmetrization and noncommutative Khintchine inequalities. This method for studying
random matrices is adapted from Rudelson’s article [Rud99]. Even though it is simple and elegant,
it leads to sharp bounds in many cases. By itself, Rudelson’s technique is not strong enough, so we
must also also invoke a method from Bourgain and Tzafrari’s proof to complete the argument. As
we go along, we indicate the provenance of various parts of the argument.

2. Problem Simplifications

Let us begin with some problem simplifications. The reductions in this section were all proposed
by Bourgain and Tzafriri; we provide proofs for completeness.

The overall strategy is to construct the paving with probabilistic tools. The first proposition
shows that we can leverage a moment estimate for the norm of a random submatrix to build
a paving. The idea is to permute the coordinates randomly and divide them into blocks. The
moment bound shows that, if we restrict the matrix to the coordinates in a random block, then it
has small spectral norm.

Proposition 3 (Random Paving Principle). Fix an integer m, and let n = km for an integer k.

Let A be an n×n unit-norm matrix, and suppose that P is a projector onto exactly k coordinates,

chosen uniformly at random from the set JnK. If, for p ≥ log n, we have the estimate

(E ‖P AP‖p)1/p ≤ ε,

then there exists a partition of the set JnK into m blocks {σ1, σ2, . . . , σm}, each of size k, such that
∥

∥

∥

∑m

j=1
Pσj

APσj

∥

∥

∥
≤ 3ε

where Pσj
is the projector onto the coordinates listed in σj .

Proof. Consider a random permutation π of the set JnK. For j = 1, 2, . . . ,m, define

σj(π) = {π(jk − k + 1), π(jk − k + 2), . . . , π(jk)}.
For each j, the projector Pσj(π) onto the coordinates in σj(π) is a restriction to k coordinates,
chosen uniformly at random. The hypothesis implies that

E maxj=1,2,...,m

∥

∥Pσj(π)APσj(π)

∥

∥

p ≤ mεp.
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There must exist a permutation π0 for which the left-hand side is smaller than its expectation. For
the partition with blocks σj = σj(π0), we have

∥

∥

∥

∑m

j=1
Pσj

APσj

∥

∥

∥
= maxj

∥

∥Pσj
APσj

∥

∥ ≤ m1/pε.

The equality holds because the coordinate blocks are disjoint. Finally, we have m1/p ≤ e because
m ≤ n and p ≥ log n. �

This proposition shows that it is sufficient to study the restriction to a random set of coordinates
of size k. Although this dependent coordinate model is conceptually simple, it would lead to severe
inconveniences later in the proof. We prefer instead to study an independent coordinate model for
the projector where the expected number of coordinates equals k. Fortunately, the two models are
equivalent for our purposes.

Proposition 4 (Random Coordinate Models). Fix an integer m, and let n = km for an integer

k. Let A be an n × n matrix. Suppose that P is a projector onto k coordinates, chosen uniformly

at random from JnK, and suppose that R is a projector onto a random set of coordinates from JnK,
where each coordinate appears independently with probability k/n. For p > 0, it holds that

(E ‖P AP ‖p)1/p ≤ (2 E ‖RAR‖p)1/p .

The reduction to the independent coordinate model also appears in Bourgain and Tzafriri’s paper
with a different proof. The following attractive argument is drawn from [CR06, Sec. 3].

Proof. For a coordinate projector R, denote by σ(R) the set of coordinates onto which it projects.
We can make the following computation:

P {‖RAR‖p > t} ≥
∑n

j=k
P {‖RAR‖p > t | #σ(R) = j} · P {#σ(R) = j}

≥ P {‖RAR‖p > t | #σ(R) = k} ·
∑n

j=k
P {#σ(R) = j}

≥ 1

2
P {‖P AP ‖p > t} .

The second inequality holds because the spectral norm of a submatrix is smaller than the spectral
norm of the matrix. The third inequality relies on the fact [JS68, Thm. 3.2] that the medians of
the binomial distribution binomial(k/n, n) lie between k − 1 and k. Integrate with respect to t to
complete the argument. �

3. The Main Result

On account of these simplifications, it suffices to prove the following theorem. In the sequel, Rδ

denotes a square, diagonal matrix whose diagonal entries are independent and identically distributed
0–1 random variables with common mean δ. The dimensions of Rδ conform to its context.

Theorem 5. Fix γ > 0 and ε ∈ (0, 1). There exists a positive integer m = m(γ, ε) so that, for

all n ≥ N(γ, ε), the following statement holds. Suppose that A is an n × n unit-norm matrix with

uniformly bounded entries:

|ajk| ≤
1

(log n)1+γ
for j, k = 1, 2, . . . , n.

Let δ = 1/m. For p = 2 · ⌈log n⌉, we have

(E ‖RδARδ‖p)1/p ≤ ε. (3.1)

The number m satisfies the bound

m ≤ (0.01ε)−2(1+γ)/γ .
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An example of Bourgain and Tzafriri shows that the number γ cannot be removed from the
bound (log n)−(1+γ) on the matrix entries [BT91, Ex. 2.2]. Fix δ ∈ (0, 1). For each n ≥ N(δ), they
exhibit an n × n matrix A with unit norm and bounded entries:

|ajk| ≤
2 log(1/δ)

log n
.

For this matrix, E ‖RδARδ‖ ≥ 1/2. In particular, it has no constant-size random paving when ε
is small.

Proof of Theorem 2 from Theorem 5. Fix γ and ε. Let m be the integer guaranteed by Theorem
5, and assume that n is sufficiently large. Suppose we are given an n × n matrix with unit norm
and uniformly bounded entries. If necessary, augment the matrix with zero rows and columns so
that its dimension is a multiple of m.

Apply Proposition 4 to transfer the estimate (3.1) to the dependent coordinate model. The
Random Paving Principle shows that the augmented matrix has an (m, 6ε)-paving. Discard the
zero rows and columns to complete the proof of Theorem 2. �

4. Proof of Theorem 5

In this section, we establish Theorem 5. The proofs of the supporting results are postponed to
the subsequent sections.

Fix γ > 0 and ε ∈ (0, 1). We assume for convenience that n ≥ 8, and we suppose that A is an
n × n matrix with unit norm and uniformly bounded entries:

|ajk| ≤
1

(log n)1+γ

def

= µ.

In the sequel, the symbol µ always abbreviates the uniform bound. Finally, set p = 2 · ⌈log n⌉.
The major task in the proof is to obtain an estimate for the quantity

E(̺)
def

= (E ‖R̺AR̺‖p)1/p ,

where ̺ is not too small. This estimate is accomplished with decoupling, symmetrization, and
noncommutative Khintchine inequalities. This approach is adapted from work of Rudelson [Rud99]
and Rudelson–Vershynin [RV07]. Given this estimate for E(̺), we extrapolate the value of E(m−1)
for a large constant m = m(γ, ε). This step relies on an elegant method due to Bourgain and
Tzafriri.

Before continuing, we instate a few more pieces of notation. The symbol ‖·‖1,2 denotes the

norm of an operator mapping ℓn
1 to ℓn

2 . For a matrix X expressed in the standard basis, ‖X‖1,2

is the maximum ℓn
2 norm achieved by a column of X. The norm ‖X‖max calculates the maximum

absolute value of an entry of X.

4.1. Step 1: Decoupling. As in Bourgain and Tzafriri’s work, the first step involves a classical
decoupling argument. First, we must remove the diagonal of the matrix. Since the entries of A do
not exceed µ, it follows that ‖diag A‖ ≤ µ. Define

B =
1

1 + µ
(A − diag A).

Note that B has a zero diagonal and that ‖B‖ ≤ 1. Furthermore,

|bjk| < µ for j, k = 1, 2, . . . , n.

With this definition,

E(̺) ≤ ‖diag A‖ + (1 + µ) (E ‖R̺BR̺‖p)1/p .

The expectation on the right-hand side cannot exceed one, so we have

E(̺) ≤ 2µ + (E ‖R̺BR̺‖p)1/p .
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Now, we may replace the projector R̺ by a pair of independent projectors by invoking the following
result.

Proposition 6. Let B be a square matrix with a zero diagonal, and let p ≥ 1. Then

(E ‖R̺BR̺‖p)1/p ≤ 20
(

E

∥

∥R̺BR
′
̺

∥

∥

p
)1/p

where the two random projectors on the right-hand side are independent.

See [BT87, Prop. 1.1] or [LT91, Sec. 4.4] for the simple proof.
We apply Proposition 6 to reach

E(̺) ≤ 2µ + 20
(

E

∥

∥R̺BR
′
̺

∥

∥

p
)1/p

. (4.1)

4.2. Step 2: Norm of a Random Restriction. The next step of the proof is to develop a bound
on the spectral norm of a matrix that has been restricted to a random subset of its columns. The
following result is due to Rudelson and Vershynin [RV07], with some inessential modifications by
the author.

Proposition 7 (Rudelson–Vershynin). Let X be an n×n matrix, and suppose that p ≥ 2 log n ≥ 2.
Then

(E ‖XR̺‖p)1/p ≤ 3
√

p
(

E ‖XR̺‖p
1,2

)1/p
+

√
̺ ‖X‖ .

The proof of Proposition 7 depends on a lemma of Rudelson that bounds the norm of a
Rademacher sum of rank-one, self-adjoint matrices [Rud99]. This lemma, in turn, hinges on the
noncommutative Khintchine inequality [LP86, Buc01]. See Section 5 for the details.

To account for the influence of R′
̺, we apply Proposition 7 with X = R̺B. Inequality (4.1)

becomes

E(̺) ≤ 2µ + 60
√

p
(

E
∥

∥R̺BR
′
̺

∥

∥

p

1,2

)1/p
+ 20

√
̺ (E ‖R̺B‖p)1/p .

We invoke Proposition 7 again with X = B∗ to reach

E(̺) ≤ 2µ + 60
√

p
(

E

∥

∥R̺BR
′
̺

∥

∥

p

1,2

)1/p
+ 60

√
̺p

(

E ‖B∗
R̺‖p

1,2

)1/p
+ 20̺ ‖B∗‖ .

Discard the projector R′
̺ from the first expectation by means of the observation

∥

∥R̺BR
′
̺

∥

∥

1,2
≤ ‖R̺B‖1,2 .

In words, the maximum column norm of a matrix exceeds the maximum column norm of any
submatrix. We also have the bound

‖B∗
R̺‖1,2 ≤ ‖B∗‖1,2 ≤ ‖B∗‖ ≤ 1

because the spectral norm dominates the maximum ℓn
2 norm of a column. The inequality ̺ ≤ √

̺
yields

E(̺) ≤ 2µ + 60
√

p
(

E ‖R̺B‖p
1,2

)1/p
+ 80

√
̺p. (4.2)

4.3. Step 3: Estimate of Maximum Column Norm. To complete our estimate of E(̺), we
must bound the remaining expectation. The following result does the job.

Proposition 8. Let X be an n × n matrix, and suppose that p ≥ 2 log n ≥ 4. Then

(

E ‖R̺X‖p
1,2

)1/p
≤ 3

√
p ‖X‖max +

√
̺ ‖X‖1,2 .
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The proof of Proposition 8 uses only classical methods, including symmetrization and scalar
Khintchine inequalities. A related bound appears inside the proof of Proposition 2.5 in [BT91].
Turn to Section 6 for the argument.

Apply Proposition 8 to the remaining expectation in (4.2) to find that

E(̺) ≤ 2µ + 180p ‖B‖max + 60
√

̺p ‖B‖1,2 + 80
√

̺p.

As above, the maximum column norm ‖B‖1,2 ≤ 1. The entries of B are uniformly bounded by µ.

Recall p = 2 · ⌈log n⌉ to conclude that

E(̺) ≤ 550µ log n + 250
√

̺ log n, (4.3)

taking into account ⌈log n⌉ ≤ 1.5 log n whenever n ≥ 8.
The result in (4.3) is not quite strong enough to establish Theorem 5. In the theorem, the relation

between the size m of the paving and the proportion δ of columns is δ = 1/m. The parameter
̺ also represents the proportion of columns selected. Unfortunately, when we set ̺ = 1/m, we
find that the bound in (4.3) is trivial unless ̺ is smaller than c/ log n, which suggests that m
grows logarithmically with n. To prove the result, however, we must obtain a bound for m that is
independent of dimension.

4.4. Step 4: Extrapolation. To finish the argument, we require a remarkable fact uncovered by
Bourgain and Tzafriri in their work. Roughly speaking, the value of E(̺)p is comparable with a
polynomial of low degree. It is possible to use the inequality (4.3) to estimate the coefficients of
this polynomial. We can then extrapolate to obtain a nontrivial estimate of E(δ)p, where δ is a
small constant.

Proposition 9 (Bourgain–Tzafriri). Let X be an n × n matrix with ‖X‖ ≤ 1. Suppose that p is

an even integer with p ≥ 2 log n. Choose parameters δ ∈ (0, 1) and ̺ ∈ (0, 0.5). For each λ ∈ (0, 1),
it holds that

(E ‖RδXRδ‖p)1/p ≤ 60
[

δλ + ̺−λ (E ‖R̺XR̺‖p)1/p
]

.

The proof depends essentially on a result of V. A. Markov that bounds the coefficients of a
polynomial in terms of its maximum value. See Section 7 for the details.

Recall now that

µ ≤ 1

(log n)1+γ
.

Set the proportion ̺ = (log n)−1−2γ , and introduce these quantities into (4.3) to obtain

(E ‖R̺AR̺‖p)1/p ≤ 800(log n)−γ .

Proposition 9 shows that

(E ‖RδARδ‖p)1/p ≤ 60δλ + 48000(log n)λ(1+2γ)−γ

for every value of λ in (0, 1). Make the selection λ = γ/(2 + 2γ). Since the exponent on the
logarithm is strictly negative, it follows for sufficiently large n that

(E ‖RδARδ‖p)1/p ≤ 100 δγ/(2+2γ) .

To make the right-hand side less than a parameter ε, it suffices that δ ≤ (0.01ε)2(1+γ)/γ . Therefore,
any value

m ≥ (0.01ε)−2(1+γ)/γ

is enough to establish Theorem 5.
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5. Proof of Random Restriction Estimate

In this section, we establish Proposition 7. The difficult part of the estimation is performed with
the noncommutative Khintchine inequality. This result was originally discovered by Lust-Picquard
[LP86]. We require a sharp version due to Buchholz [Buc01] that provides the optimal order of
growth in the constant.

Before continuing, we state a few definitions. Given a matrix X, let σ(X) denote the vector of
its singular values, listed in weakly decreasing order. The Schatten p-norm ‖·‖Sp

is calculated as

‖X‖Sp
= ‖σ‖p

where ‖·‖p denotes the ℓp vector norm.
A Rademacher random variable takes the two values ±1 with equal probability. A Rademacher

sequence is a sequence of independent Rademacher variables.

Proposition 10 (Noncommutative Khintchine Inequality). Let {Xj} be a finite sequence of ma-

trices of the same dimension, and let {εj} be a Rademacher sequence. For each p ≥ 2,
[

E

∥

∥

∥

∑

j
εjXj

∥

∥

∥

p

Sp

]1/p

≤ Cp max

{

∥

∥

∥

∥

(

∑

j
XjX

∗
j

)1/2
∥

∥

∥

∥

Sp

,

∥

∥

∥

∥

(

∑

j
X

∗
j Xj

)1/2
∥

∥

∥

∥

Sp

}

, (5.1)

where Cp ≤ 2−0.25
√

π/e
√

p.

This proposition is a corollary of Theorem 5 of [Buc01]. In this work, Buchholz shows that the
noncommutative Khintchine inequality holds with a Gaussian sequence in place of the Rademacher
sequence. He computes the optimal constant when p is an even integer:

C2n =

(

(2n)!

2nn!

)1/2n

.

One extends this result to other values of p using Stirling’s approximation and an interpolation
argument. The inequality for Rademacher variables follows from the contraction principle.

In an important paper [Rud99], Rudelson showed how to use the noncommutative Khintchine
inequality to study the moments of a Rademacher sum of rank-one matrices.

Lemma 11 (Rudelson). Suppose that x1,x2, . . . ,xn are the columns of a matrix X. For any

p ≥ 2 log n, it holds that
(

E

∥

∥

∥

∑n

j=1
εjxjx

∗
j

∥

∥

∥

p)1/p
≤ 1.5

√
p ‖X‖1,2 ‖X‖ ,

where {εj} is a Rademacher sequence.

Proof. First, bound the spectral norm by the Schatten p-norm.

E
def

=
(

E

∥

∥

∥

∑n

j=1
εjxjx

∗
j

∥

∥

∥

p)1/p
≤

(

E

∥

∥

∥

∑n

j=1
εjxjx

∗
j

∥

∥

∥

p

Sp

)1/p

.

Apply the noncommutative Khintchine inequality to obtain

E ≤ Cp

∥

∥

∥

∥

(

∑n

j=1
‖xj‖2

2 xjx
∗
j

)1/2
∥

∥

∥

∥

Sp

.

The rank of matrix inside the norm does not exceed n, so we can bound the Schatten p-norm by
the spectral norm if we pay a factor of n1/p, which does not exceed

√
e. Afterward, pull the square

root out of the norm to find

E ≤ Cp

√
e
∥

∥

∥

∑n

j=1
‖xj‖2

2 xjx
∗
j

∥

∥

∥

1/2
.
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The summands are positive semidefinite, so the spectral norm of the sum increases monotonically
with each scalar coefficient. Therefore, we may replace each coefficient by maxj ‖xj‖2

2 and use the
homogeneity of the norm to obtain

E ≤ Cp

√
e maxj ‖xj‖2

∥

∥

∥

∑n

j=1
xjx

∗
j

∥

∥

∥

1/2
.

The maximum can be rewritten as ‖X‖1,2, and the spectral norm can be expressed as
∥

∥

∥

∑n

j=1
xjx

∗
j

∥

∥

∥

1/2
= ‖XX

∗‖1/2 = ‖X‖ .

Recall that Cp ≤ 2−0.25
√

π/e
√

p to complete the proof. �

Recently, Rudelson and Vershynin showed how Lemma 11 implies a bound on the moments of
the norm of a matrix that is compressed to a random subset of columns [RV07].

Proposition 12 (Rudelson–Vershynin). Let X be a matrix with n columns, and suppose that

p ≥ 2 log n ≥ 2. It holds that

(E ‖XR̺‖p)1/p ≤ 3
√

p
(

E ‖XR̺‖p
1,2

)1/p
+

√
̺ ‖X‖ .

In words, a random compression of a matrix gets its share of the spectral norm plus another
component that depends on the total number of columns and on the ℓn

2 norms of the columns.

Proof. Let us begin with an overview of the proof. First, we express the random compression as a
random sum. Then we symmetrize the sum and apply Rudelson’s lemma to obtain an upper bound
involving the value we are trying to estimate. Finally, we solve an algebraic relation to obtain an
explicit estimate for the moment.

We seek a bound for
E

def

= (E ‖XR̺‖p)1/p .

First, observe that

E2 =
(

E ‖XR̺X
∗‖p/2

)2/p
=

(

E

∥

∥

∥

∑n

j=1
̺jxjx

∗
j

∥

∥

∥

p/2
)2/p

where {̺j} is a sequence of independent 0–1 random variables with common mean ̺. Subtract the
mean, and apply the triangle inequality (once for the spectral norm and once for the Lp/2 norm):

E2 ≤
(

E

∥

∥

∥

∑n

j=1
(̺j − ̺)xjx

∗
j

∥

∥

∥

p/2
)2/p

+ ̺
∥

∥

∥

∑n

j=1
xjx

∗
j

∥

∥

∥
.

In the sum, write ̺ = E ̺′j where {̺′j} is an independent copy of the sequence {̺j}. Draw the
expectation out of the norm with Jensen’s inequality:

E2 ≤
(

E

∥

∥

∥

∑n

j=1
(̺j − ̺′j)xjx

∗
j

∥

∥

∥

p/2
)2/p

+ ̺ ‖XX
∗‖ .

The random variables (̺j − ̺′j) are symmetric and independent, so we may symmetrize them using

the standard method, Lemma 6.1 of [LT91].

E2 ≤
(

E

∥

∥

∥

∑n

j=1
εj(̺j − ̺′j)xjx

∗
j

∥

∥

∥

p/2
)2/p

+ ̺ ‖X‖2

where {εj} is a Rademacher sequence. Apply the triangle inequality again and use the identical
distribution of the sequences to obtain

E2 ≤ 2

(

E

∥

∥

∥

∑n

j=1
εj̺jxjx

∗
j

∥

∥

∥

p/2
)2/p

+ ̺ ‖X‖2
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Writing Ω = {j : ̺j = 1}, we see that

E2 ≤ 2

[

EΩ

(

Eε

∥

∥

∥

∑

Ω
εjxjx

∗
j

∥

∥

∥

p/2
)(2/p)(p/2)

]2/p

+ ̺ ‖X‖2 .

Here, Eε is the partial expectation with respect to {εj}, holding the other random variables fixed.
To estimate the large parenthesis, invoke Rudelson’s Lemma, conditional on Ω. The matrix in

the statement of the lemma is XR̺, resulting in

E2 ≤ 3
√

p

[

E

(

‖XR̺‖1,2 ‖XR̺‖
)p/2

]2/p

+ ̺ ‖X‖2 .

Apply the Cauchy–Schwarz inequality to find that

E2 ≤ 3
√

p
(

E ‖XR̺‖p
1,2

)1/p
(E ‖XR̺‖p)1/p + ̺ ‖X‖2 .

This inequality takes the form E2 ≤ bE + c. Select the larger root of the quadratic and use the
subadditivity of the square root:

E ≤ b +
√

b2 + 4c

2
≤ b +

√
c.

This yields the conclusion. �

6. Proof of Maximum Column Norm Estimate

This section establishes the moment bound for the maximum column norm of a matrix that
has been restricted to a random set of its rows. We use an approach that is analogous with the
argument in Proposition 12. In this case, we require only the scalar Khintchine inequality to
perform the estimation. Bourgain and Tzafriri’s proof of Proposition 2.5 [BT91] contains a similar
bound, developed with a similar argument.

Proposition 13. Assume that X has n columns, and suppose p ≥ 2 log n ≥ 4. Then

(

E ‖R̺X‖p
1,2

)1/p
≤ 21.5√p ‖X‖max +

√
̺ ‖X‖1,2 .

In words, the B(ℓn
1 , ℓn

2 ) norm of a matrix that has been compressed to a random set of rows gets
its share of the total, plus an additional component that depends on the number of columns and
the magnitude of the largest entry in matrix.

Proof. Our strategy is the same as in the proof of Proposition 12, so we pass lightly over the
details. Let {̺j} be a sequence of independent 0–1 random variables with common mean ̺. We
seek a bound for

E2 def

=
(

E ‖R̺X‖p
1,2

)2/p
=

(

Emaxk=1,2,...,n

∣

∣

∣

∑

j
̺j |xjk|2

∣

∣

∣

p/2
)2/p

.

In the sequel, we abbreviate q = p/2 and also yjk = |xjk|2.
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First, center and symmetrize the selectors. In the following calculation, {̺′j} is an independent

copy of the sequence {̺j}, and {εj} is a Rademacher sequence, independent of everything else.

E2 ≤
(

E maxk

∣

∣

∣

∑

j
(̺j − ̺)yjk

∣

∣

∣

q)1/q
+ ̺maxk

∣

∣

∣

∑

j
yjk

∣

∣

∣

≤
(

E maxk

∣

∣

∣

∑

j
(̺j − ̺′j)yjk

∣

∣

∣

q)1/q
+ ̺ ‖X‖2

1,2

=
(

E maxk

∣

∣

∣

∑

j
εj(̺j − ̺′j)yjk

∣

∣

∣

q)1/q
+ ̺ ‖X‖2

1,2

≤ 2
(

E maxk

∣

∣

∣

∑

j
εj̺jyjk

∣

∣

∣

q)1/q
+ ̺ ‖X‖2

1,2 .

The first step uses the triangle inequality; the second uses ̺ = E ̺′j and Jensen’s inequality; the

third follows from the standard symmetrization, Lemma 6.1 of [LT91]. In the last step, we invoked
the triangle inequality and the identical distribution of the two sequences.

Next, bound the maximum by a sum and introduce conditional expectations:

E2 ≤ 2
(

E̺

∑

k
Eε

∣

∣

∣

∑

j
εj̺jyjk

∣

∣

∣

q)1/q
+ ̺ ‖X‖2

1,2 .

Here, Eε denotes partial expectation with respect to {εj}, holding the other random variables fixed.
Since q ≥ 2, we may apply the scalar Khintchine inequality to the inner expectation to obtain

E2 ≤ 2Cq

(

E̺

∑

k

∣

∣

∣

∑

j
̺jy

2
jk

∣

∣

∣

q/2
)1/q

+ ̺ ‖X‖2
1,2 ,

where the constant Cq ≤ 20.25e−1/2√q. The value of the constant follows from work of Haagerup
[Haa82], combined with Stirling’s approximation.

Bound the outer sum, which ranges over n indices, by a maximum:

E2 ≤ 21.25e−1/2n1/q√q

(

E̺ maxk

∣

∣

∣

∑

j
̺jy

2
jk

∣

∣

∣

q/2
)1/q

+ ̺ ‖X‖2
1,2 .

Since q ≥ log n, it holds that n1/q ≤ e, which implies that the leading constant is less than four.
Use Hölder’s inequality to bound the sum, and then apply Hölder’s inequality again to double the
exponent:

E2 < 4
√

q

(

max
j,k

yjk

)1/2 (

E̺ maxk

∣

∣

∣

∑

j
̺jyjk

∣

∣

∣

q/2
)1/q

+ ̺ ‖X‖2
1,2

≤ 4
√

q

(

max
j,k

yjk

)1/2(

E̺ maxk

∣

∣

∣

∑

j
̺jyjk

∣

∣

∣

q
)1/2q

+ ̺ ‖X‖2
1,2 .

Recall that q = p/2 and that yjk = |xjk|2. Observe that we have obtained a copy of E on the
right-hand side, so

E2 ≤ 21.5√p ‖X‖max E + ̺ ‖X‖2
1,2 .

As in the proof of Proposition 12, we take the larger root of the quadratic and invoke the
subadditivity of the square root to reach

E ≤ 21.5√p ‖X‖max +
√

̺ ‖X‖1,2 .

This is the advertised conclusion. �
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7. Proof of Extrapolation Bound

This section summarizes the argument of Bourgain and Tzafriri that leads to the extrapolation
result. The key to the proof is an observation due to V. A. Markov that estimates the coefficients
of an arbitrary polynomial in terms of its maximum value [Tim63, Sec. 2.9].

Proposition 14 (Markov). Let r(t) =
∑d

k=0 ckt
k. The coefficients of the polynomial r satisfy the

inequality

|ck| ≤
dk

k!
max
|t|≤1

|r(t)| ≤ ed max
|t|≤1

|r(t)| .

for each k = 0, 1, . . . , d.

The proof depends on the minimax property of the Chebyshev polynomial of degree d, combined
with a careful determination of its coefficients.

Proposition 15 (Bourgain–Tzafriri). Let p be an even integer with p ≥ 2 log n. Suppose that X is

an n × n matrix with ‖X‖ ≤ 1. Choose parameters δ ∈ (0, 1) and ̺ ∈ (0, 0.5). For each λ ∈ (0, 1),
it holds that

(E ‖RδXRδ‖p)1/p ≤ 60
[

δλ + ̺−λ (E ‖R̺XR̺‖p)1/p
]

.

For self-adjoint matrices, the constant is halved.

Proof. We assume that X is self-adjoint. For general X, apply the final bound to each half of the
Cartesian decomposition

X =
X + X∗

2
+

i(X − X∗)

2i
.

This yields the same result with constants doubled.
Consider the function

F (s) = E ‖RsXRs‖p with 0 ≤ s ≤ 1.

Note that F (s) ≤ 1 because ‖RsXRs‖ ≤ ‖X‖ ≤ 1. Furthermore, F increases monotonically.
Next, we show that F is comparable with a polynomial. Use the facts that p is even, that

p ≥ log n, and that rankX ≤ n to check the inequalities

F (s) ≤ E trace(RsXRs)
p ≤ epF (s).

It is easy to see that the central member is a polynomial of maximum degree p in the variable s.
Indeed, one may expand the product and compute the expectation using the fact that the diagonal
entries of Rs are independent 0–1 random variables of mean s. Therefore,

E trace(RsXRs)
p =

p
∑

k=1

cks
k

for (unknown) coefficients c1, c2, . . . , cp. The polynomial has no constant term because R0 = 0.
We must develop some information about this polynomial. Make the change of variables s = ̺t2

to see that
∣

∣

∣

∑p

k=1
ck̺

kt2k
∣

∣

∣
≤ epF (̺t2) ≤ epF (̺) when |t| ≤ 1.

The second inequality follows from the monotonicity of F . The polynomial on the left-hand side
has degree 2p in the variable t, so Proposition 14 results in

|ck| ̺k ≤ e3pF (̺). for k = 1, 2, . . . , p.

From here, it also follows that |ck| ≤ e3p by taking ̺ = 1.
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Finally, we directly evaluate the polynomial at δ using the facts we have uncovered. For an
arbitrary value of λ in (0, 1), we have

F (δ) ≤
∣

∣

∣

∣

∑d

k=1
ckδ

k

∣

∣

∣

∣

≤
∑⌊λp⌋

k=1
|ck| +

∑p

k=1+⌊λp⌋
|ck| δk

≤ e3pF (̺)

⌊λp⌋
∑

k=1

̺−k + pe3pδλp

≤ 2e3p̺−λpF (̺) + pe3pδλp

since ̺ ≤ 0.5. Since x 7→ x1/p is subadditive, we conclude that

F (δ)1/p ≤ 21/pe3 · ̺−λF (̺)1/p + p1/pe3 · δλ.

A numerical calculation shows that both the leading terms are less than 30, irrespective of p. �
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