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Abstract

A tutorial introduction to the complex structured singular value (µ) is presented, with
an emphasis on the mathematical aspects of µ. The µ-based methods discussed here have
been useful for analyzing the performance and robustness properties of linear feedback sys-
tems. Several tests for robust stability and performance with computable bounds for transfer
functions and their state-space realizations are compared, and a simple synthesis problem is
studied. Uncertain systems are represented using Linear Fractional Transformations (LFTs)
which naturally unify the frequency-domain and state-space methods.

Subtitle: A tutorial introduction to the complex structured singular value (µ) is presented, with

an emphasis on computable bounds and robust stability and performance tests for transfer

functions and their state-space realizations.

Keywords: Computational methods, Control system analysis, Disturbance rejection, Frequency

domain, Matrix algebra, Multivariable control systems, Performance bounds, Robust con-

trol, Sensitivity analysis, State-space methods.

1 Introduction

This paper gives a fairly complete introduction to the Structured Singular Value (µ) for complex

perturbations. This paper is intended to be of tutorial value on the mathematical aspects of µ,

and it is assumed that the reader is familiar with the control engineering motivation. The µ-based

methods discussed here have been useful for analyzing the performance and robustness properties

of linear feedback systems. The more elementary methods are now available in commercial

software products and the manual (Balas, Doyle, et al, 1991) for one such product would serve as

a tutorial introduction to the engineering motivation. The interested reader might also consult
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the tutorial in (Stein and Doyle, 1991) or other application-oriented papers, such as (Skogestad,

Morari, et al 1988). We present very few new results in this paper, although many of the results

have appeared only in reports and conference proceedings. The paper is reasonably self-contained,

skipping only those proofs which are readily available in the literature.

Section 3 begins with the definition of µ and some of its elementary properties, including simple

bounds that form the basis for computational schemes. This section also introduces the rela-

tionship between the upper bound for µ and Linear Matrix Inequalities (LMIs), which results in

a simple characterization of the convexity properties of the upper bound. The connections be-

tween µ and Linear Fractional Transformations are introduced in Section 4. These connections,

especially the Main Loop Theorem, form the basis for most of the applications of µ to linear

systems. In Section 5, using the definition of µ, and the Main Loop theorem, robust stability

and robust performance theorems are derived for linear systems with structured linear fractional

uncertainty.

Section 6 covers a maximum-modulus theorem for linear fractional transformations. Section 7

presents a generalization of the standard power algorithms for computing the spectral radius or

maximum singular value of a matrix to the computation of µ. This power algorithm provides an

attractive method for computing lower bounds for µ. Sections 8 and 9 considers issues associated

with the upper bound, focusing particularly on conditions under which the upper bound is equal

to µ. For certain simple block structures, this equality is guaranteed.

The remainder of the paper discusses applications of µ to problems motivated by control systems.

Section 10 considers how various µ problems can be viewed in transfer function and state-space

formulations. This leads to a variety of tests for robust performance, each with an interesting and

useful interpretation. In Section 11, many (computable) necessary and sufficient conditions for

quadratic stability of uncertain systems are given, for a wide variety of uncertainty structures.

The proof techniques used in each different case are identical, giving a unifying treatment of

many known and new results.

Section 12 considers a simple special case of µ-synthesis, the problem of minimizing µ as a function

of some free parameter, such as a controller. Not surprisingly, µ-synthesis is a much harder

problem than µ-analysis. For example, unlike µ-analysis problems, no method for minimizing

the upper bound for µ in the synthesis problem using convex optimization has been found.

Finally, the paper outlines some related work in Section 13, beginning with a brief history of the

early development of the µ theory. This outline is not intended to be exhaustive or complete, but

simply to touch on a few of the topics nearest to this paper that were not considered in detail.

LMIs are presented as potentially unifying theoretical and computational tools. The relationship

between µ and quadratic versus L1 notions of robust performance and robust stability is then

discussed, followed by µ with mixed real and complex perturbations. The section ends with a

discussion of model validation and generalizations of µ.
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2 Notation

The notation is standard. R denotes the set of real numbers; C denotes the set of complex

numbers; |·| is the absolute value of elements inR orC; Rn is the set of real n vectors; Cn is the set

of complex n vectors; ‖v‖ is the Euclidean norm for v ∈ Cn, ‖v‖2 :=∑n
i=1 |vi|2; ln2 denotes the set

of square summable sequences in Cn; ‖e‖2 is the l2 norm of sequence e ∈ ln2 , ‖e‖22 :=
∑∞
k=1 ‖ek‖2;

Rn×m is the set of n ×m real matrices; Cn×m is the set of n ×m complex matrices; Hn is the

set of Hermitian n × n complex matrices; In is a n × n identity matrix; and 0n or 0n×m is an

entirely zero matrix of obvious dimensions. For M ∈ Cn×m: MT is the transpose of M ; M ∗ is

the complex-conjugate transpose of M ; σ(M) is the minimum singular value of M ; σi(M) is a

singular value of M ; σ̄ (M) is the maximum singular value of M . For M ∈ Cn×n: λi (M) is an

eigenvalue of M ; ρ(M) is the spectral radius of M,ρ (M) := max
i
|λi(M)|; tr(M) is the trace of

M , tr(M) :=
∑n
i=1Mii. If M ∈ Cn×n satisfies M = M∗ then M > 0 denotes that M is positive

definite, and M
1
2 denotes the unique positive definite Hermitian square root.

3 Structured Singular Value

This section is devoted to defining the structured singular value, a matrix function denoted by

µ (·). We consider matrices M ∈ Cn×n. In the definition of µ (M), there is an underlying

structure ∆, (a prescribed set of block diagonal matrices) on which everything in the sequel

depends. This structure may be defined differently for each problem depending on the uncer-

tainty and performance objectives of the problem. Defining the structure involves specifying

three things: the total number of blocks, the type of each block, and their dimensions.

In this paper, we consider two types of blocks—repeated scalar and full blocks. Two non-

negative integers, S and F , denote the number of repeated scalar blocks and the number of

full blocks, respectively. To bookkeep the block dimensions, we introduce positive integers

r1, . . . , rS ; m1, . . . ,mF . The i’th repeated scalar block is ri × ri, while the j’th full block is

mj ×mj . With those integers given, define ∆ ⊂ Cn×n as

∆ =
{

diag [δ1Ir1 , . . . , δSIrS ,∆S+1, . . . ,∆S+F ] : δi ∈ C,∆S+j ∈ Cmj×mj , 1 ≤ i ≤ S, 1 ≤ j ≤ F}

(3.1)

For consistency among all the dimensions, we must have
∑S
i=1 ri +

∑F
j=1mj = n. Often, we will

need norm bounded subsets of ∆, and we introduce the notation

B∆ = {∆ ∈∆ : σ̄ (∆) ≤ 1} (3.2)

Note that in (3.1) all of the repeated scalar blocks appear first and the full blocks are square.

This is done to keep the notation as simple as possible and can easily be relaxed.

Definition 3.1 For M ∈ Cn×n,µ∆(M) is defined

µ∆(M) :=
1

min {σ̄ (∆) : ∆ ∈∆, det (I −M∆) = 0} (3.3)

unless no ∆ ∈∆ makes I −M∆ singular, in which case µ∆(M) := 0.
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Remark 3.2 The set ∆ defines a multi-index of integers and vice versa, so it makes sense to

identify as one object the set, the block structure, and the associated multi-index of integers and

refer simply to a block structure ∆. Clearly, µ∆(M) depends on the block structure ∆ as well

as the matrix M .

Remark 3.3 Without loss in generality, the full blocks in the minimal norm ∆ can each be

chosen to be dyads (rank = 1). To see this, first consider the case of only 1 full block, ∆ = Cn×n.
Suppose that I −M∆ is singular. Then for some unit-norm vector x ∈ Cn, M∆x = x. Define

y := ∆x. It follows that y 6= 0, and ‖y‖ ≤ σ̄ (∆). Hence, define a new perturbation, ∆̃ ∈ Cn×n

as

∆̃ := yx∗

Note that σ̄
(

∆̃
)

= ‖y‖ ≤ σ̄ (∆), and y = ∆̃x, so that I −M∆̃ is also singular. Repeating this

on a block-by-block basis allows for each full block to be a dyad.

Remark 3.4 It is instructive to consider a “feedback” interpretation of µ∆(M) at this point.

Let M ∈ Cn×n be given, and consider the loop shown in Figure 1. This picture is meant to

represent the loop equations u = Mv, v = ∆u. As long as I −M∆ is nonsingular, the only

solutions u, v to the loop equations are u = v = 0. However, if I −M∆ is singular, then there

are infinitely many solutions to the equations, and the norms ‖u‖, ‖v‖ of the solutions can be

arbitrarily large. Motivated by connections with stability of systems, which will be explored

in detail in the sequel, we call this constant matrix feedback system “unstable”. Likewise, the

term “stable” will describe the situation when the only solutions are identically zero. In this

context then, µ∆(M) provides a measure of the smallest structured ∆ that causes “instability”

of the constant matrix feedback loop in figure 1. The norm of this “destabilizing” ∆ is exactly

1/µ∆(M).

Remark 3.5 It is immediate from the definition that for any α ∈ C, µ (αM) = |α|µ (M).

However, for all nontrivial block structures, the function µ :Cn×n→R is not a norm, since it

doesn’t satisfy the triangle inequality.

Remark 3.6 A natural question is why we work with µ and not 1/µ, especially in view of

equation 3.3 in the definition of µ. While it’s clearly a matter of taste, there are important

reasons. Mathematically, µ is continuous and bounded and scales as indicated above. Perhaps

more importantly, it connects more naturally with LFTs and generalizes the spectral radius and

maximum singular value, as will be seen below.

An alternative expression for µ∆(M) follows easily from the definition.

Lemma 3.7 µ∆(M) = max
∆∈B∆

ρ (∆M)

Proof: Since for any α ∈ C, µ∆(αM) = |α|µ∆(M), we need only consider two cases: µ∆(M) =

1 iff max
∆∈B∆

ρ (∆M) = 1 and µ∆(M) = 0 iff max
∆∈B∆

ρ (∆M) = 0. These facts can be verified

directly from the definition. ]
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This lemma implies continuity of the function µ :Cn×n→R based on continuity of the spectral

radius and max functions, and the compactness of B∆.

We can relate µ∆(M) to familiar linear algebra quantities when ∆ is one of two extreme sets:

• If ∆ = {δI : δ ∈ C} (S=1, F =0, r1=n), then µ∆(M) = ρ (M), the spectral radius of M .

Proof: This follows immediately from Lemma 3.7. ]

• If ∆ = Cn×n (S=0, F =1,m1=n), then µ∆(M) = σ̄ (M)

Proof: If σ̄ (∆) < 1
σ̄(M) , then σ̄ (M∆) < 1, so I −M∆ is nonsingular. Applying equation

(3.3) implies µ∆(M) ≤ σ̄ (M). On the other hand, let u and v be unit vectors

satisfying Mv = σ̄ (M)u, and define ∆ := 1
σ̄(M)vu

∗. Then σ̄ (∆) = 1
σ̄(M) and I −M∆

is obviously singular. Hence, µ∆(M) ≥ σ̄ (M). ]

Obviously, for a general ∆ as in (3.1) we must have {δIn : δ ∈ C} ⊂∆ ⊂ Cn×n. Hence directly

from the definition of µ, and the two special cases above, we conclude that

ρ (M) ≤ µ∆(M) ≤ σ̄ (M) (3.4)

These bounds by themselves may proved little information on the value of µ, because the gap

between ρ and σ̄ can be arbitrarily large. They are refined with transformations on M that do

not affect µ∆(M), but do affect ρ and σ̄. To do this, define two subsets of Cn×n

Q = {Q ∈∆ : Q∗Q = In} (3.5)

D =
{

diag [D1, . . . , DS , dS+1Im1 , . . . , dS+F ImF
] : Di ∈ Cri×ri , Di = D∗i > 0, dS+j ∈ R, dS+j > 0

}

(3.6)

The reasons for taking D positive will be clear shortly. Note that for any ∆ ∈ ∆, Q ∈ Q, and

D ∈ D,

Q∗ ∈ Q Q∆ ∈∆ ∆Q ∈∆ σ̄ (Q∆) = σ̄ (∆Q) = σ̄ (∆) (3.7)

D
1
2∆ = ∆D

1
2 (3.8)

Theorem 3.8 For all Q ∈ Q and D ∈ D

µ∆(MQ) = µ∆(QM) = µ∆(M) = µ∆
(

D
1
2MD−

1
2

)

(3.9)

Proof: For all D ∈ D and ∆ ∈∆,

det (I −M∆) = det
(

I −MD−
1
2∆D

1
2

)

= det
(

I −D 1
2MD−

1
2∆
)

since D commutes with ∆. Therefore µ∆(M) = µ∆
(

D
1
2MD−

1
2

)

. Also, for each Q ∈ Q,

det (I −M∆) = 0 if and only if det (I −MQQ∗∆) = 0. Since Q∗∆ =∆ and σ̄ (Q∗∆) =

σ̄ (∆), we get µ∆ (MQ) = µ∆(M) as desired. The argument for QM is the same. ]
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Therefore, the bounds in (3.4) can be tightened to

max
Q∈Q

ρ(QM) ≤ max
∆∈B∆

ρ (∆M) = µ∆(M) ≤ inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

(3.10)

where the equality comes from Lemma 3.7. Note that in computing the infimum, any one of

the diagonal entries of the elements of D can be assumed to be equal to 1. This is without

loss in generality, since for any nonzero scalar γ, D
1
2MD−

1
2 = (γD)

1
2 M (γD)−

1
2 . Hence, from

this point on, we assume that dS+F ≡ 1. Also, using the polar decomposition theorem for

invertible matrices, it is easy to see that restricting the elements of D to be Hermitian, positive

definite, as opposed to just invertible, does not affect the infimum. Certain convexity properties

make the upper bound computationally attractive. For block structures with S = 0, it is shown

by Safonov and Doyle, 1984, that by using an exponential parametrization of D, the function

σ̄
(

D
1
2MD−

1
2

)

is convex in log
(

D
1
2

)

. In (Sezginer and Overton, 1990) a very elegant and simple

proof shows that the function σ̄
(

eXMe−X
)

is convex on any convex set of commuting matrices

X. This generalizes the results in (Safonov and Doyle, 1984), and relies only on elementary linear

algebra. The simplest convexity property is given in the following theorem, which shows that

the function σ̄
(

D
1
2MD−

1
2

)

has convex level sets.

Theorem 3.9 Let M ∈ Cn×n be given, along with a scaling set D, and β > 0. Then

{

D ∈ D : σ̄
(

D
1
2MD−

1
2

)

< β
}

is convex.

Proof: The following chain of equivalences comprises the proof:

σ̄
(

D
1
2MD−

1
2

)

< β ⇔ λmax

(

D−
1
2M∗D

1
2D

1
2MD−

1
2

)

< β2

⇔ D−
1
2M∗D

1
2D

1
2MD−

1
2 − β2I < 0

⇔ M∗DM − β2D < 0

(3.11)

The latter is clearly a convex condition in D. ]

Remark 3.10 The final condition in equation (3.11) is called a Linear Matrix Inequality (LMI).

Note that although it is equivalent to the condition in Theorem 3.9, the functional dependence on

D is much simpler and makes the convexity property clearer. For these reasons, LMIs appear to

be attractive for computation. General linear matrix inequalities are discussed in greater detail

in Section 13.2

4 Linear Fractional Transformations and µ

The use of µ in control theory depends to a great extent on its intimate relationship with a class of

general linear feedback loops called Linear Fractional Transformations (LFTs). This section
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explores this relationship with some simple theorems that can be obtained almost immediately

from the definition of µ. To introduce these, consider a complex matrix M partitioned as

M =





M11 M12

M21 M22



 (4.1)

and suppose there is a defined block structure ∆2 which is compatible in size with M22 (for any

∆2 ∈∆2, M22∆2 is square). For ∆2 ∈∆2, consider the loop equations

e =M11d+M12w

z =M21d+M22w

w = ∆2z

(4.2)

which correspond to the block diagram in Figure 2.

Definition 4.1 Given complex matrices M and ∆2 as described above. This set of equations

(4.2) is called well posed if for any vector d, there exist unique vectors w, z, and e satisfying

the loop equations.

It is easy to see that the set of equations is well posed if and only if the inverse of I −M22∆2

exists. If this inverse does not exist, then depending on d and M , there is either no solution to

the loop equations, or there are an infinite number of solutions. When the inverse does exist, the

vectors e and d satisfy e = S (M,∆2) d, where

S (M,∆2) :=M11 +M12∆2(I −M22∆2)
−1M21 (4.3)

S (M,∆2) is called a Linear Fractional Transformation (LFT). If ∆1 is a block structure

compatible in dimension with M11, then for ∆1 ∈∆1 an analogous formula describes S (∆1,M),

S (∆1,M) :=M22 +M21∆1 (I −M11∆1)
−1M12

where the upper loop of M is closed with a matrix ∆1.

The S (M,∆2) and S (∆1,M) notation can be somewhat confusing on first encounter. It comes

from the “star-product” of Redheffer. Suppose that Q and M are complex matrices, partitioned

as

Q =





Q11 Q12

Q21 Q22



 , M =





M11 M12

M21 M22





with the matrix product Q22M11 well defined and square. If I −Q22M11 is invertible, then the

block diagram in Figure 3 is well-defined. We can extend the definition of S so that it equals the

result of this interconnection,




y1

y2



 = S (Q,M)





u1

u2





Simple manipulation gives

S (Q,M) :=





S (Q,M11) Q12 (I −M11Q22)
−1M12

M21 (I −Q22M11)
−1Q21 S (Q22,M)
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where S (Q,M11) and S (Q22,M) are defined as above. Note that this definition is dependent

on the partitioning of the matrices Q and M above; it may be well defined for one partition and

not well defined for another.

For clarity, the notation S (•, •) should have 2 additional arguments, specifying dimensions of the

partitions. However, in this paper, the only situations using S that will arise are LFTs, namely

1. the number of rows of Q is less than the number of columns of M , and the number of

columns of Q is smaller than the number of rows of M , or;

2. the number of columns of M is less than the number of rows of Q, and the number of rows

of M is smaller than the number of columns of Q,

and all inputs/outputs into the (dimensionally) smaller matrix are closed in the interconnecting

transformation. Hence, we do not need to specify the dimensions of the interconnecting channels,

since they are equal to the dimension of the smaller matrix.

Alternative notation for LFTs has been used in previous papers, most notably

S(M,∆2) = Fl(M,∆2), S(∆1,M) = Fu(M,∆1)

where l and u indicate that the lower and upper loop, respectively, are closed. We believe that

the S notation is more natural, easier to work with, and generalizes smoothly to S(M,Q) in

figure 3.

4.1 Examples of LFTs

Given the state space realization of a discrete time system





xk+1

yk



 =





A B

C D









xk

uk



 =M





xk

uk



 (4.4)

then its transfer matrix is

G(z) = D + C(zI −A)−1B = S(1
z
I,M)

Systems with uncertainty can also be easily represented using LFTs. One natural type of uncer-

tainty is unknown coefficients in a state space model. As a simple example, we will begin with a

familiar idealized mass/spring/damper system shown in Figure 4. Suppose m, c, and k are fixed

but uncertain, with m = m̄(1 + wmδm), c = c̄(1 + wcδc), k = k̄(1 + wkδk). Then defining x1 = y

and x2 = ẏ we can write the differential equation in state-space form as





ẋ

y



 = S(M,∆)





x

F



 ∆ = diag(δm, δc, δk)
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M =

















0 1 0 0 0 0
−k̄
m̄

−c̄
m̄

1
m̄
−wm −wc

m̄
−wk
m̄

1 0 0 0 0 0
−k̄
m̄

−c̄
m̄

1
m̄
−wm −wc

m̄
−wk
m̄

0 c̄ 0 0 0 0
k̄ 0 0 0 0 0

















More generally, the perturbed state-space system

xk+1 = A(δ)xk +B(δ)dk

ek = C(δ)xk +D(δ)dk

where δ is a vector of parameters that enter rationally can be written as an LFT on a diagonal

matrix ∆ made up of the elements of δ, possibly repeated. The form of the LFT is (Morton and

McAfoos, 1985)






xk+1

ek
zk






=







M11 M12 M13

M21 M22 M23

M31 M32 M33













xk
dk
wk







with perturbation wk = ∆zk yielding

[

xk+1

ek

]

= S (M,∆)

[

xk
dk

]

In general, for problems of this type it is easy to obtain realizations, but it is difficult to insure

that they are minimal, except in the case where the parameters enter linearly.

A fundamental property of LFTs that contributes to their importance in linear systems theory

is that interconnections of LFTs are again LFTs. For example, consider a situation with three

components, each with a LFT uncertainty model. The interconnection is shown in Figure 5.

By simply reorganizing the diagram, collecting all of the known systems together, and collecting

all of the perturbations (the ∆i’s) together, we end up with the diagram in Figure 6, where

P depends only on G1, G2, G3 and the diagram layout. Note how general uncertainty at the

component level becomes structured uncertainty at the system level. Additional information on

LFT’s and how they arise in engineering problems is found in (Doyle, Packard, et al, 1991).

4.2 The Main Loop Theorem

For notational ease, let Bi := {∆i ∈∆i : σ̄ (∆i) ≤ 1}. In this formulation, the matrix M11 =

S(M, 0) may be thought of as the nominal map and ∆2 ∈ B2 viewed as a norm bounded

perturbation from an allowable perturbation class, ∆2. The matrices M12,M21, and M22 and

the formula S(M, •) reflect prior knowledge on how the unknown perturbation affects the nominal

map,M11. This type of uncertainty, called linear fractional, is natural for many control problems,

and encompasses many other special cases considered by researchers in robust control and matrix

perturbation theory.
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The constant matrix problem to solve is: determine whether the LFT is well posed for all ∆2 in

B2 and, if so, then determine how “large” S (M,∆2) can get for ∆2 ∈ B2.

Define a third structure ∆ as

∆ :=

{[

∆1 0

0 ∆2

]

: ∆1 ∈∆1,∆2 ∈∆2
}

(4.5)

Now there are three structures with respect to which we may compute µ. The notation we use

to keep track is as follows: µ1 (·) is with respect to ∆1, µ2 (·) is with respect to ∆2, µ∆(·) is

with respect to ∆. In view of this, µ1 (M11), µ2 (M22) and µ∆(M) are all defined, though for

instance, µ1 (M) is not defined. The first theorem follows immediately from the definition of µ.

Theorem 4.2 The linear fractional transformation S (M,∆2) is well posed for all ∆2 ∈ B2 if
and only if µ2 (M22) < 1.

As the perturbation ∆2 deviates from zero, the matrix S (M,∆2) deviates from M11. The range

of values that µ1 (S (M,∆2)) takes on is intimately related to µ∆(M), as follows:

Theorem 4.3 (Main Loop theorem)

µ∆(M) < 1 ⇐⇒






µ2 (M22) < 1

max
∆2∈B2

µ1 (S (M,∆2)) < 1

Proof: First note that µ∆(M) < 1 implies that µ2 (M22) < 1, so we may assume the latter

and prove the equivalence of the two remaining conditions. Let ∆i ∈ ∆i be given, with

σ̄ (∆i) ≤ 1, and define ∆ = diag [∆1,∆2] so that ∆ ∈∆. Now

det (I −M∆) = det

[

I −M11∆1 −M12∆2

−M21∆1 I −M22∆2

]

(4.6)

By hypothesis I −M22∆2 is invertible, hence

det (I −M∆) = det (I −M22∆2) det
(

I −M11∆1 −M12∆2 (I −M22∆2)
−1M21∆1

)

.

Collecting the ∆1 terms leaves

det (I −M∆) = det (I −M22∆2) det (I − S (M,∆2)∆1) (4.7)

By the definition of µ, the left-hand side of (4.7) is nonzero for all ∆ ∈ B∆ iff µ∆(M) < 1.

Similarly, the right hand side is nonzero for all ∆ = diag [∆1,∆2] ∈ B∆ iff µ1 (S (M,∆2)) <

1 for all ∆2 ∈ B2. This completes the proof. ]

Remark 4.4 This theorem forms the basis for most uses of µ in linear system robustness anal-

ysis, whether from a state-space, frequency domain, or Lyapunov approach.
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Remark 4.5 This theorem is stated in terms of feasability conditions, testing whether some

quantity is less than 1. This allows for an elegant statement and proof, but other versions are

possible, with some complication in notation. Scaled versions of the Main Loop Theorem appear

later in this section.

Remark 4.6 The importance of the theorem can be highlighted by a slight restatement. Sup-

pose a property P, of a matrix W can be related to a µ test on the matrix. That is, there exists

some block structure ∆P such that

matrix W satisfies property P ⇔ µ∆P
(W ) < 1

Then the perturbed matrix S (M,∆) is well defined, and has the property P for every ∆ ∈ B∆
if and only if µ

∆̃
(M) < 1, where ∆̃ := {diag [∆P ,∆] : ∆P ∈∆P ,∆ ∈∆}. In other words,

whenever a property of a matrix can be related to a µ test, then there will be a µ test of greater

complexity to determine if the property is robust to structured perturbations in the form of

LFTs.

The role of the block structure ∆2 is clear in this theorem — it is the structure for the original

perturbation. However the role of the perturbation structure ∆1 is often misunderstood. Note

that µ1 (·) appears on the right hand side of the theorem, so that the set ∆1 defines what

function of the matrix S (M,∆2) is to be computed.

This theorem can be illustrated by a system-theoretic example with a transfer function and its

state-space realization. This example involves two of the simplest cases of LFTs. Suppose that

∆1 := {δ1In : δ1 ∈ C} and ∆2 = Cm×m, which are the special cases considered in Section 3.

Recall that for A ∈ Cn×n, µ1 (A) = ρ (A), and for D ∈ Cm×m, µ2 (D) = σ̄ (D). Now, let ∆ be

the diagonal augmentation ∆1 and ∆2, namely

∆ :=

{[

δ1In 0n×m
0m×n ∆2

]

: δ1 ∈ C,∆2 ∈ Cm×m
}

⊂ C(n+m)×(n+m)

Let A ∈ Cn×n, B ∈ Cn×m, C ∈ Cm×n, and D ∈ Cm×m, be given, and interpret them as the state

space model of a discrete time system

xk+1 = Axk +Buk
yk = Cxk +Duk

and let M ∈ C(n+m)×(n+m) be the block state space matrix of the system,

M =

[

A B

C D

]

Applying the theorem with this data implies that the following are equivalent:

• The spectral radius of A satisfies ρ (A) < 1, and

max
δ1∈C
|δ1|≤1

σ̄
(

D + Cδ1 (I −Aδ1)−1B
)

< 1
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• The maximum singular value of D satisfies σ̄ (D) < 1, and

max
∆2∈Cm×m

σ̄(∆2)≤1

ρ
(

A+B∆2 (I −D∆2)
−1C

)

< 1

• The structured singular value of M satisfies µ∆(M) < 1.

The first condition implies two things: the system is stable, and the || · ||∞ norm on the transfer

function from u to y obtained by setting δ1 =
1
z
) is less than 1. That is

‖G‖∞ := max
z∈C
|z|≥1

σ̄
(

D + C (zI −A)−1B
)

= max
δ1∈C
|δ1|≤1

σ̄
(

D + Cδ1 (I −Aδ1)−1B
)

< 1

The second condition implies that (I −D∆2)
−1 is well defined for all σ̄ (∆2) ≤ 1, and that the

uncertain difference equation

xk+1 =
(

A+B∆2 (I −D∆2)
−1C

)

xk

is stable for all such ∆2.

The equivalence between the small gain condition, ‖G‖∞ < 1, and the stability robustness of

the uncertain difference equation is well known as the small gain theorem, in its necessary and

sufficient form for linear time invariant systems. What is important to see is that both of these

conditions are in fact equivalent to one condition on the structured singular value. Already we

have seen that the spectral radius and maximum singular value are special cases of µ. Here we

see that additional important linear system properties, namely robust stability and input-output

gain are also related to a particular case of the structured singular value.

Returning to the main loop theorem, note that the bound on the performance is the same as the

bound on the perturbation, namely 1. Scaling the matrix M by 1
β
, for some positive scalar β,

and then applying the theorem gives:

Corollary 4.7 Let β > 0 be given. Then

µ∆(M) < β ⇐⇒






µ2 (M22) < β

max
∆2∈ 1

β
B2

µ1 (S (M,∆2)) < β

The bound on performance and the bound on the perturbation are related, they are reciprocals.

For nonreciprocal values, certain blocks of M must be scaled and µ recomputed. Specifically, for

α ≥ 0, define Mα as

Mα =

[

αM11
√
αM12√

αM21 M22

]

(4.8)

Some simple facts about Mα:

1. if α = 0 then µ∆(Mα) = µ2 (M22)
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2. for any ∆2 ∈∆2, with I −M22∆2 nonsingular, S (Mα,∆2) = αS (M,∆2)

3. max {αµ1 (M11) , µ2 (M22)} ≤ µ∆(Mα) ≤ max {1, α}µ∆(M)

4. µ∆(Mα) is a continuous, nondecreasing function of α

Theorem 4.8 Let β > µ2 (M22) be given, and αβ := max {α > 0 : µ∆(Mα) = β}. Then

max
∆2∈ 1

β
B2

µ1 (S (M,∆2)) =
β

αβ
(4.9)

4.3 Upper bound LFT results

Theorem 4.3 gives necessary and sufficient conditions for performance/robustness characteristics

in terms of a µ evaluation. The µ test always takes on the form “Is µ (M) < 1?” Hence,

upper and lower bounds on µ can be used in the following manner: an upper bound gives a

sufficient condition for the robustness/performance characteristic of the theorem; a lower bound

gives a sufficient condition for when the robustness/performance will not be met. Clearly,

both are important. The upper bound guarantees robustness of a property of a linear fractional

transformation for perturbations up to a certain size, and a lower bound exhibits perturbations

which cause a degree of degradation in the LFT’s properties.

The above comments apply for any upper and lower bound. Of specific interest is the ad-

ditional information that is obtained in using the σ̄
(

D
1
2MD−

1
2

)

upper bound. Generally

σ̄
(

D
1
2MD−

1
2

)

< 1 implies a great deal more than µ∆(M) < 1. As usual, let ∆1 and ∆2 be two

given structures, and let ∆ = {diag [∆1,∆2] : ∆i ∈∆i}. Similarly, let Di be the appropriate D

scaling sets for the two structures, (equation 3.6) and denote D as the diagonal augmentation of

these two sets, D := {diag [D1, D2] : Di ∈ Di}.

Lemma 4.9 ((Redheffer, 1959, 1960)) Let M be given as in equation 4.1. Suppose there is

a D ∈ D such that σ̄
(

D
1
2MD−

1
2

)

< 1. Then there exists a D1 ∈ D1 such that

max
∆2∈B2

σ̄

(

D
1
2
1 S (M,∆2)D

− 1
2

1

)

< 1

Proof: The easiest method of proof is just to track the norms of the various vectors in the loop

equations for the linear fractional transformations shown in Figure 8. Let D1 and D2 be the

separate parts of the D ∈ D which achieves σ̄
(

D
1
2MD−

1
2

)

< 1. Obviously, µ2 (M22) < 1,

so for any ∆2 ∈ B2 the two LFT’s are well posed, and from d to e are the same. Let

d 6= 0 be any given complex vector of appropriate dimension, and let e, w, and z be the

unique solutions to the loop equations for the linear fractional transformation on the right

in Figure 8. By hypothesis, we have

‖z‖2 + ‖e‖2 < ‖w‖2 + ‖d‖2 (4.10)

and since σ̄ (∆2) ≤ 1

‖w‖2 ≤ ‖z‖2 (4.11)
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Combining these gives

‖e‖2 < ‖d‖2 (4.12)

Equation (4.12) also holds for the linear fractional transformation on the left, since the

matrix relating d to e is the same for both linear fractional transformations. This implies

that σ̄

(

D
1
2
1 S (M,∆2)D

− 1
2

1

)

< 1 as desired. ]

Consider the problem determining the value of

inf
D1∈D1

max
∆2∈B2

σ̄

(

D
1
2
1 S (M,∆2)D

− 1
2

1

)

(4.13)

and also finding a D1 ∈ D1 that achieves a cost arbitrarily close to the infimum. Suppose the

dimension of M11 is n× n. Define an additional structure

∆N :=
{

diag [∆,∆2] : ∆ ∈ Cn×n,∆2 ∈∆2
}

(4.14)

Theorem 4.10 LetM , ∆2, D1, and∆N be given as above. Suppose that µ2 (M22) < 1. Define

ᾱ by

ᾱ = sup
α>0

{

α : inf
D1∈D1

µ∆N

([

D
1
2
1 0

0 I

] [

αM11
√
αM12√

αM21 M22

] [

D
− 1

2
1 0

0 I

])

< 1

}

(4.15)

Then

inf
D1∈D1

max
∆2∈B2

σ̄

(

D
1
2
1 S (M,∆2)D

− 1
2

1

)

=
1

ᾱ
(4.16)

In this section, all of the results were stated for S (M,∆2). Analogous results hold for S (∆1,M).

5 Robustness tests with µ

The structured singular value can be used to quantify robustness margins for a linear system

with linear fractional uncertainty. Specifically, suppose that P (s) is a rational, proper matrix,

of size (n1 + n2) × (n1 + n2) and block structures ∆1 ⊂ Cn1×n1 and ∆2 ⊂ Cn2×n2 are given.

Partition P (s) as

P (s) =

[

P11(s) P12(s)

P21(s) P22(s)

]

.

For ∆1 ∈∆1, consider the interconnection shown in Figure 9. For any ∆1 ∈ B1, S (∆1, P (s)) is

the transfer function from d3 → e3. The closed-loop system is said to be:

• well-posed if det (I − P11(∞)∆1) 6= 0. This is the necessary and sufficient condition that

all closed-loop transfer functions in Figure 5.1 be proper.

• stable if all closed-loop transfer functions in Figure 5.1 are analytic in the closed right-

half-plane.
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Theorem 5.1 Suppose that P (s) has all of its poles in the open left-half plane. Let β > 0.

Then

1. For all ∆1 ∈ ∆1 with σ̄ (∆1) ≤ β, the perturbed closed-loop system is well-posed and

stable if and only if

sup
Re(s)≥0

µ1 (P11(s)) <
1

β
.

2. For all ∆1 ∈ ∆1 with σ̄ (∆1) ≤ β, the perturbed closed-loop system is well-posed, stable

and

sup
Re(s)≥0

µ2 [S (∆1, P (s))] <
1

β

if and only if

sup
Re(s)≥0

µ∆(P (s)) <
1

β
.

Proof: The proof follows from the definitions of µ, well-posedness, stability, and invertibility of

matrices with elements in a commutative ring. ]

Remark 5.2 Although the structured singular value is not necessarily a norm, we introduce

the following notation: for a proper, rational matrix P , analytic in the closed-right-half-plane,

and a block structure ∆ of appropriate dimensions, define

‖P‖∆ := sup
Re(s)≥0

µ∆(P (s)).

Remark 5.3 In Section 6, techniques that allow the right-half plane supremums to be replaced

(equivalently) by imaginary-axis supremums will be developed.

It is possible to easily generalize these robustness theorems to the case where ∆ is a block-

diagonal, finite dimensional, stable, linear time-invariant system (as opposed to a constant, com-

plex matrix). Let ∆ be a block structure, as in equation 3.1. We want to consider feedback

perturbations to P which are themselves dynamical systems, with the block-diagonal structure

of the set∆. To do so, first letM (S) denote the set of rational, proper, stable, transfer matrices.

Associated with any block structure ∆, let M (∆) denote the set of all block diagonal, stable

rational transfer functions, with block structure like ∆.

M (∆) :=
{

∆(·) ∈M (S) : ∆(so) ∈∆ for all so ∈ C̄+
}

For any ∆1 ∈M (∆1), the closed-loop system is said to be:

• well-posed if det (I − P11(∞)∆1(∞)) 6= 0. This is the necessary and sufficient condition

that all closed-loop transfer functions in Figure 5.1 be proper.

• stable if all closed-loop transfer functions in Figure 5.1 are analytic in the closed right-

half-plane.
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Theorem 5.4 Suppose that P (s) has all of its poles in the open left-half plane. Let β > 0.

Then

1. For all ∆1 ∈M (∆1) with ‖∆1‖∞ ≤ β, the perturbed closed-loop system is well-posed and
stable if and only if

sup
Re(s)≥0

µ1 (P11(s)) <
1

β
.

2. For all ∆1 ∈ M (∆1) with ‖∆1‖∞ ≤ β, the perturbed closed-loop system is well-posed,

stable and

sup
Re(s)≥0

µ2 [S (∆1(s), P (s))] <
1

β

if and only if

sup
Re(s)≥0

µ∆(P (s)) <
1

β
.

In summary, the peak value on the µ plot of the frequency response that the perturbation “sees”

determines the size of perturbations that the loop is robustly stable (and/or performing) against.

Other, more sophisticated assumptions about the perturbations may be formulated, and solved

with µ. These include gap/graph topology uncertainty, (Foo and Postlethwaite, 1988), (Khar-

gonekar and Kaminer, 1991), and different induced norms to measure the size of the uncertainty,

(Bamieh and Dahleh, 1992).

6 Maximum modulus theorem for LFT’s with µ

This section describes a maximum modulus theorem that µ satisfies: µ of an LFT on a norm-

bounded structured set achieves its maximum on the unitary elements of this set. This is a

generalization of the ordinary maximum modulus theorem for rational functions of a complex

variable. We begin by stating a well known result from complex analysis namely that the roots

of a polynomial are continuous functions of the coefficients of the polynomial.

Lemma 6.1 Let f(z) =
∑n
i=0 aiz

i be an n’th order polynomial, an 6= 0. Let z̄1, z̄2, . . . , z̄n be

the roots of f . For any ε > 0 and any integer m > 0, there exists a δm,ε > 0 such that if g(z),

defined by

g(z) =
m
∑

i=0

biz
i

has coefficients bi ∈ C which satisfy |bi| < δm,ε, then there are n roots of f + g , labeled

z̃1, z̃2, . . . , z̃n that satisfy |z̄i − z̃i| < ε.

Next, we shift our attention to polynomials in several dimensions, that is, polynomials taking

Ck → C. If z ∈ Ck, we let ‖z‖∞ := max
i≤k
|zi|. For p :Ck→C, a polynomial, define βp as

βp = min {‖z‖∞ : p(z) = 0} (6.1)
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In other words, βp is the norm of the minimum norm roots of the polynomial. The next two

lemmas are from Doyle, 1982. The first concerns minimum norm roots and is a direct consequence

of Lemma 6.1. The second is provides the essential argument of the maximum modulus theorem

for µ.

Lemma 6.2 Let p be a polynomial from Ck → C. Define βp via (6.1). Then there exists a

z ∈ Ck such that |zi| = βp for each i, and p(z) = 0.

Sketch of proof: A proof is given in Doyle, 1982. The main idea is as follows: let z̄ ∈ Ck

be a root of p with βp = ‖z̄‖∞. If all of the coordinates of z̄ satisfy |z̄i| = βp, then

stop. Otherwise, take one of the coordinates of z̄, say z̄1 whose magnitude is less than βp.

Consider the polynomial q(z1) := p (z1, z̄2, . . . , z̄k). This has a root at z̄1, and |z̄1| < βp. If

this is a nontrivial polynomial, then, by slightly reducing (in magnitude) all of the z̄i, i ≥ 2,

the coefficients of the polynomial change slightly, and it has a root very close to z̄1. This

implies that p has a root z̃ ∈ Ck such that ‖z̃‖∞ < βp, which contradicts the definition.

On the other hand, if the polynomial q ≡ 0, then the variable z1 does not matter, and we

can repeat the argument on a different coordinate, say z2, that satisfies |z̄2| < βp. ]

Lemma 6.3 Let ∆ ⊂ Cn×n be a given block structure, and let Q be defined as in section 3. If
M ∈ Cn×n has µ∆(M) = 1, then there is a Q ∈ Q such that det (I −MQ) = 0.

Proof: Since µ∆(M) = 1, there is a ∆̂ ∈ ∆ with σ̄
(

∆̂
)

= 1 and det
(

I −M∆̂
)

= 0. Also, for

any ∆ ∈∆ with σ̄ (∆) < 1, the matrix I −M∆ is nonsingular.

Do a singular value decomposition on each block that makes up ∆̂. This gives U, V ∈ Q,

and a diagonal Σ̂ ∈∆, such that

det
(

I +MU Σ̂V ∗
)

= 0

Since Σ̂ ∈∆ is diagonal, it appears as

Σ̂ = diag
[

δ̂1Ir1 , . . . , δ̂SIrS , α̂1, . . . , α̂w
]

for some nonnegative real numbers δ̂i and α̂j , and w =
∑F
j=1mj (recall that the j’th full

block is mj ×mj , hence each full block contributes mj of the α’s). With σ̄
(

∆̂
)

= 1, at

least one of the δ̂i or α̂j is 1.

Consider S + w complex variables, z1, . . . , zS+w. Define a variable Σ by

Σ = diag [z1Ir1 , . . . , zSIrS , zS+1, . . . , zS+w]

Then det (I +MUΣV ∗) is a polynomial on CS+w, since the determinant involves only

multiplications and additions of its argument. Since µ∆(M) = 1, a minimum norm (using

‖ · ‖∞ on CS+w, as above) root of this polynomial has norm equal to 1. Let Σ̄ be the

particular minimizing root with all components of equal magnitude, namely 1. Then we

can write Σ̄ = Φ for some Φ ∈ Q. This gives

det (I +MUΦV ∗) = 0.

Defining Q := UΦV ∗ completes the proof. ]
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The next theorem from (Doyle, 1982) follows immediately from Lemma 6.3 and the facts that

Q ∈ Q implies ρ(QM) ≤ µ∆(M), and det (I −MQ) = 0 implies that ρ(QM) ≥ 1.

Theorem 6.4 max
Q∈Q

ρ (QM) = max
∆∈B∆

ρ (∆M) = µ∆(M)

Hence the lower bound given for µ in equation (3.10) is actually not just a bound, but an equality.

To motivate the main result of the section, recall the general setup for the linear fractional

transformation S (M,∆). SupposeM ∈ C(n1+n2)×(n1+n2) is given. We partition it in the obvious

way

M =

[

M11 M12

M21 M22

]

(6.2)

with Mij ∈ Cni×nj . Let ∆1 ⊂ Cn1×n1 and ∆2 ⊂ Cn2×n2 be two block structures and define

B1,B2,Q1, and Q2 correspondingly.

The maximum modulus theorem from (Packard and Balsamo, 1988) is:

Theorem 6.5 LetM be given as in (6.2), along with two block structures∆1 and∆2. Suppose

that µ2 (M22) < 1. Then

max
Q2∈Q2

µ1 (S (M,Q2)) = max
∆2∈B2

µ1 (S (M,∆2)) . (6.3)

Proof: A detailed proof can be found in the reference. The main idea is as follows: suppose

(by an appropriate scaling) that the maximum on the right hand side of equation (6.3)

is 1. Then, since µ2 (M22) < 1, it is possible to show that µ∆(M) = 1. Using Lemma

6.3, construct matrices Q1 and Q2 such that I −Mdiag [Q1, Q2] is singular. Again, use

the fact that µ2 (M22) < 1 to conclude that I − S (M,Q2)Q1 is singular. This shows that

µ1 (S (M,Q2)) ≥ 1, completing the argument. ]

Remark 6.6 This is similar to a result in (Boyd and Desoer, 1985): that for functions H(z) an-

alytic on the disk, the function µ (H(z)) achieves its maximum on the boundary: max
|z|≤1

µ (H(z)) =

max
|z|=1

µ (H(z)). It is possible to use their result to derive Theorem 6.5 and vice versa.

It is instructive to see how Theorem 6.4 can be obtained as a special case of Theorem 6.5. Let∆ ⊂
Cn×n be a given block structure, with associated sets B∆ and Q. Define ∆1 := {δIn : δ ∈ C},
and for each M ∈ Cn×n, define M̄ as

M̄ :=

[

0 M

In 0

]

By Theorem 6.5, and noting that µ1 (·) = ρ (·), we have

max
Q∈Q

ρ (MQ) = max
Q∈Q

µ1
(S (M̄,Q

))

= max
∆∈B∆

µ1
(S (M̄,∆

))

= max
∆∈B∆

ρ (M∆) = µ∆(M) (6.4)

This is exactly Theorem 6.4.



19

7 Lower bound power algorithm

This section presents an iterative algorithm to compute lower bounds for the structured singular

value. The algorithm resembles a mixture of power methods for eigenvalues and singular values,

which is not surprising, since the structured singular value can be viewed as a generalization of

both. If the algorithm converges, a lower bound for µ results. We prove that µ is always an

equilibrium point of the algorithm.

In (Fan and Tits, 1986) the calculation of µ is reformulated as a smooth optimization problem. As

with all of the known exact expressions for µ, the function to be maximized has local maximums

which are not global, so in general the method yields only lower bounds for µ. Similar comments

can be made for the ideas in (Doyle, 1982) and (Helton, 1988), as well as the algorithm in this

section. The contribution here is yet another lower bound algorithm to aid in the analysis of

robustness of systems with structured uncertainty, along with a deeper conceptual understanding

of the structured singular value.

We begin by noting that both the functions r : B∆ → R, defined by r (∆) := ρ (∆M) and

r̃ : Q → R, defined by r̃ (Q) := ρ (QM) have local maximums which are not global. Note,

though, that the function r̃ is a restriction of r, and it is possible to construct examples where

a point Q ∈ Q is a local maximum of r̃, but not a local maximum of r. Such a point

definitely does not correspond to the maximizer that gives µ∆(M), and so we will not consider

the corresponding lower bound from such points as acceptable. Rather, acceptable lower bounds

will correspond to points Q ∈ Q which are local maximums of the function r.

Roughly speaking, this section develops an iterative algorithm which ultimately generates a point

Q ∈ Q that is a local maximum of the function r. In general, these are a proper subset of the

local maximums of the function r̃, though the global maximums over the two sets are the same.

Some of the preliminary results are generalizations of those found in (Fan and Tits, 1986) and

(Daniel, Kouvaritakis, et al, 1986)

We will be interested in local maximums of the function r (∆) = ρ (∆M), therefore we begin

with some facts from perturbation theory, which assist in characterizing local maximums.

7.1 Matrix Facts

In this section, we collect a few useful facts.

Suppose W : R→ Cn×n is an analytic function of the real parameter t. If λo is a eigenvalue

of Wo := W (0) of multiplicity one, then for some open interval containing 0, this eigenvalue

is a analytic function of t, as are the eigenvectors associated with it. That is, suppose there

are xo, yo ∈ Cn, satisfying y∗oxo = 1, Woxo = λoxo, and y∗oW = λoy
∗
o . Then there is an

ε > 0 and analytic functions x : (−ε, ε)→ Cn, y : (−ε, ε)→ Cn, and λ : (−ε, ε)→ C, such that

x(0) = xo, y(0) = yo, λ(0) = λo and for all t ∈ (−ε, ε)

y∗x = 1

Wx = λx

y∗W = λy∗.
(7.1)
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This follows from (Kato, 1982). We can then differentiate and obtain λ̇(0) = y∗oẆ (0)xo.

The next two lemmas follow from elementary linear algebra. They will be used in the main

theorem of the next section.

Lemma 7.1 Let y, x ∈ Cn with y 6= 0 and x 6= 0. There exists d ∈ R, d > 0, such that
1√
d
y =
√
dx if and only if Re (y∗Gx) ≤ 0 for every G ∈ Cn×n satisfying G+G∗ ≤ 0.

Lemma 7.2 Let x and y be two nonzero vectors in Cn. Then there exists a Hermitian, positive

definite D ∈ Cn×n, such that D
1
2x = D−

1
2 y if and only if Re (gy∗x) ≤ 0 for every g ∈ C with

g + ḡ ≤ 0.

The condition in Lemma 7.2 on y∗x involving g ∈ C is equivalent to y∗x being real and positive.

We have chosen to write it in the form above so that it is a natural analog to Lemma 7.1 and is

stated exactly as it will be applied in Theorem 7.3 of the next section.

7.2 Eigenvector characterization of local maximums

Consider the function r :B∆→R, defined by r (∆) = ρ (∆M). Recall that µ∆(M) = max
∆∈B∆

r (∆),

and that the global maximum occurs on the subset Q ⊂ B∆. In this section, we characterize the

occurance of a local maximum of r at ∆ = I ∈ Q ⊂ B∆, in terms of the eigenvectors of M . We

begin with some notation.

Let x and y be nonzero right and left eigenvectors of M , associated with an eigenvalue λ: Mx =

λx and y∗M = λy∗. Partition x and y compatibly with the block structure ∆,

x =

































xr1
xr2
...

xrS
xm1

xm2

...

xmF

































, y =

































yr1
yr2
...

yrS
ym1

ym2

...

ymF

































(7.2)

where xri , yri ∈ Cri and xmj
, ymj

∈ Cmj for each i and j. We call these the “block components”

of x and y, and for technical reasons, we define a nondegeneracy condition: x and y are nonde-

generate if for every i, yri
∗xri 6= 0, and for each j, xmj

6= 0, ymj
6= 0. We will also assume that

ρ(M) = λo > 0 is a distinct eigenvalue of M .

The condition that ρ(M) = λo > 0 is without loss of generality, because ∆ can always be used to

enforce this (for any φ, ejφ∆ =∆). The conditions of nondegeneracy and λo distinct are not so

easily dispensed with and there are basically two approaches to deal with them. The first would

be to argue that the are generic conditions and thus unlikely to cause problems in practice. A far

more satisfactory solution is to generalize the theorems and proofs in this section to remove them.
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In fact, this can be done, but not without substantial additional technical complication. Since

the results in this subsection are presented primarily to give insight into the power algorithms to

be presented in the next subsection, these additional technicalities have been foregone in favor

of a simpler development.

Theorem 7.3 Let M ∈ Cn×n be given, and suppose λo > 0 is a distinct eigenvalue of M , with

nondegenerate right and left eigenvectors x and y. Suppose that ρ(M) = λo. If the function

r :B∆→R defined by r(∆) = ρ(∆M) has a local maximum (with respect to the set B∆) at

∆ = I, then there exists a D ∈ D such that D−
1
2 y = D

1
2x.

Proof: Let G ∈∆ with G+G∗ ≤ 0 so that G has the form

diag [g1Ir1 , . . . , gSIrS , G1, . . . , GF ] (7.3)

where Re(gi) ≤ 0, and Gj +G∗j ≤ 0 for all i and j and eGt ∈ B∆ for all t ≥ 0 with eGt = I

for t = 0. Define a matrix function W :R→Cn×n by W (t) := eGtM . Note that at t = 0,

λo is a simple eigenvalue of W (0), with x and y the right and left eigenvectors. For some

nonempty interval containing 0, this eigenvalue is always simple, and hence there is an

analytic function of the real variable t, λ(t), defined on that interval, such that λ(t) is an

eigenvalue of W (t) for all t and λ(0) = λo. It is easy to calculate λ̇(0), namely

λ̇(0) = y∗Ẇ (0)x = λoy
∗Gx (7.4)

By hypothesis, λo > 0, ρ(M) = λo and the function ρ (∆M) has a local maximum (with

respect to B∆) at ∆ = I. Therefore

Re

(

d

dt
λ(t)

∣

∣

∣

∣

t=0

)

≤ 0 (7.5)

which says that the magnitude of λ must be nonincreasing at t = 0. Using the “block

notation” of (7.2) and substituting (7.3) and (7.4) into (7.5) yields

Re





S
∑

i=1

giy
∗
ri
xri +

F
∑

j=1

y∗mj
Gjxmj



 ≤ 0. (7.6)

This must hold for arbitrary G ∈∆ satisfying G+G∗ ≤ 0. Applying Lemmas 7.1 and 7.2

we conclude that for each i, there is a Di = D∗i ∈ Cn×n, Di > 0 such that D
− 1

2
i yri = D

1
2
i xri ,

and for each j, there is a dj ∈ R, dj > 0 such that 1√
dj
ymj

=
√

djxmj
. Arranging all of

these Di’s and dj ’s into one block diagonal D completes the proof. ]

Remark 7.4 Note that assuming λo is distinct assures differentiability, (Kato, 1982). Since λo
is a solution of max

∆∈B∆
max
i
|λi (∆M) |, it is likely that at the maximum it will be distinct. In any

case, if λo is not distinct, it can still be shown to be differentiable at a local maximum, and the

rest of the proof remains. Unfortunately, this proof of differentiability is tedious and technical,

and for this reason has been omitted.
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Theorem 7.5 Let Qo ∈ Q achieve the global optimum for the problem max
Q∈Q

ρ (QM). Suppose

that the eigenvalue associated with ρ (QoM) is distinct, real and positive, and hence equal to

µ = µ∆(M). If x and y are nondegenerate right and left eigenvectors of the eigenvalue µ, then

there exists a D ∈ D, and ξ ∈ Cn, ‖ξ‖ = 1 such that

QoD
1
2MD−

1
2 ξ = µξ

ξ∗QoD
1
2MD−

1
2 = µξ∗.

(7.7)

Proof: By Theorem 6.4, any global maximizer of max
Q∈Q

ρ (QM), is also a maximizer of max
∆∈B∆

ρ (∆M).

Define M̃ := QoM , then ∆ = I is a local (in fact global) maximizer for max
∆∈B∆

ρ
(

∆M̃
)

.

Apply Theorem 7.3 to the matrix M̃ and define ξ = D
1
2x = D−

1
2 y to prove the theorem. ]

Remark 7.6 This result was first shown in (Fan and Tits, 1986) for the case of S = 0. It is

also similar to the “principal direction alignment” ideas in (Daniel, Kouvaritakis, et al, 1986).

Theorem 7.5 is more general, though, since it handles repeated scalar blocks as well as full blocks.

Remark 7.7 This theorem is not true if we consider local maximums that are not global of the

function r̃ :Q→R defined as r̃ (Q) := ρ (QM).

Remark 7.8 Any real number β > 0 satisfying

QD
1
2MD−

1
2 ξ = βξ

ξ∗QD
1
2MD−

1
2 = βξ∗

(7.8)

for some Q ∈ Q, D ∈ D and nonzero ξ ∈ Cn is a lower bound for µ∆(M). This follows because

I − 1
β
QM is a singular matrix.

7.3 Lower bound power algorithm

In this section, we propose an iterative algorithm (reminiscent of the power algorithm for spectral

radius) to find solutions to the equations (7.7), and therefore get lower bounds for µ.

Rewriting (7.7), and changing notation a bit, we want to find a Q ∈ Q, D ∈ D, β > 0, and

ξ ∈ Cn with ‖ξ‖ = 1 such that

QD
1
2MD−

1
2 ξ = βξ

D−
1
2M∗D

1
2Q∗ξ = βξ.

These two constraint equations can be rewritten as

M
(

D−
1
2 ξ
)

= β
(

D−
1
2Q∗ξ

)

M∗
(

D
1
2Q∗ξ

)

= β
(

D
1
2 ξ
)

.

For a given D,Q, and ξ, define vectors a, b, z, and w by

b := D−
1
2 ξ , a := D−

1
2Q∗ξ

z := D
1
2Q∗ξ , w := D

1
2 ξ

(7.9)
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With this definition, we have Mb = βa and M ∗z = βw. We can eliminate ξ from (7.9) to get

b = Qa = D−1w
z = Da = Q∗w

(7.10)

Since the unknowns Q and D generally may have high dimension, we would like to write the

four relationships from equation (7.10) in a manner that does not involve the matrices Q and D.

With a few technical conditions, this can be done. In order to simplify the upcoming formulas,

we will consider a block structure with S = 1, F = 1 (by duplicating the appropriate formulas

for additional blocks, whether they are repeated scalar blocks or full blocks, it is straightforward

to extend the algorithm to more general structures). Hence the sets D and Q are

D =
{

diag [D1, d2Im1 ] : D1 ∈ Cr1×r1 , D1 = D∗1 > 0, d2 > 0
}

(7.11)

Q =
{

diag [q1Ir1 , Q2] : q̄1q1 = 1, Q2 ∈ Cm1×m1 , Q∗2Q2 = Im1

}

. (7.12)

With respect to this, we will partition the vectors accordingly, so z =

[

z1
z2

]

, where z1 ∈ Cr1

and z2 ∈ Cm1 , and likewise for the other vectors.

Lemma 7.9 Let r1 and m1 be positive integers. Let z1 , w1 , b1 , a1 ∈ Cr1 and z2, w2, b2, a2 ∈
Cm1 be nonzero vectors with a∗1w1 6= 0. Then, there exists a D ∈ D and Q ∈ Q such that

b = Qa , z = Q∗w
z = Da , b = D−1w

if and only if

z1 =
w∗1a1
|w∗1a1|

w1 , z2 =
‖w2‖
‖a2‖

a2

b1 =
a∗1w1

|a∗1w1|
a1 , b2 =

‖a2‖
‖w2‖

w2.

Proof:

→ The relations for z2 and b2 follow by direct substitution. For z1 and b1, it is easiest to define

an auxiliary variable ζ := D
1
2 b, and then verify via substitutions.

← Let q1 =
a∗1w1

|a∗1w1| , since this is well defined. Likewise, choose d2 =
‖w2‖
‖a2‖

. By assumption, d2 is

well defined, and nonzero. Since ‖w2‖ = ‖z2‖, let Q2 be any unitary matrix that takes w2

into z2. The matrix Q2 also rotates b2 into a2,

Q2b2 =
1

d2
Q2w2 =

1

d2
z2 = a2.

Next, we calculate a∗1z1 = |a∗1w1|, which is nonzero by assumption; hence Lemma 7.2 yields

a Hermitian, positive definite D1 such that D1a1 = z1. As we hope, D1 takes b1 into w1

too,

D1b1 = q1D1a1 = q1z1 = w1.

Defining D and Q in the obvious manner completes the proof. ]
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We are now prepared for the main theorem.

Theorem 7.10 Let M ∈ Cn×n be given, and let ∆ be the two block (S = 1, F = 1) structure

defined above, with block sizes r1 and m1, where r1 +m1 = n. Suppose β > 0 is given. Then

there exists Q ∈ Q, D ∈ D, ξ =
[

ξ1
ξ2

]

∈ Cn, ‖ξ‖ = 1, ξ1 6= 0 , ξ2 6= 0 with

QD
1
2MD−

1
2 ξ = βξ

ξ∗QD
1
2MD−

1
2 = βξ∗

(7.13)

if and only if there exists nonzero vectors z1, w1, b1, a1 ∈ Cr1 and z2, w2, b2, a2 ∈ Cm1 with

a∗1w1 6= 0 and

βa =Mb

z1 =
w∗1a1
|w∗1a1|

w1 , z2 =
‖w2‖
‖a2‖

a2

βw =M∗z

b1 =
a∗1w1

|a∗1w1|
a1 , b2 =

‖a2‖
‖w2‖

w2.

(7.14)

Remark: In order to find decompositions using the representation that this theorem allows

(equation (7.14) — free of Q’s and D’s), we can restrict ourselves to unit vectors a, b, z, w.

Why? Suppose there are nonzero vectors satisfying (7.14). Examining the equations, it is

clear that scaling z and w by some α 6= 0 and scaling b and a by some γ 6= 0 does not

affect any of the equalities in (7.14). Moreover, the equalities in (7.14) always imply that

‖z‖ = ‖w‖, and ‖a‖ = ‖b‖, so by proper scaling, all the vectors would be unit norm.

In the above theorem, we have purposefully written the conditions (7.14) in a manner that

suggests attempting to find a solution in an iterative fashion. In particular, for i = 1, 2, let

vectors aik , bik , zik , and wik , and positive scalars β̃k, β̂k evolve as

β̃k+1ak+1 =Mbk

z1k+1
=

w∗1ka1k+1

|w∗1ka1k+1
|w1k , z2k+1

=
‖w2k‖
‖a2k+1

‖a2k+1

β̂k+1wk+1 =M∗zk+1

b1k+1
=

a∗1k+1
w1k+1

|a∗1k+1
w1k+1

|a1k+1
, b2k+1

=
‖a2k+1

‖
‖w2k+1

‖w2k+1

(7.15)

where the values of β̃k+1 and β̂k+1 are chosen > 0, so that ‖ak+1‖ = ‖wk+1‖ = 1.

Note also that if the initial b and w vectors that start the iteration are unit vectors, then at every

step, all vectors, a, b, z, and w will be unit length.

Remarks:
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7.a Potential problems within the iteration are:

• Mbk = 0 or M∗zk = 0, then ak+1 or wk+1 is not well defined.

• a∗1kw1k = 0, then the vectors z1k+1
and/or b1k+1

are not well defined.

• Either ‖w2k‖ = 0 or ‖a2k‖ = 0, making b2k and/or z2k not well defined.

If any of these conditions occur, then one possibility is to restart the algorithm at a different

initial condition (ie., a new b10 , b20 , w10 and w20). A more sophisticated approach is to

examine the above conditions and recognize that a sensible iteration can still be defined

even if these conditions occur. Algorithms have been developed along these lines and will

be discussed elsewhere.

7.b If the iteration does converge to an equilibrium point, then the β values must be equal, that

is β̃ = β̂. This is easy to see: suppose the equations in (7.14) are satisfied (convergence

of the algorithm in (7.15)), but the β associated with b and a is β̃ and the β associated

with z and w is β̂. The converged equations imply that there exists a Q ∈ Q and D ∈ D
such that QD

1
2MD−

1
2

(

D
1
2 b
)

= β̃
(

D
1
2 b
)

and
(

QD
1
2MD−

1
2

)∗ (
D

1
2 b
)

= β̂
(

D
1
2 b
)

. Since

the β’s are real, they must be equal. Hence, when verifying convergence of the algorithm,

it is necessary to begin checking the convergence of the vectors only after the β̃k and β̂k
values are nearly equal. This saves some computations early in the iteration.

7.c • If there were only the first block, which is a repeated scalar block, the iteration would

be a power iteration for the largest (in magnitude) eigenvalue of the matrix M . Since

µ for 1 repeated scalar block is the spectral radius, the algorithm we have proposed

reduces to a valid algorithm in the special case of 1 repeated scalar block.

• If there were only the second block, which is a full block, the iteration becomes a

eigenvalue power algorithm for M ∗M , hence it will give the largest singular value of

M . Again, with respect to this specific block structure, this is what we want.

Hence, the iteration we have proposed is a mix of two separate, well understood iterations,

both of which converge to the largest eigenvalue/singular value. We might hope that this

algorithm will converge to the largest β for which the equations in (7.8) are solved, which

by Theorem 7.5 is equal to µ∆(M). Unfortunately, this is not always the case.

Extensive computational experience, (Balas, Doyle, et al, 1991) and (Packard, Fan, et al, 1988),

has led to the following conclusions:

1. The algorithm works well in practice, and versions of it have been used very extensively in

universities and industry. It appears to have roughly order n2 growth rates for computation

as a function of problem size. The main difficulty is that it occasionally doesn’t converge

or converges to a value of β which is not µ.

2. The difficulties described in 7.a above do not seem to occur in practice, however there

are matrices whose optimally scaled eigenvector block components (eq. 7.2) do not satisfy

the “nonzero” block conditions described at the beginning of section 7.2. This type of

situation will lead to the difficulties mentioned. In any event, while it is easy to construct

matrices where these problems happen, running the algorithm on frequency responses of

actual closed loop systems has not been a problem.
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3. Limit cycles can occur, and seem to occur more often when there are large repeated scalar

blocks. Unlike an equilibrium point, the presence of a stable limit cycle does not immedi-

ately give rise to a lower bound for µ.

4. In general, there are several stable equilibrium points, with different values of β. This is in

contrast with the conventional power algorithms for ρ and σ̄, where only the largest ones

are stable. It is even possible that the algorithm converges to a value of β which is smaller

than ρ (M).

5. It is possible to refine the power algorithm to guarantee convergence to some local max-

imum, but at the expense of greater computation time. We are currently researching

algorithms that give favorable tradeoffs between convergence properties and running times.

8 Relating µ and inf
D∈D

σ̄
(

D
1
2MD− 1

2

)

The purpose of this section is to study the relationship between µ∆(M) and the upper bound.

The two-step strategy we take first involves characterizing the optimality conditions for the upper

bound, and then determining under what situations these optimality conditions imply anything

about the existence of a block structured perturbation matrix ∆ satisfying det (I −M∆) = 0.

8.1 Optimality Conditions for inf
D∈D

σ̄
(

D
1
2MD− 1

2

)

We want to characterize when σ̄ (M) = inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

, that is, when D := I is optimal.

Begin with M ∈ Cn×n, and let its singular value decomposition be

M = σ1UV
∗ + U2Σ2V

∗
2 , (8.1)

where σ1 > 0 is the maximum singular value of M and has multiplicity r; U, V ∈ Cn×r;U2, V2 ∈
Cn×(n−r);U∗U = V ∗V = Ir;U

∗
2U2 = V ∗2 V2 = In−r; U∗U2 = 0;V ∗V2 = 0; and Σ2 ∈ R(n−r)×(n−r)

is nonnegative and diagonal with σ1In−r − Σ2 > 0.

We need some additional notation, in particular

Z :=
{

D − D̃ : D, D̃ ∈ D
}

(8.2)

Note that the elements of Z are not invertible, and in general are of the form (since dS+F ≡ 1)

diag
[

Z1, . . . , ZS , zS+1Im1 , . . . , zS+F−1ImF−1
, 0mF

]

where for each i ≤ S,Zi = Z∗i ∈ Cri×ri , and for j ≤ F − 1, zS+j ∈ R. Later, we will use the fact

that Z is a real inner product space, with inner product defined by P, T ∈ Z

〈P, T 〉 :=
S
∑

i=1

trace (PiTi) +
F−1
∑

j=1

pS+jtS+j .
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For notational purposes, partition U and V compatibly with ∆ as

U =

























A1
...

AS
E1
...

EF

























V =

























B1
...

BS
H1
...

HF

























(8.3)

where Ai, Bi ∈ Cri×r, Ei, Hi ∈ Cmi×r. With this notation, and a little manipulation, for any

Z ∈ Z, we can write λmin (U
∗ZU − V ∗ZV ) in terms of inner products in Z,

λmin (U
∗ZU − V ∗ZV ) = min

η∈Cr
‖η‖=1

〈Z,P η〉 (8.4)

where for each η ∈ Cn, P η ∈ Z is defined by its block components

P ηi := Aiηη
∗A∗i −Biηη∗B∗i

pηS+j := η∗
(

E∗jEj −H∗jHj

)

η.
(8.5)

Let ∇M ⊂ Z be the set of all such P η. That is

∇M :=
{

diag
[

P η1 , . . . , P
η
s , p

η
S+1Im1 , . . . , p

η
S+F−1ImF−1

, 0mF

]

: P ηi , p
η
S+j as in (8.5), η ∈ Cr, ‖η‖ = 1

}

.

(8.6)

Although the matrices U and V are not unique, the set ∇M does not depend on their particular

choice. For a given Z ∈ Z, we have

λmin (U
∗ZU − V ∗ZV ) = min

P∈∇M

〈Z,P 〉. (8.7)

Hence, it is the set ∇M that determines whether or not there is a Z such that

λmin (U
∗ZU − V ∗ZV ) > 0.

Let the convex hull of a set V ⊂ Z be denoted co (V).

Theorem 8.1 There exists a Z ∈ Z such that λmin (U
∗ZU − V ∗ZV ) > 0 if and only if 0 6∈

co (∇M ).

Proof This is a consequence of (8.7), and a standard result about convex hulls of sets in inner

product spaces, (Luenberger, 1969). ]

Now the optimality condition can be derived. In the proof that follows, note that no appeal to

differentiability of eigenvalues is necessary, and all of the steps of the proof are elementary linear

algebra. The idea for such a simple approach is from (Young, 1992), and (Poolla, 1991).

Theorem 8.2 inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

= σ̄ (M) if and only if 0 ∈ co (∇M ).
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Proof ⇒ Suppose that 0 6∈ co (∇M ). Choose a matrix Z ∈ Z such that

λmin (U
∗ZU − V ∗ZV ) > 0.

Equivalently,

λmax (V
∗ZV − U∗ZU) < 0.

Now, note that for every α > 0
[

V ∗

V ∗2

]

[

M∗ (I − αZ)M − σ21 (I − αZ)
] [

V V2
]

is equal to
[

σ21α (V ∗ZV − U∗ZU) ασ1 (σ1V
∗ZV2 − U∗ZU2Σ2)

ασ1 (σ1V
∗
2 ZV − Σ2U

∗
2ZU) Σ2

2 − σ21I + α
(

σ21V
∗
2 ZV2 − Σ2U

∗
2ZU2Σ2

)

]

Call T := σ1 (σ1V
∗ZV2 − U∗ZU2Σ2), and L :=

(

σ21V
∗
2 ZV2 − Σ1U

∗
2ZU2Σ2

)

. Using this

notation, the matrix in question becomes
[

σ21α (V ∗ZV − U∗ZU) αT

αT ∗ Σ2
2 − σ21I + αL

]

.

Choose α > 0 small enough so that the three conditions

I − αZ > 0

Σ2
2 − σ21I + αL < 0

σ21 (V
∗ZV − U∗ZU)− αT (Σ2

2 − σ21I + αL
)−1

T ∗ < 0

are satisfied. This is possible, since I > 0, (V ∗ZV − U∗ZU) < 0, and Σ2
2 − σ21I < 0. Using

Schur complements, it is clear that for such α, the matrix
[

σ21α (V ∗ZV − U∗ZU) αT

αT ∗ Σ2
2 − σ21I + αL

]

< 0

This implies that
[

M∗ (I − αZ)M − σ21 (I − αZ)
]

< 0

Define D := I − αZ, and note that

inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

≤ σ̄
(

D
1
2MD−

1
2

)

< σ1 = σ̄ (M)

as desired.

(⇐) Suppose that inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

< σ̄ (M). Choose D ∈ D such that σ̄
(

D
1
2MD−

1
2

)

<

σ̄ (M). Define Z ∈ Z via Z := I −D. Note that

M∗DM − σ21D =M∗ (I − Z)M − σ21 (I − Z) < 0

Hence, for all η ∈ Cr, with ‖η‖ = 1, we have

0 > η∗V ∗
[

M∗ (I − Z)M − σ21 (I − Z)
]

V η

= σ21 [η
∗U∗ (I − Z)Uη − η∗V ∗ (I − Z)V η]

= σ21 η
∗ (V ∗ZV − U∗ZU) η
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Hence, this Z := I −D ∈ Z satisfies

λmax (V
∗ZV − U∗ZU) < 0

which is equivalent to

λmin (U
∗ZU − V ∗ZV ) > 0.

By Theorem 8.1, it must be that 0 6∈ co (∇M ), as desired. ].

8.2 Connecting µ with σ̄ (M)

The convex hull of ∇M determines whether or not D := I is the optimum scaling. Following

(Doyle, 1982) we ask, “what is true about M if 0 ∈ ∇M?” Since ∇M ⊂ co (∇M ), certainly

D := I is optimal, but is anything else true? The answer links the upper bound and µ.

Theorem 8.3 Let M ∈ Cn×n be given, along with a block structure ∆, and define ∇M accord-

ingly (equations (8.1), (8.3), (8.5), and (8.6)). Then, σ̄ (M) = µ∆(M) if and only if 0 ∈ ∇M .

Proof: The following four statements are equivalent:

1. 0 ∈ ∇M

2. There exists η ∈ Cr, ‖η‖ = 1 and Q ∈ Q with QUη = V η

3. There exists ξ ∈ Cn, ‖ξ‖ = 1 and Q ∈ Q with QMξ = σ̄ξ

4. σ̄(M) = µ∆(M). ]

1→ 2 : From the definition of ∇M , (8.6), 0 ∈ ∇M implies that for some η ∈ Cr, ‖η‖ = 1,

Aiηη
∗Ai∗ −Biηη∗Bi∗ = 0 i ≤ S

η∗ (Ej∗Ej −Hj
∗Hj) η = 0 j ≤ F − 1

(8.8)

Obviously, for i ≤ S, there is a phase ejθi such that ejθiAiη = Biη. For j ≤ F −1, ‖Ejη‖ =
‖Hjη‖, so there exists a unitary matrix Qj such that QjEjη = Hjη. The only thing left

is the last full block. Since ‖Uη‖ = ‖V η‖ we must have ‖EF η‖ = ‖HF η‖. This gives a

unitary matrix QF with QFEF η = HF η. Arranging the phases and Q’s in a block diagonal

fashion gives statement 2.

2→ 1 : This follows along the lines of 1→ 2.

2→ 3 : The matrix M has a SVD of M = σ̄UV ∗ + U2Σ2V
∗
2 . Hence QM(V η) = σ̄QUη = σ̄V η.

Defining ξ = V η gives statement 3.

3→ 2 : A SVD of QM is QM = σ̄(QU)V ∗ + (QU2)Σ2V
∗
2 . If QMξ = σ̄ξ, then ξ must lie in the

subspace spanned by the right singular vectors associated with σ̄. Hence there is a vector

η, satisfying ξ = V η. Obviously ‖η‖ = 1 and

QUη = QUV ∗ξ =
1

σ̄
QMξ = ξ = V η (8.9)
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3→ 4 : QMξ = σ̄ξ implies that µ∆(M) = max
Q∈Q

ρ (QM) ≥ ρ(QM) ≥ σ̄(M). However, σ̄ is always

an upper bound for µ, hence we must have equality.

4→ 3 : This is clear, since max
Q∈Q

ρ (QM) = µ∆(M). ]

Theorem 8.3 can be used to relate the upper bound and µ∆(M). In particular, we consider block

structures ∆ that have the following property: for all W ∈ Cn×n, 0 ∈co(∇W ) always implies

0 ∈ ∇W . Note that while this property is stated in terms of ∇W , it is actually a property of

the underlying block structure. We will say that a block structure satisfying this property is

µ-simple. In Section 9, we will completely characterize which block structures are µ-simple, and

which block structures are not. For now, we prove that µ-simple block structures always have µ

equal to the upper bound.

Theorem 8.4 Suppose the block structure ∆ is µ-simple. Then, for every M ∈ Cn×n,

µ∆(M) = inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

.

Proof: Let β = inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

. Let Dk be a sequence in D such that σ̄

(

D
1
2

kMD
− 1

2

k

)

converges to β as k →∞. Denote Wk = D
1
2

kMD
− 1

2

k . Since the sequence Wk is bounded, it

has a convergent subsequence with limitW . Obviously, by continuity of σ̄ and µ, σ̄ (W ) = β

and µ∆(M) = µ∆ (W ). We claim that 0 ∈ co(∇W ). If not, then there exist D ∈ D and

ε > 0 such that σ̄
(

D
1
2WD−

1
2

)

= β − ε. Choose k so that ‖Wk −W‖ <
ε

2
√

κ(D)
, where

κ (·) denotes condition number. Then

‖D 1
2 (Wk −W )D−

1
2 ‖ < ε

2
,

which yields

‖D 1
2WkD

− 1
2 ‖ < β − ε

2
.

This contradicts that β was the infimum, thus indeed 0 ∈ co(∇W ). By hypothesis, this

means 0 ∈ ∇W so by Theorem 8.3, µ∆(W ) = σ̄ (W ). Recalling continuity, we get µ∆(M) =

β as desired. ]

Consider the minimization over the D’s. Since we are minimizing the maximum singular value,

the top singular values tend to coalesce, so that at the minimum, the multiplicity of σ̄ is greater

than or equal to 2. This is typical of any “min max” problem. Suppose though, that at the

minimum, σ̄

(

D
1
2
optMD

− 1
2

opt

)

was distinct. Obviously, since we are at a minimum, we must have

0 ∈ co (∇). But if the multiplicity of σ̄ is only 1, then ∇ is a single point, hence ∇ = {0}. This
reasoning gives:

Corollary 8.5 If, at the minimum of σ̄
(

D
1
2MD−

1
2

)

, the maximum singular value has multi-

plicity of 1, then µ (M) = min
D∈D

σ̄
(

D
1
2MD−

1
2

)

.
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9 Properties of ∇

In this section, we study the convexity properties of the set ∇, since the relationship between

µ∆(M) and inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

depend on the relationship between ∇ and co (∇). It will be

shown, that for some block structures ∆, the implication

0 ∈ co (∇W ) → 0 ∈ ∇W

holds for every complex matrix W of appropriate dimensions. Hence, for those block structures,

inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

= µ∆(M)

for every matrix M . Likewise, for other block structures, specific matrices can be constructed

for which the upper bound can be shown to be greater than µ. The upper bound may be equal

to µ for certain matrices (see Theorem 8.3 for example) but in general, the upper bound is not

equal to µ.

These upcoming results are summarized in the Table reftab.mubnd, which indicates section

numbers for the accompanying derivation or example. Note that the (S = 0, F = 1) entry is

trivial, and the (S = 1, F = 0) entry implies that for any M ∈ Cn×n

ρ (M) = inf
D∈Cn×n
D=D∗>0

σ̄
(

D
1
2MD−

1
2

)

which is a well known fact.

Before beginning, we make a notational change, for ease of exposition. Although the set ∇ was

defined as a subset of block diagonal, n × n Hermitian matrices, in this section we identify ∇
with the set Hr1 ×Hr2 × · · · ×HrS ×RF−1.

9.1 S = 0, F = 2

The situation with two full blocks is relatively simple. Referring back to (8.5), ∇ will always

have the form

∇ = {η∗ (E∗E − F ∗F ) η : η ∈ Cr, ‖η‖ = 1} (9.1)

for some given r > 0 and E,F ∈ Cm1×r. Since E∗E − F ∗F is Hermitian, ∇ is just a closed

interval in the real line. Obviously, this is always convex, so if 0 ∈ co (∇), in fact, 0 ∈ ∇. Hence

by Theorem 8.4:

Theorem 9.1 If ∆ consists of two full blocks (S = 0, F = 2), then

µ∆(M) = inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

.

Remark 9.2 The two block case was first solved by Redheffer (1959) with a quite different

approach involving the use of Schauder’s fixed point theorem (Dunford and Schwartz, 1958,

1963).
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9.2 S = 0, F = 4 (Morton and Doyle, 1985)

Consider the case when ∆ consists of four 1× 1 blocks, so S = 0, F = 4, and mj = 1 for each

j. Let a, b, and c be positive real numbers, d and f be complex numbers, and ψ1 and ψ2 be real

numbers. Define matrices U, V ∈ C4×2 by

U =









a 0
b b
c jc
d f









, V =









0 a
b −b
c −jc

ejψ1f ejψ2d









For the time being, suppose that these are both unitary matrices, so that U ∗U = V ∗V = I2.

Later we will actually assign the correct values, but at the moment we just assume this is already

done. Then define M ∈ C4×4 by

M := UV ∗ (9.2)

With the assumptions of unitariness on U and V , (9.2) is a singular value decompostion of M .

M has two singular values at 1, and two singular values at 0. With respect to the block structure

∆ that we have defined, what properties does the set ∇M have? In particular:

• is 0 ∈ co (∇M )? If so, then inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

= 1, otherwise, it is less than 1.

• is 0 ∈ ∇M? If so, then µ (M) = σ̄ (M) = 1, otherwise it is less than 1.

Since the multiplicity of the maximum singular value is 2, we can parametrize all unit vectors in

C2, and get a parametric representation of ∇M . It is easy to see that any vector η ∈ C2, with

‖η‖ = 1 is of the form

η =

[

ejφ1 cos θ
ejφ2 sin θ

]

for some real φ1, φ2, and θ. As it turns out, ∇M depends only on the difference φ1 − φ2, which
we will denote as φ. Simply plugging in for the definition of ∇M from section 8, we get

∇M =











a2
(

cos2 θ − sin2 θ
)

4b2 sin θ cos θ cosφ
4c2 sin θ cos θ sinφ



 ∈ R3 : φ, θ ∈ R






⊂ R3 (9.3)

It is apparent that 0 6∈ ∇M . That would require (from the first coordinate in (9.3)) that θ =
2n+1
4 π, for some integer n. The second and third coordinates being zero would then require both

cosφ = 0 and sinφ = 0, which is impossible. Hence 0 6∈ ∇M , and µ (M) < 1.

On the other hand, setting θ = 0, and then θ = π
2 , gives that both

[

a2 0 0
]T

and
[−a2 0 0

]T
are

elements of ∇M . Consequently, 0 ∈ co (∇M ). Therefore

inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

= σ̄ (M) = 1

In order to complete the counterexample, we must choose the free variables so that U and V in

(9.2) are unitary, as we said we could.
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Set γ = 3 +
√
3 and β =

√
3 − 1 and define a =

√

2
γ
, b = 1√

γ
, c = 1√

γ
, d = −

√

β
γ
, f =

(1 + j)
√

1
γβ
, ψ1 = −π

2 and ψ2 = π. Some algebra later, we conclude that ∇M is the set of all

x ∈ R3, such that ‖x‖ = 2
3+
√
3
. Obviously, 0 6∈ ∇M , but 0 ∈ co (∇M ). Extensive searching

over the set Q in the lower bound formula has revealed that for M defined above, µ∆(M) is

approximately 0.87326. This counterexample proves that for every block structure ∆ satisfying

S + F ≥ 4, there exist matrices M with

µ∆(M) < inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

.

9.3 S = 0, F = 3 (Doyle, 1982)

In this problem, for every matrix M , ∇M ⊂ R2, of the form

∇ =

{[

η∗H1η
η∗H2η

]

∈ R2 : η ∈ Cr, ‖η‖ = 1

}

⊂ R2 (9.4)

for some integer r, and Hermitian matrices H1 and H2 ∈ Cr×r. In (Doyle, 1982), it is shown that

this set is always convex, so that the upper bound is exactly equal to µ∆(M). For completeness,

the results needed to prove this are stated below.

Begin with some notation from (Doyle, 1982). For any positive integer r, define the sets P r :=

{x ∈ Cr : ‖x‖ = 1} and Sr :=
{

v ∈ Rr+1 : ‖v‖ = 1
}

. If H1, H2, . . . , Hq are Hermitian matrices

in Cr×r, define a function fH :P r→Rq by

fH(η) :=











η∗H1η
η∗H2η

...
η∗Hqη











∈ Rq (9.5)

for each η ∈ P r.

Lemma 9.3 Let q be a positive integer. Let ai, ci ∈ R, and bi ∈ C for i = 1, . . . , q. For each i,

define a Hermitian 2× 2 matrix Hi by

Hi :=

[

ai bi
b̄i ci

]

Then there exists a vector d ∈ Rq and a matrix V ∈ Rq×3 such that

fH
(

P 2
)

:=
{

fH (η) : η ∈ P 2
}

=
{

d+ V u : u ∈ S2
}

.

where fH is defined in (9.5).

Lemma 9.4 Let d ∈ R2 and V ∈ R2×3. Then the set
{

d+ V u : u ∈ S2} ⊂ R2 is convex.

Hence, for q = 2 and r = 2, the set f
(

P 2
) ∈ R2 is convex. For a block structure with S =

0, F = 3, the set ∇ is always of the form f (P r) ∈ R2 (ie. q = 2). Recall though, that r is the

multiplicity of the maximum singular value. Conceivably, this can be any positive number, hence

the above reasoning needs to be generalized for r > 2.
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Theorem 9.5 Let r be any positive integer. Let H1, H2 ∈ Cr×r be Hermitian matrices. Then
the set

fH (P r) =

{[

η∗H1η
η∗H2η

]

∈ R2 : η ∈ Cr, ‖η‖ = 1

}

(9.6)

is convex.

9.4 S = 1, F = 1

Consider a block structure of one repeated scalar block, and one full block, S=F =1. Recall the

definition of ∇M , equation (8.6). With this structure, the set ∇M will always be of the form

∇ = {Aηη∗A∗ −Bηη∗B∗ : η ∈ Cr, ||η|| = 1} (9.7)

for some given r > 0 and A,B ∈ Cr1×r. It is easy to see that in general, ∇ is not convex. For

instance, take A = I and B = 0. However the following is always true.

Theorem 9.6 Let ∇ be defined as in (9.7), for arbitrary matrices A and B of appropriate

dimensions. If 0 ∈ co (∇), then 0 ∈ ∇.

Proof: Suppose that 0 ∈ co (∇). Then, for some integer p, there exist nonnegative αi with
∑p
i=1 αi = 1 and vectors ηi ∈ Cr with ||ηi|| = 1 such that

p
∑

i=1

αi (Aηiηi
∗A∗ −Bηiηi∗B∗) = 0 (9.8)

which is rewritten as

A

(

p
∑

i=1

αiηiηi
∗
)

A∗ = B

(

p
∑

i=1

αiηiηi
∗
)

B∗ (9.9)

Since the αi are nonnegative, and not all 0, the dyad summation in (9.9) is a positive

semidefinite matrix that is not zero. Let X
1
2 be its Hermitian, positive semidefinite square

root. Therefore AX
1
2X

1
2A∗ = BX

1
2X

1
2B∗. Hence, there is a unitary matrix V such that

AX
1
2 = BX

1
2V . Let v be an eigenvector of V (with eigenvalue ejθ ) such that X

1
2 v 6= 0,

and define u := X
1
2 v. Note that u is nonzero. This gives Au = ejθBu, which implies that

0 ∈ ∇. ]

This theorem, along with the LFT machinery developed earlier, can be used to give µ-based

derivations of several standard results in linear systems theory, such as the Bounded Real Lemma

and the Kalman-Yacobovitch-Popov Lemma. These are relatively straightforward exercises and

will not be pursued further here.

9.5 S = 2, F = 0

The block structure considered has S = 2 and F = 0. A cumbersome example which established

the same conclusion appeared in (Anderson, Agothoklis, et al, 1986). The example presented
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here is minimal, in the sense that no smaller problem (“smaller” meaning dimension of blocks

and M) could be a counterexample (by results in section 9.4). The dimension of each repeated

scalar block is 2.

(a) Let a ∈ (0, 1) and γ ∈ (0, 1) be given. Define the matrix M ∈ R4×4 by

M :=









0 1 0 1
γ 0 γ 0
2a 0 a 0
0 −2a 0 −a









Define a block structure ∆2 := {δ2I2×2 : δ2 ∈ C}.

(b) For all ∆2 ∈ B2 the LFT S (M,∆2) is well defined, and appears as

S (M,∆2) =









0
1− aδ2
1 + aδ2

γ
1 + aδ2
1− aδ2

0









. (9.10)

Note that for each such ∆2 = δ2I2, the spectral radius of S (M,∆2) is simply
√
γ, which

by assumption is less than 1. With respect to the structure

∆ := {diag [δ1I2, δ2I2] : δi ∈ C} ,

Theorem 4.3 implies that µ∆(M) < 1.

(c) Consider the product of two linear fractional transformations with different ∆2’s in B2.

S (M,−I2) S (M, I2) =











γ
(1 + a)2

(1− a)2
0

0 γ
(1− a)2
(1 + a)











For any γ ∈ (0, 1), it is easy to choose a ∈ (0, 1) so that the spectral radius of the above

product is greater than 1. For such choices, then, we must have

inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

≥ 1,

where D be the scaling set associated with ∆. Otherwise, by Lemma 4.9, the spectral

radius of any product of these LFT’s would be less than 1.

Remark 9.7 A deeper analysis can show that by proper choice of γ and a, the value of

inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

can be made arbitrarily close to 1 +
√
2 while µ∆(M) < 1.
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9.6 S = 1, F = 2

Next is an example for a block structure with S = 1 and F = 2. Again, the example here is

minimal — no smaller example could be a counterexample for this block structure. It is broken

down into 8 facts.

(a) Let ∆2 = {diag [δ1, δ2] : δi ∈ C}. Then for any complex τ 6= 0,

µ∆2

([

0 1
τ

τ 0

])

= 1.

(b) Let a ∈ C with |a| < 1. Define G on |δ| ≤ 1 as

G(δ) =

[

0 1+aδ
1−aδ

1−aδ
1+aδ 0

]

(9.11)

Note that everywhere in the unit disk, G is defined and looks like
[

0 1
τ

τ 0

]

. Hence from

(a)

sup
|δ|≤1

µ∆2 (G(δ)) = 1

(c) G(δ) in (9.11) can be written as a linear fractional transformation. In particular, define the

matrix M by

M :=









−a 0 −2a 0
0 a 0 2a
0 1 0 1
1 0 1 0









(9.12)

It is simple to verify that for each |δ| ≤ 1, G(δ) = S (δI2,M).

(d) Define ∆1 := {δI2 : δ ∈ C}, and ∆2 := {diag [δ1, δ2] : δi ∈ C} and ∆ the augmentation of

the two sets. Certainly µ∆(M) makes sense (dimensions are compatible), and µ∆(M) ≥ 1,

since µ2 (M22) = 1. Using (b) and (c), and Theorem 4.3, gives µ∆(M) ≤ 1. Therefore

µ∆(M) = 1.

(e) Define the usual scaling sets D1 and D2 compatible with ∆1 and ∆2. For any D2 ∈ D2

D
1
2
2 S (δI2,M)D

− 1
2

2 =













0

√

d1
d2

1 + aδ

1− aδ
√

d2
d1

1− aδ
1 + aδ

0













(9.13)

Hence, with some simple calculus, it is easy to verify that for any β ≥ 1,

sup
|δ|≤ 1

β

σ̄

(

D
1
2
2 S (δI2,M)D

− 1
2

2

)

≥ β + |a|
β − |a| .

(f) Fact: Let γ > 0. If there is a ∆1 ∈∆1, σ̄ (∆1) ≤ 1
γ

such that

• I −M11∆1 is invertible
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• σ̄ [S (∆1,M)] ≥ γ

then

inf
D1∈D1

σ̄

[(

D
1
2
1 0
0 I

)

(

M11 M12

M21 M22

)

(

D
− 1

2
1 0
0 I

)]

≥ γ.

This fact is simply the contrapositive of Lemma 4.9.

(g) If we choose a β ≥ 1 such that β+|a|
β−|a| ≥ β, then we can apply the results from (e) and (f)

above to conclude that

inf
Di∈Di

σ̄









D
1
2
1 0

0 D
1
2
2





(

M11 M12

M21 M22

)





D
− 1

2
1 0

0 D
− 1

2
2







 ≥ β.

The logic is as follows: first suppose β is chosen so that β+|a|
β−|a| ≥ β. Then from equation

(9.13) we know that for every D2 ∈ D2, there is a δ ∈ C with |δ| ≤ 1
β
such that

σ̄

(

D
1
2
2 S (δI2,M)D

− 1
2

2

)

≥ β

This satisfies the conditions of (f), therefore, for each D2 ∈ D2

inf
D1∈D1

σ̄









D
1
2
1 0

0 D
1
2
2





(

M11 M12

M21 M22

)





D
− 1

2
1 0

0 D
− 1

2
2







 ≥ β. (9.14)

Carrying out the infimum over D2 in (9.14) yields

inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

≥ β

where D is the diagonal augmentation of D1 and D2. Therefore the question becomes:

“What is the largest β such that β+|a|
β−|a| ≥ β ?” Simple algebra gives the largest β as β =

|a|+1+
√
|a|2+6|a|+1

2 . Note that as |a| ↗ 1 , the quantity β ↗ 1 +
√
2.

(h) In summary: Let ε > 0. Choose a ∈ C, |a| < 1 such that

|a|+ 1 +
√

|a|2 + 6|a|+ 1

2
> 1 +

√
2− ε.

Define M as in (9.12). Then, with respect to the augmented structure described in (d),

µ∆(M) = 1 but inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

> 1 +
√
2− ε.

9.7 M ∈ Rn×n, S = 0, F = 2

IfM is real, and the block structure ∆ consists of two full blocks, then the smallest perturbation

∆ ∈∆ making I −M∆ singular will actually be a real matrix, rather than complex. The proof

is rather simple using the ∇ set. We also note that this result can be found in (Redheffer, 1959).

An elementary result from linear algebra is the key idea.
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Lemma 9.8 Suppose r is a positive integer, and H ∈ Rr×r is symmetric. Then

{η∗Hη : η ∈ Cr, ‖η‖ = 1} =
{

ηTHη : η ∈ Rr, ‖η‖ = 1
}

In view of this, suppose M ∈ R(n+m)×(n+m), ∆ = {diag [∆1,∆2] : ∆1 ∈ Cn×n,∆2 ∈ Cm×m} and
the optimal D scaling has been computed. Note that in a 2-block problem, if the infimum is not

achieved, then it must be that eitherM12 = 0 orM21 = 0, and µ∆(M) = max {σ̄ (M11) , σ̄ (M22)}.
Then, with singular vectors, it is possible to construct a real perturbation of the form ∆ :=

diag [∆1, 0] or ∆ := diag [0,∆2] such that I − M∆ is singular, and σ̄ (∆) = 1

µ∆(M)
. Next,

consider the case when the infimum is acheived. Let D be the optimal scaling, and define

W := D
1
2MD−

1
2 . Since the optimal D scaling is of the form diag [d1In, Im], where d1 > 0, it is

clear that W is still real. Hence, 0 ∈ co (∇W ). Then, for some U ∈ R(n+m)×r, V ∈ R(n+m)×r,

W = σ1UV
∗ + U2Σ2V

∗
2

and

µ∆(M) = σ1 = σ̄ (W ) .

If U and V are partitioned with respect to the block structure as

U =

[

E1

E2

]

, V =

[

F1
F2

]

then ∇W is

∇W := {η∗ (E∗1E1 − F ∗1F1) η : η ∈ Cr, ‖η‖ = 1}
By assumption, the D scaling is optimal, so 0 ∈ co (∇W ) = ∇W . Using the lemma, this implies

there is a η ∈ Rr, with ‖η‖ = 1 such that ‖Eiη‖ = ‖Fiη‖ for i = 1, 2. It is easy then to construct

real, orthogonal matrices Q1 and Q2 such that QiEiη = Fiη. Defining Q := diag [Q1, Q2] yields

det

(

I −
(

1

σ1
Q

)

M

)

= 0

which shows what we had claimed — in the two-block (full blocks) µ problem, with M real, the

minimizing perturbation may be taken to be a real matrix.

The next theorem is a mild generalization of these ideas.

Theorem 9.9 Let ∆R ∈ Rn×n be a given structure, and define the following 4 augmented
structures:

∆rrr = {diag [∆R,∆1,∆2] : ∆R ∈∆R,∆1 ∈ Rn1×n1 ,∆2 ∈ Rn2×n2}

∆rrc = {diag [∆R,∆1,∆2] : ∆R ∈∆R,∆1 ∈ Rn1×n1 ,∆2 ∈ Cn2×n2}

∆rcr = {diag [∆R,∆1,∆2] : ∆R ∈∆R,∆1 ∈ Cn1×n1 ,∆2 ∈ Rn2×n2}

∆rcc = {diag [∆R,∆1,∆2] : ∆R ∈∆R,∆1 ∈ Cn1×n1 ,∆2 ∈ Cn2×n2}

Then for M ∈ R(n+n1+n2)×(n+n1+n2),

µ∆rrr (M) = µ∆rrc (M) = µ∆rcr (M) = µ∆rcc (M)

Proof: The proof follows from the previous discussion and Theorem 4.3. ]
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9.8 M ∈ Rn×n, S = 0, F = 3

Unfortunately, the argument used above breaks down in this case, and no longer may the smallest

perturbation be assumed real. The following is from (Skogestad, 1987) and (Packard and Doyle,

1990). The perturbation set is 3 1× 1 blocks. Let U, V ∈ R3×2 be

U =





0 β
γ α
γ −α



 , V =





−β 0
α −γ
α γ





where α, γ, β ∈ R, and have been chosen so that UTU = V TV = I2 (that is easy to do). Define

M := UV T ∈ R3×3. Then σ̄ (M) = 1, and η ∈ C2, ‖η‖ = 1, parametrized by

η =

[

ejψ cos θ
ejφ sin θ

]

gives

∇M =

{[ −β2 cos 2θ
(

γ2 − α2) cos 2θ + 4 cos (ψ − φ) γα cos θ sin θ

]

: θ, ψ, φ ∈ R
}

It is easy to see that 0 ∈ ∇M , by choosing θ = 2n+1
4 π and ψ − φ = 2m+1

2 π for any integers n,m.

The only vectors η which lead to 0 ∈ ∇M are

η =

[ ±jejφ 1√
2

±ejφ 1√
2

]

which is always complex. Consequently, the only matrices satisfying ∆ ∈ ∆, σ̄ (∆) = 1, and

I −M∆ singular are complex perturbations.

9.9 M ∈ Rn×n, S = 1, F = 1

Again, the smallest perturbations are in general complex. Suppose G(z) is a stable, n’th order,

SISO transfer function with ‖G‖∞ = 1, |G(1)| < 1, and |G(−1)| < 1. The state-space matrix M

of this transfer function will have µ∆(M) = 1, but all of the perturbations ∆ = diag [δ1In, δ2]

satisfying σ̄ (∆) = 1, and det (I −M∆) = 0 will be complex.

9.10 Optimal scalings for inf
D∈D

σ̄
(

D
1
2MD− 1

2

)

with M ∈ Rn×n

If the matrix M is real, then the minimum point in the convex hull of ∇M is always real, so each

block of the optimal D ∈ D can be chosen to be real. The proof is very simple.

Theorem 9.10 Let DR be the set of real, symmetric members of D. If M is real, then

inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

= inf
DR∈DR

σ̄

(

D
1
2

RMD
− 1

2

R

)

. (9.15)
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Proof: Let D ∈ D be given, with D = Dr + jDi, and σ̄
(

D
1
2MD−

1
2

)

< β. Note that Dr =

DT
r > 0, Dr ∈ DR, and Di = −DT

i . Then

MT (Dr + jDi)M − β2 (Dr + jDi) < 0. (9.16)

Hence, the real part of (9.16) is also symmetric, negative definite and

λmax

(

MTDrM − β2Dr

)

< 0

which implies that

σ̄

(

D
1
2
rMD

− 1
2

r

)

< β,

so the infimums are the same. ]

10 Transfer functions, state space matrices, µ and Robust Per-

formance

In this section we begin by establishing some relationships between transfer function matrices

and matrices made up of state-space realizations. We have already seen one instance of such

a connection. In Section 4, it was proven that a finite dimensional linear system is stable, and

has ‖·‖∞ < 1 if and only if the structured singular value of the state space system matrix is

less than 1 (recall, the block structure consisted of a repeated scalar block, and a full block).

We explore this type of manipulation in more detail. With these relationships established, the

robust performance properties of an uncertain linear system are investigated, and stated in terms

of structured singular value tests. Finally, the connections between the µ theory and Riccati

equations for testing H∞ norm bounds are briefly reviewed.

10.1 Transfer Function matrices and State Space matrices

Let M ∈ C(n+m)×(n+m) be given, partitioned as usual, and define the transfer function matrix

G(z) := S
(

1

z
In,M

)

=M22 +M21 (zIn −M11)
−1M12.

Suppose that ∆ ⊂ Cm×m is a block structure. Define ∆P as

∆P := {diag [δ1In,∆] : δ1 ∈ C,∆ ∈∆} .

Applying Theorems 4.3 and 6.5, the following statements are equivalent:

1. ρ (M11) < 1 and max
θ∈[0,2π]

µ∆
(

G(ejθ)
)

< 1

2. ρ (M11) < 1 and max
θ∈[0,2π]

µ∆
(

S
(

ejθIn,M
))

< 1

3. ρ (M11) < 1 and max
δ1∈C
|δ1|≤1

µ∆(S (δ1In,M)) < 1
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4. µ∆P (M) < 1

Hence, the peak value of µ of a frequency response is related to a larger µ problem on the state

space matrix of the transfer function in question. This generalizes the example in Section 4,

where the ‖·‖∞ norm (maximum singular value across frequency) was considered.

Similar results are possible when the upper bound is used instead of µ. Suppose that D ⊂ Cm×m

is the scaling set associated with ∆, as in (3.6). For any D ∈ D, define

MD :=

[

M11 M12D
− 1

2

D
1
2M21 D

1
2M22D

− 1
2

]

Also, let
∆σ := Cm×m

∆N := {diag [δ1In,∆2] : δ1 ∈ C,∆2 ∈ Cm×m}
Note that µ∆σ (·) is simply the maximum singular value, and that ∆N is µ-simple. Then, the

following are equivalent.

1. ρ (M11) < 1 and inf
D∈D

∥

∥

∥D
1
2GD−

1
2

∥

∥

∥

∞
< 1

2. ρ (M11) < 1 and inf
D∈D

max
δ∈C
|δ|≤1

σ̄
[

D
1
2S (δIn,M)D−

1
2

]

< 1

3. ρ (M11) < 1, and inf
D∈D

max
δ∈C
|δ|≤1

µ∆σ (S (δIn,MD)) < 1

4. inf
D∈D

µ∆N (MD) < 1

5. inf
D∈D

X∈Cn×n,X=X∗>0

σ̄

([

X
1
2 0

0 D
1
2

]

M

[

X−
1
2 0

0 D−
1
2

])

< 1

Also, if M ∈ R(n+m)×(n+m), then the scalings can be chosen to be real, so that the following are

equivalent.

1. ρ (M11) < 1 and inf
D∈D

∥

∥

∥D
1
2GD−

1
2

∥

∥

∥

∞
< 1

2. ρ (M11) < 1 and inf
D∈DR

∥

∥

∥D
1
2GD−

1
2

∥

∥

∥

∞
< 1

3. inf
D∈DR

X∈Rn×n,X=XT>0

σ̄

([

X
1
2 0

0 D
1
2

]

M

[

X−
1
2 0

0 D−
1
2

])

< 1

These relationships are very significant. Consider the simple situation where D := {Im}, in other

words, an unscaled transfer function. The equivalences imply that the linear system is stable,
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and has ‖·‖∞ norm less than 1 if and only if there is a state-coordinate transformation (X
1
2 )

such that the transformed state space matrix
[

X
1
2 0

0 Im

]

M

[

X−
1
2 0

0 Im

]

.

is a contraction. This is intimately related to the characterization of H∞ norms using Riccati

equations, (Willems, 1971a). This will be discussed further at the end of this section.

10.2 State-Space/Frequency Domain tests for Robust Performance

We begin with a matrix M ∈ C(n+np+m)×(n+np+m), partitioned as below, relating several vari-

ables of a linear system by





xk+1

ek
zk



 =





M11 M12 M13

M21 M22 M23

M31 M32 M33









xk
dk
wk



 (10.1)

The uncertainty is modeled by a feedback loop from z to w through a structured ∆ ∈∆, where∆

is a prescribed m×m block structure (note that we have assumed that the number of disturbance

inputs equals the number of errors, and that the perturbation matrices are square — this can all

be trivially generalized to include nonsquare situations). Hence, the uncertain system’s output

error ek is driven by the input disturbance dk, and the state equations are given as
[

xk+1

ek

]

= S (M,∆)

[

xk
dk

]

(10.2)

With respect to the partition, S (M,∆) is

[

M11 M12

M21 M22

]

+

[

M13

M23

]

∆(I −M33∆)−1
[

M31 M32
]

This is shown in Figure 10. Define three augmented block structures, ∆N , ∆S and ∆P as

∆N :=
{

diag [δ1In,∆2] : δ1 ∈ C,∆2 ∈ Cnp×np}

∆S := {diag [∆N ,∆] : ∆N ∈∆N ,∆ ∈∆}
∆P :=

{

diag [∆2,∆] : ∆2 ∈ Cnp×np ,∆ ∈∆}

along with the corresponding scaling sets DN , DS and DP . Motivation for this notation is that

the subscript N could mean norm or nominal, S could mean state-space, and P could mean

performance. We begin with the main result for linear, time-invariant perturbations, (Doyle,

Wall, et al, 1982), (Doyle and Packard, 1987).

Theorem 10.1 (Time-invariant, robust performance) Given the matrices and sets as de-

fined above, the following conditions are equivalent:

1. there exists a constant β ∈ [0, 1) such that for each fixed ∆ ∈ B∆, the uncertain system
(10.2) is well-posed (I −M33∆ is invertible), stable, and for zero-initial-state-response, the

error e satisfies ‖e‖2 ≤ β‖d‖2
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2. µ∆S (M) < 1 (SSµ test)

3. ρ (M11) < 1 and max
θ∈[0,2π]

µ∆P

(

S
(

ejθIn,M
))

< 1 (FDµ test).

Proof: Introduce two intermediate statements:

1.5 µ∆(M33) < 1 and max
∆∈B∆

µ∆N (S (M,∆)) < 1

2.5 ρ (M11) < 1 and max
δ∈C,|δ|≤1

µ∆P (S (δIn,M)) < 1

The proof that 1⇔ 1.5 follows from the definition of stability for a finite dimensional, linear,

time-invariant, discrete time system, the relationship between H∞ norms and l2 gain, and

the equivalence between µ and the ‖ · ‖∞ norms for transfer functions, as developed in

section 10. Items 1.5, 2 & 2.5 are equivalent by Theorem 4.3, while 2.5 and 3 are equivalent

by Theorem 6.5.

Remark 10.2 Item 1 in this theorem is the desired robust performance conclusion. Item 1.5

rephrases Item 1, using the µ characterization of ‖·‖∞ < 1. Items 2 and 3 are known respectively

as the “state-space µ test” (SSµ) and the “frequency domain µ test”( FDµ). Both of these tests

involve computing µ for various matrices. Recall that upper and lower bounds for µ are all that

can be computed. Hence, we will investigate the additional conclusions that are possible when

the σ̄
(

D
1
2MD−

1
2

)

upper bound is used to implement the computational tests of items 2 and 3.

Remark 10.3 The FDµ test is what is most commonly associated with the structured singular

value and is often referred to as a µ-plot. It is essentially a Bode magnitude plot with µ (·)
replacing σ̄ (·) or | · |. The SSµ test was introduced in (Doyle and Packard, 1987).

10.3 Upper bounds

Using the σ̄
(

D
1
2MD−

1
2

)

upper bound in place of µ, we can derive sufficient conditions for robust

performance. The resulting state-space upper bound test (SSUB) and the frequency domain

upper bound test (FDUB) are

2’ inf
DS∈DS

σ̄

(

D
1
2

SMD
− 1

2

S

)

< 1 (SSUB)

3’ max
θ∈[0,2π]

inf
DP∈DP

σ̄

[

D
1
2

P S
(

ejθIn,M
)

D
− 1

2

P

]

< 1 (FDUB)

While the various µ tests given in Theorem 10.1 are all equivalent, these two upper bound tests

are very different. In particular, recalling the results from the previous section on scaling

a transfer function with a constant similarity transformation, the SSUB condition is actually

equivalent to

inf
DP∈DP

max
θ∈[0,2π]

σ̄

[

D
1
2

P S
(

ejθIn,M
)

D
− 1

2

P

]

< 1 (10.3)
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This condition is much stronger than the frequency domain upper bound test, since in (10.3),

the same DP ∈ DP must work for all θ ∈ [0, 2π]. For that reason, we call equation (10.3)

the frequency domain constant D test, FDCD. Listed, from strongest to weakest, the various

conditions are:

inf
DS∈DS

σ̄

(

D
1
2

SMD
− 1

2

S

)

< 1 (SSUB)

m
inf

DP∈DP

max
θ∈[0,2π]

σ̄

[

D
1
2

P S
(

ejθIn,M
)

D
− 1

2

P

]

< 1 (FDCD)

⇓ ⇑/
max
θ∈[0,2π]

inf
DP∈DP

σ̄

[

D
1
2

P S
(

ejθIn,M
)

D
− 1

2

P

]

< 1 (FDUB)

⇓ ⇑/
max
θ∈[0,2π]

µ∆P

(

S
(

ejθIn,M
))

< 1 (FDµ)

m
µ∆S (M) < 1 (SSµ)

m
Condition 1 in Theorem 10.1

Note that in both instances where the implication is given as ⇓ rather than m, there truly is a

gap. Also, there are two such gaps between the state space tests, SSUB and SSµ, while there

is only one gap between the frequency domain tests, FDUB and FDµ. The top conditions are

the strongest, and are equivalent to a very strong form of robust Lyapunov stability, (Boyd and

Yang, 1989).

Given that the upper bound is computable, one might ask which test should be used, the state

space upper bound test, SSUB (equivalently FDCD), or the frequency domain upper bound test,

FDUB? The answer depends on the assumptions that are made about the perturbations. If the

SSUB is used and the bound satisfied, then the robust performance conclusion holds for time-

varying perturbations (and with proper interpretation, cone bounded nonlinear perturbations).

Theorem 10.4 Let M be given as in (10.1), along with an uncertainty structure ∆. If there is

a DS ∈ DS such that

σ̄

(

D
1
2

SMD
− 1

2

S

)

= β < 1 (10.4)

then there exist constants c1 ≥ c2 > 0, such that for all perturbation sequences {∆k}∞k=0 with

∆k ∈∆, σ̄ (∆k) <
1
β
, the time-varying, uncertain system

[

xk+1

ek

]

= S (M,∆k)

[

xk
dk

]

(10.5)

is zero-input, exponentially stable, and furthermore, if {dk}∞k=0 ∈ l2, then

c2
(

1− β2
)

‖x‖22 + ‖e‖22 ≤ β2‖d‖22 + c1‖x0‖2

In particular, ‖e‖22 ≤ β2‖d‖22 + c1‖x0‖2.
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Proof: Note that DS will appear as DS = diag [D1, d2I,D], where D1 = D∗1 > 0, D1 ∈ Cn×n.
Using equation (10.4), it is easy to show that regardless of ∆k ∈∆, σ̄ (∆k) <

1
β
, the norms

of pertinent vectors satisfy

‖D
1
2
1 xk+1‖2 + ‖ek‖2 ≤ β2

(

‖D
1
2
1 xk‖2 + ‖dk‖2

)

Let c1 and c2 be the square roots of the maximum and minimum singular values of D1.

Summing and taking limits yields the final result. ]

Unfortunately, this test (like the SSµ) does not scale in a convienient manner. In other words,

if there is a DS ∈ DS such that σ̄

(

D
1
2

SMD
− 1

2

S

)

= 1.001, it is impossible to conclude anything

about the robust performance characteristics of this system. It is necessary to scale the per-

turbation channels and/or disturbance channels (this amounts to scaling rows of M to produce

a modified system Mscl) until a DS can be found such that σ̄

(

D
1
2

SMsclD
− 1

2

S

)

< 1, and then

robust performance with respect to the scaled down uncertainty and performance norm is guar-

anteed. For example, let L = diag
[

In, 0.8Inp ,
1
1.2Im

]

. Suppose that there is a a DS ∈ DS such

that σ̄

(

D
1
2

SLMD
− 1

2

S

)

< 1. Then it is possible to conclude that for perturbations satisfying

σ̄ (∆k) ≤ 0.8, the error is bounded by, ‖e‖22 ≤ (1.2)2‖d‖22 + c1‖x0‖2.

Since FDUB is a weaker condition than the SSUB, it is “closer” to the exact condition for robust

performance under linear, time-invariant perturbations. Therefore, if the perturbations are better

modelled as linear, time-invariant perturbations, this frequency domain test is more appropriate.

Also, this test scales, that is, if

max
θ∈[0,2π]

inf
DP∈DP

σ̄

[

D
1
2

P S
(

ejθIn,M
)

D
− 1

2

P

]

= β

then the conclusion is that for all ∆ ∈ ∆, with σ̄ (∆) < 1
β
, the perturbed system is stable, and

the ‖ · ‖∞ norm of the transfer function from the disturbance to error is ≤ β. Hence, peak values

other than 1 still give useful information.

However, if the frequency domain test is used, no general conclusion can we reached about time-

varying perturbations, (Packard and Doyle, 1990). In (Safonov, 1984), some connections between

the frequency domain test and robust stability to cone bounded nonlinearities are developed.

For reference, continuous-time versions of these theorems, as well as theorems with more sophis-

ticated assumptions about the structured perturbations are found in (Chen and Desoer, 1982),

(Doyle, Wall, et al, 1982), (Foo and Postlethwaite, 1988), (Khargonekar and Kaminer, 1991),

and (Bamieh and Dahleh, 1992).

10.4 H∞ norms, Riccati Equations, and LMIs

We now consider the relationship between the bounds given above and Riccati equations for

computing the H∞ norm of the discrete time system

xk+1 = Axk +Buk
yk = Cxk +Duk
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Let M ∈ C(n+m)×(n+m) be the block state space matrix of the system

M =

[

A B
C D

]

Assume that A is stable (ρ(A) < 1) and define

E := A+B(I −D′D)−1D′C

G := −B(I −D′D)−1B′

Q := C ′(I −DD′)−1C

Suppose E is nonsingular and define a symplectic matrix as

S :=

[

E +GE′−1Q −GE′−1
−E′−1Q E′−1

]

It can be shown that the following statements are equivalent:

(a) ‖D + C (zIn −A)−1B‖∞ < 1

(b) S has no eigenvalues on the unit circle and ‖C(I −A)−1B +D‖ < 1

(e) ∃X ≥ 0 with I −D′D −B′XB > 0, (I +GX)−1E stable, and

E′XE −X − E′XG(I +XG)−1XE +Q = 0

(f) ∃X > 0 such that I −D′D −B′XB > 0 and

E′XE −X − E′XG(I +XG)−1XE +Q < 0

(g) ∃X > 0 such that

[

A B
C D

]′ [
X 0
0 I

] [

A B
C D

]

−
[

X 0
0 I

]

< 0

(h) ∃T nonsingular such that

σ̄

([

TAT−1 TB
CT−1 D

])

= σ̄

(

[

T 0
0 I

] [

A B
C D

] [

T 0
0 I

]−1)

< 1

Note that (e) is a Riccati equation, and the SSUB in (h) is equal to µ because of the block

structure. It is equivalent to (g), which is 2 LMIs. The connection between (f) and (g) is just

the Schur complement formula for positive definite matrices.

11 Quadratic Lyapunov functions for uncertain systems

Some computable results on the quadratic stability of linear systems under structured, linear

fractional uncertainty are possible. Again, consider positive integers n and m, and suppose
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M ∈ C(n+m)×(n+m). Let ∆ be a structured perturbation set with ∆ ⊂ Cm×m. Assume that

µ∆ (M22) < 1, so that S (M,∆) is well defined for all ∆ ∈ B∆.

Let {∆k}∞k=0 with ∆k ∈ B∆ be given, along with an initial condition x0 ∈ Cn, define xk ∈ Cn

by the uncertain difference equation

xk+1 = S (M,∆k)xk. (11.1)

In this formulation, the matrix M11 may be thought of as a nominal state space model and

∆k ∈ B∆ as a norm bounded perturbation from an allowable perturbation class, ∆. The

matrices M12,M21, and M22 reflect prior knowledge on how the unknown perturbation affects

the nominal dynamics, M11.

Definition 11.1 The pair (M,∆) is quadratically stable if there exists a P ∈ Cn×n, with
P = P ∗ > 0, such that

max
∆∈B∆

λmax ([S (M,∆)]∗ P S (M,∆)− P ) < 0

The definition simply implies that there is a single quadratic Lyapunov function, V (x) := x∗Px,
that establishes the stability of the entire set

{S (M,∆) : ∆ ∈ B∆}
Equivalently, the definition implies that there is a positive definite P ∈ Cn×n such that

max
∆∈B∆

σ̄
(

P
1
2 S (M,∆)P−

1
2

)

= γ < 1

Hence, with respect to a single coordinate change defined by P
1
2 , S (M,∆k) is always a contrac-

tion, regardless of ∆k ∈ B∆. As the uncertain system in (11.1) evolves, the Euclidean norm of

P
1
2xk, ‖P

1
2xk‖2, decreases by at least a factor of γ every time step k, and hence robustness with

respect to time varying perturbations is guaranteed. Note that if bothM is real, and∆ ⊂ Rm×m,
then by using an argument similar to that in Theorem 9.10, the matrix P , if it exists, will also

be real.

Using Theorem 4.10 and the fact that in some instances ( when 2S + F ≤ 3), µ and the upper

bound are always equal, we can establish neccessary and sufficient conditions for a pair to be

quadratically stable, in terms of a scaled state-space test, and/or a scaled H∞ norm test. Several

cases are outlined below, along with a chain of equivalences which produces the result. As usual,

define the transfer function G(z) as

G(z) :=M22 +M21 (zI −M11)
−1M12.

Note that this is the transfer function of the linear system that the perturbation ∆k “sees.”

11.1 Real state-space data, 1 full real perturbation

Suppose that M ∈ R(n+m)×(n+m), and that ∆ = Rm×m. Assume that σ̄ (M22) < 1. For any

P ∈ Cn×n with P = P ∗ > 0, let

MP :=

[

P
1
2M11P

− 1
2 P

1
2M12

M21P
− 1

2 M22

]

.
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Also, define

∆R :=
{

diag [∆1,∆2] : ∆1 ∈ Rn×n,∆2 ∈ Rm×m} .

Then, using Theorem 4.3 and the results from sections 9.7 and 10, the following statements are

equivalent:

1. There exists P ∈ Cn×n, P = P ∗ > 0 such that max
∆∈B∆

σ̄
[

P
1
2 S (M,∆)P−

1
2

]

< 1

2. There exists P ∈ Rn×n, P = P T > 0 such that max
∆∈B∆

σ̄
[

P
1
2 S (M,∆)P−

1
2

]

< 1

3. inf
P∈Rn×n
P=PT>0

max
∆∈B∆

σ̄
[

S
(

MP ,∆
)]

< 1

4. inf
P∈Rn×n
P=PT>0

µ∆R

(

MP
)

< 1

5. inf
P∈Rn×n
P=PT>0

inf
d1>0

σ̄

(

[ √
d1 0
0 Im

]

MP

[

1√
d1

0

0 Im

])

< 1

6. inf
P∈Rn×n
P=PT>0

inf
d1>0

σ̄

([ √
d1P

1
2 0

0 Im

]

M

[

1√
d1
P−

1
2 0

0 Im

])

< 1

7. inf
P∈Rn×n
P=PT>0

σ̄

([

P
1
2 0
0 Im

]

M

[

P−
1
2 0

0 Im

])

< 1

8. ρ (M11) < 1 and ‖G‖∞ < 1

The main point here is that the uncertain system is quadratically stable with respect to full

block, norm bounded, real perturbations (condition 1) if and only the H∞ norm of the transfer

function that the perturbation sees is less than 1 (condition 8). Conditions 2-7 are intermediate

steps which link the two conditions together. This same style is used in Sections 11.2-11.4.

11.2 Complex state-space data, 1 full complex perturbation

Suppose that M ∈ C(n+m)×(n+m), and that ∆ = Cm×m. Assume that σ̄ (M22) < 1. For any

P ∈ Cn×n with P = P ∗ > 0, let

MP :=

[

P
1
2M11P

− 1
2 P

1
2M12

M21P
− 1

2 M22

]

.

Also, define

∆C :=
{

diag [∆1,∆2] : ∆1 ∈ Cn×n,∆2 ∈ Cm×m} .

Then, using Theorem 4.3 and the results from sections 9.1 and 10, the following statements are

equivalent:
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1. There exists P ∈ Cn×n, P = P ∗ > 0 such that max
∆∈B∆

σ̄
[

P
1
2 S (M,∆)P−

1
2

]

< 1

2. inf
P∈Cn×n
P=P ∗>0

max
∆∈B∆

σ̄
[

S
(

MP ,∆
)]

< 1

3. inf
P∈Cn×n
P=P ∗>0

µ∆C

(

MP
)

< 1

4. inf
P∈Cn×n
P=P ∗>0

inf
d1>0

σ̄

(

[ √
d1 0
0 Im

]

MP

[

1√
d1

0

0 Im

])

< 1

5. inf
P∈Cn×n
P=P ∗>0

inf
d1>0

σ̄

([ √
d1P

1
2 0

0 Im

]

M

[

1√
d1
P−

1
2 0

0 Im

])

< 1

6. inf
P∈Cn×n
P=P ∗>0

σ̄

([

P
1
2 0
0 Im

]

M

[

P−
1
2 0

0 Im

])

< 1

7. ρ (M11) < 1 and ‖G‖∞ < 1

Some interesting connections between different notions of stability can be made at this point. To

do so, consider the definition of robust stability given below:

Definition 11.2 The pair (M,∆) is robustly stable if

max
∆∈B∆

ρ (S (M,∆)) < 1.

Recall the example in section 4, which demonstrated an application of the Main Loop theorem.

In that example, LFT arguments were given to prove that the pair (M,Cm×m) is robustly stable

if and only if ‖G‖∞ < 1, where G(z) = M22 +M21 (zIn −M11)
−1M12. That result, along with

section 11.1 and this section combine to form the following theorem, (Willems, 1973), (Popov,

1962), (Khargonekar, Petersen, et al, 1990):

Theorem 11.3 Suppose that M ∈ R(n+m)×(n+m), with σ̄ (M22) < 1. Define G(z) := M22 +

M21 (zIn −M11)
−1M12. Then, the conditions

1. The pair (M,Rm×m) is quadratically stable

2. The pair (M,Cm×m) is quadratically stable

3. The pair (M,Cm×m) is robustly stable

4. ρ (M11) < 1, and ‖G‖∞ < 1

are equivalent.

It is important to note that conditions (1) and (3) become incomparable (neither implies the

other) when the perturbation set becomes structured, (Packard and Doyle, 1990), (Rotea, Corless,

et al, 1991).
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11.3 Complex state-space data, 1 repeated complex perturbation

Suppose M ∈ C(n+m)×(n+m) and ∆ = {δIm : δ ∈ C}. Let ∆S be defined as

∆S :=
{

diag [∆1, δ2Im] : ∆1 ∈ Cn×n, δ2 ∈ C
}

Then, using Theorem 4.3 and the results from sections 9.4 and 10, the following statements are

equivalent:

1. There exists P ∈ Cn×n, P = P ∗ > 0 such that max
δ2∈C
|δ2|≤1

σ̄
[

P
1
2 S (M, δ2Im)P

− 1
2

]

< 1

2. inf
P∈Cn×n
P=P ∗>0

max
δ2∈C
|δ2|≤1

σ̄
[

S
(

MP , δ2Im
)]

< 1

3. inf
P∈Cn×n
P=P ∗>0

µ∆S

(

MP
)

< 1

4. inf
P∈Cn×n
P=P ∗>0

inf
D2∈Cm×m

D2=D∗
2>0

σ̄

([

In 0

0 D
1
2
2

]

MP

[

In 0

0 D
− 1

2
2

])

< 1

5. inf
P∈Cn×n
P=P ∗>0

inf
D2∈Cm×m

D2=D∗
2>0

σ̄

([

P
1
2 0

0 D
1
2
2

]

M

[

P−
1
2 0

0 D
− 1

2
2

])

< 1

6. ρ (M11) < 1 and inf
D2∈Cm×m

D2=D∗
2>0

∥

∥

∥

∥

D
1
2
2 GD

− 1
2

2

∥

∥

∥

∥

∞
< 1

In this section, the matrix S (M, δIm) is a rational function of the scalar, complex parameter δ.

We have shown that quadratic stability with respect to such a parameter can be ascertained by

determining if the convex set

{

X =

[

P 0
0 D2

]

: P ∈ Cn×n, D2 ∈ Cm×m, X = X∗ > 0,M∗XM −X < 0

}

is nonempty.

11.4 Complex state-space data, 2 complex full blocks

Suppose that M ∈ C(n+m)×(n+m), and ∆ is

∆ :=
{

diag [∆1,∆2] : ∆i ∈ Cmi×mi
} ⊂ Cm×m

and let

∆C :=
{

diag [∆0,∆] : ∆0 ∈ Cn×n,∆ ∈∆}

Then, using Theorem 4.3 and the results from sections 9.3 and 10, the following statements are

equivalent:
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1. There exists P ∈ Cn×n, P = P ∗ > 0 such that max
∆∈B∆

σ̄
[

P
1
2S (M,∆)P−

1
2

]

< 1

2. inf
P∈Cn×n
P=P ∗>0

max
∆∈B∆

σ̄
[

S
(

MP ,∆
)]

< 1

3. inf
P∈Cn×n
P=P ∗>0

µ∆C

(

MP
)

< 1

4. inf
P∈Cn×n
P=P ∗>0

inf
d1,d2>0

σ̄











√
d1In 0 0
0

√
d2Im1 0

0 0 Im2



MP







1√
d1
In 0 0

0 1√
d2
Im1 0

0 0 Im2












< 1

5. inf
P∈Cn×n
P=P ∗>0

inf
d1,d2>0

σ̄













√
d1P

1
2 0 0

0
√
d2Im1 0

0 0 Im2






M







1√
d1
P−

1
2 0 0

0 1√
d2
Im1 0

0 0 Im2












< 1

6. inf
P∈Cn×n
P=P ∗>0

inf
d2>0

σ̄













P
1
2 0 0
0
√
d2Im1 0

0 0 Im2






M







P−
1
2 0 0

0 1√
d2
Im1 0

0 0 Im2












< 1

7. ρ (M11) < 1 and

inf
d2>0

∥

∥

∥

∥

∥

[ √
d2Im1 0
0 Im2

]

G

[

1√
d2
Im1 0

0 Im2

]∥

∥

∥

∥

∥

∞
< 1

Hence quadratic stability with respect to two full complex blocks of uncertainty is equivalent to

an optimally scaled small gain condition. Note that for any α > 0,

{

d2 > 0 :

∥

∥

∥

∥

∥

[ √
d2Im1 0
0 Im2

]

G

[

1√
d2
Im1 0

0 Im2

]∥

∥

∥

∥

∥

∞
< α

}

is either empty or is a convex set (an interval).

11.5 Conclusions

Some of these results are well-known, and available in the literature, although the treatment here

is more unified. The results relating quadratic stability and ‖·‖∞ for full block perturbations

(sections 11.1 and 11.2) are proven for SISO systems in (Popov, 1962), (Willems, 1973), and for

MIMO systems in (Khargonekar, Petersen, et al, 1990). The results for 2 complex blocks is from

(Packard and Doyle, 1990), while the result for a single complex repeated scalar perturbation,

is, to our knowledge, new. Similar results are easily derived for continuous-time systems, using

a bilinear transform. By defining

B :=

[

In
√
2In√

2In In

]

,
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and noting that

A∗P + PA < 0 ↔ P−
1
2A∗P

1
2 + P

1
2AP−

1
2 < 0

↔ σ̄
(

S
(

B, P 1
2AP−

1
2

))

< 1

↔ σ̄
(

P
1
2 S (B, A)P− 1

2

)

< 1

the results relating ‖·‖∞ (possibly a scaled norm, as in sections 11.4 and 11.3) and quadratic

stability can be derived in the same manner.

12 µ-Synthesis via Optimally Scaled LFTs

This paper so far has only considered µ-analysis. The problem of µ-synthesis is much more

difficult, and will be discussed in this section. In general, µ-synthesis methods have focused on

minimizing µ of some rational matrix over stabilizing controllers using the frequency-domain

upper bound (FDUB) and have been successfully used in many applications. Nevertheless, the

theoretical basis for µ-synthesis is much weaker than for µ-analysis. This section will consider

a µ-synthesis problem involving only constant matrices, to explore the potential difficulties in a

simple setting. For an introduction to µ-synthesis in the rational case, see (Balas, Doyle, et al,

1991).

Suppose that a matrixM depends on a free parameter Q. How can Q be found so as to minimize

µ∆(M)? In this section we consider this problem whenM depends on a free matrix Q in a linear

fractional manner, and we attempt to minimize the upper bound for µ∆(M), rather than µ∆(M)

itself. This problem is first reduced to an affine, rather than linear fractional, transformation,

and then partially solved using a elementary extension to matrix dilation theory (Davis, Kahan,

et al, 1982), (Power, 1982). In the lemmas to follow, F denotes either the real or complex field.

Lemma 12.1 Let R ∈ Fn×n, U ∈ Fn×r, T ∈ Ft×r, and V ∈ Ft×n, where r, t ≤ n. Let Z ⊂ Fn×n

be a prescribed set of positive definite matrices. Then

inf
Q∈Fr×t,Z∈Z
det(I−TQ)6=0

σ̄
[

Z
1
2

(

R+ UQ (I − TQ)−1 V
)

Z−
1
2

]

= inf
Q̃∈Fr×t,Z∈Z

σ̄
[

Z
1
2

(

R+ UQ̃V
)

Z−
1
2

]

Proof: For any T ∈ Ft×r, the closure of the set

{

Q (I − TQ)−1 : Q ∈ Fr×t, det (I − TQ) 6= 0
}

is all of Fr×t, which shows that the infimums are the same. ]

Hence, in order to solve general linear fractional transformation optimization problems, only

affine transformations need be considered. We also assume (without loss in generality) that U is

full column rank, and that V is full row rank. The first lemma addresses the unscaled problem,

and comes from (Davis, Kahan, et al, 1982), (Power, 1982):
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Lemma 12.2 Let R,U, V , be given as above. Suppose U⊥ ∈ Fn×(n−r) and V⊥ ∈ F(n−t)×n are

chosen such that
[

U U⊥
]

,

[

V
V⊥

]

are both invertible, and that U ∗U⊥ = 0r×(n−r), V V
∗
⊥ =

0t×(n−t). Let α > 0. Then

inf
Q∈Fr×t

σ̄ [(R+ UQV )] < α

if and only if
λmax

[

V⊥
(

R∗R− α2I)V ∗⊥
]

< 0
λmax

[

U∗⊥
(

RR∗ − α2I)U⊥
]

< 0
(12.1)

The next lemma partially answers the synthesis question when similarity scalings are included.

The proof is in (Doyle, 1985(a)) and (Packard, Zhou, et al, 1992).

Lemma 12.3 Let R,U, V, U⊥ and V⊥ be given as above. Let α > 0 and Z ⊂ Fn×n be a given
set of positive definite, Hermitian matrices. Then

inf
Q∈Fr×t
Z∈Z

σ̄
[

Z
1
2 (R+ UQV )Z−

1
2

]

< α

if and only if there is a Z ∈ Z such that

λmax

[

V⊥
(

R∗ZR− α2Z
)

V ∗⊥
]

< 0 (12.2)

and

λmax

[

U∗⊥
(

RZ−1R∗ − α2Z−1
)

U⊥
]

< 0. (12.3)

Note that the condition imposed on Z in equation (12.2), is convex, therefore, if the set Z is itself

convex, determining solutions of equation (12.2) is a convex feasability problem. Similarly, the

condition imposed on Z−1 in equation (12.3) is convex in Z−1, so if the set Z−1 is convex, this

is also a convex feasability problem. The convexity of these “one-sided” problems is exploited

in (Packard, Zhou, et al, 1992) and (Packard, Zhou, et al, 1991), where some robust control

problems are formulated, and recast as convex optimizations, using this scaled linear fractional

transformation approach. Unfortunately, the complete problem, which involves both Z and Z−1

conditions, is more difficult, and at the moment, unsolved. In some special cases, it may be

possible to obtain computable necessary and sufficient conditions. For instance, if

Z =

{[

z1In1 0
0 In2

]

: z1 > 0

}

,

then both conditions define open intervals in the real line, and it is easy to check if these intervals

intersect (moreover, the intersection is either empty or convex). More generally though, the set

of “good Z’s” may be a disconnected set. Specifically, given matrices R,U and V , and α > 0,

let Zgood be

Zgood(α) :=

{

Z ∈ Z : inf
Q∈M(C)

σ̄
(

Z
1
2 (R+ UQV )Z−

1
2

)

< α

}

It is this set, Zgood(α), which may be disconnected. In particular, let α := 1, and

Z = {diag [z1, z2, 1] : z1 > 0, z2 > 0} ,
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and define matrices

R =







1 −1 0

−1 1 10
√
2

0
√
2 0






, U = V T =







1√
2

0
−1√
2

0

0 1







Applying the formulae, we have that Z ∈ Zgood if and only if zi > 0, z1+z2 > 2, and 1
z1
+ 1
z2
> 200.

Clearly, the region of good Z’s in the z1-z2 plane consists of two slivers near the axis, which is not

a connected set. Unlike the analysis problem the level sets of scalings in the synthesis problem

are not convex. We are currently investigating the implications of this property.

13 Summary of some related work

This section outlines some work related to this paper, beginning with a brief history of the early

development of the µ theory. This outline is not intended to be exhaustive or complete, but simply

to touch on a few of the topics nearest to this paper that were not considered in detail. LMIs are

discussed as potentially unifying theoretical and computational tools. The relationship between

µ and quadratic versus L1 notions of robust performance and robust stability is considered next,

followed by µ with mixed real and complex perturbations. The section ends with model validation

and generalizations of µ.

13.1 History of early work

In this section, we will briefly review the ideas that most influenced the original development of

the µ theory. These remarks are drawn mainly from earlier papers ((Doyle, 1982), (Doyle, Wall,

et al, 1982), and (Fan, Tits, et al, 1991)), but are repeated here for the convenience of the reader.

An obvious influence on the development of the µ theory was the work in so-called Robust

Multivariable Control Systems from the late ‘70s, (See, for example, [IEEE]) which in turn drew

heavily on earlier work in stability analysis (e.g. (Zames, 1965), (Desoer and Vidyasagar, 1975),

(Willems, 1971b), (Safonov, 1980)), particularly the small gain and circle theorems. These

theorems established sufficient conditions for stability of nonlinear components connected in

feedback. The emphasis in the early robustness work was on small gain type conditions involving

singular values that were both necessary and sufficient for stability of sets of linear systems

involving a single norm bounded but otherwise unconstrained perturbation. Another emphasis

for much of the robustness theory was on using singular value plots as a means of generalizing

Bode magnitude plots to multivariable systems.

While methods based on singular values were gaining in popularity, it became evident that their

assumption of unstructured uncertainty was too crude for many applications. Furthermore, the

problem of robust performance was not adequately treated. Freudenberg, Looze, et al (1982)

studied these issues using differential sensitivity and suggested that something more than sin-

gular values was needed. It was a natural step to introduce structured uncertainty of the type

considered in this paper (see (Safonov, 1978) for an early treatment). The so-called conservative-

ness of singular values was based the fact that the unscaled bounds ρ (M) ≤ µ∆(M) ≤ σ̄ (M)
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could be arbitrarily far off, and research was begun to provide improved estimates of µ, with an

initial focus on the nonrepeated, complex case (S = 0).

It was obvious that the sharper bounds

max
Q∈Q

ρ(QM) ≤ max
∆∈B∆

ρ (∆M) = µ∆(M) ≤ inf
D∈D

σ̄
(

D
1
2MD−

1
2

)

(13.1)

could help alleviate the conservativeness somewhat. The upper bound is similar to the multiplier

methods that were used in nonlinear stability analysis to reduce the conservativeness of small

gain type methods (Willems, 1971b), but the use of both upper and lower bounds, and the

questions of how close the bounds were and how to efficiently compute them were new and open.

As we saw in Section 6, the equality of the lower bound and µ is relatively straightforward and

not surprising. What is remarkable, even in retrospect, is that the upper bound is often close to

µ and is in fact equal to µ for certain simple block structures.

There was substantial numerical evidence for the upper bound results before they were proven.

Engineers at Honeywell’s Systems and Research Center, particularly Joe Wall, began routinely

using a simple generalization of Osborne’s routine (Osborne, 1960) to approximate the upper

bound in (13.1) and gradient search methods to find a local maximum for the lower bound. Os-

borne’s algorithm minimizes the Frobenius norm rather than the maximum singular value, and

the scalings produced can be used to approximate the upper bound. The consistent closeness of

the bounds, usually within a few percent, suggested that there was a deeper connection between

the bounds. Ironically, minimizing the Frobenius norm remains the cheapest method of approx-

imating the upper bound. Safonov (1982) suggested a somewhat less general approximation to

the upper bound based on Perron eigenvectors which is comparable to Osborne in speed and

accuracy.

While the µ framework arises naturally in studying robust stability with structured uncertainty,

the use of µ to treat directly the problem of robust performance with structured uncertainty was

first explicitly noted in (Doyle, Wall, et al, 1982). As noted above, this is a consequence of the

intimate connection between µ and LFTs (Doyle, 1985(b), and Packard, 1988). In retrospect, it is

clear that Redheffer (1959 and 1960) had developed the foundation of this connection in his work

on LFTs in the late 1950’s. In fact, as noted earlier, Redheffer had even proven that the upper

bound in (13.1) was an equality for the case where S = 0 and F = 2. While Redheffer’s results

were not well-known in the control community until the µ theory was already well-developed, the

rediscovery of his work has since had an important influence, not only on the further development

of µ but in other areas as well (e.g. see (Doyle, Glover, et al, 1989)).

13.2 Linear Matrix Inequalities

We have seen in this paper how LMIs arise naturally in both µ analysis and synthesis in the

computation of upper bounds. The general LMI problem involves sets of the form

X =

{

diag [X1, . . . , XS , x1I, . . . , xF I] :
Xi ∈ Cri×ri , Xi = X∗i , xj ∈ R

}

(13.2)
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and a list of matrices Ai, Bi, Ci, Di. The simplest general LMI problem is to determine whether

there exists X ∈ X such that

A∗iXAi −B∗iXBi +XCi + C∗iX +Di < 0 ∀i

Depending on the particular problem, the < may be a ≤. It is easy to see that these inequality

conditions produce a set of solutions which are convex, which makes LMIs attractive computa-

tionally. (In the synthesis problem in Section 12, there are additional constraints that destroy

convexity.) This is a decision problem; the answer is yes or no. Sometimes, however, the Ai,

Bi, Ci, and Di are functions of a real, positive parameter α, and we want to know, for example,

what is the largest α for which there is no solution. Typically this involves an iteration on α,

and consequently, answering the decision question many times.

Recall that the upper bound for µ can be rewritten as an LMI of the form

∃X > 0 : M∗XM − β2X < 0 (13.3)

It has recently been show that a number of other problems can be reduced to solving LMIs. In

(Wang, Doyle, et al, 1991) balanced truncation model reduction is extended to uncertain LFT

systems, with similar extensions of the parametrization of all stabilizing controllers in (Lu, Zhou,

et al, 1991). The LFT/LMI machinery not only extends the standard results in important ways, it

simplifies the proofs, often substantially. Exciting new developments in handling real parametric

uncertainty (Young, Newlin, et al, 1991) and model validation (Newlin and Smith, 1991) will

be outlined in subsequent subsections. In all cases, LMIs play a central role in computation of

solutions. We believe that LMIs will replace Lyapunov and Riccati equations, which are both

special cases of LMIs, as the central computational problems in robust control.

The problem of solving LMIs can be viewed in a number of ways, from solving a set of linear

equalities to minimizing the eigenvalues of a Hermitian matrix function (Beck, 1991). One of the

goals of our current research is to develop fast, reliable algorithms for solving LMIs which are

comparable to what is available for solving Riccati and Lyapunov equations. Several researchers

have already begun looking at this question.

One approach to solving LMIs is to convert them to eigenvalue optimization problems which

results in convex, non-differentiable functions for which numerous optimization methods have

been developed. Boyd and Yang (1989) compare the efficiency of two convex programming

algorithms, Kelley’s cutting-plane algorithm and Shor’s subgradient algorithm. Boyd and Yang

find Kelley’s cutting-plane algortihm to be most effective of the two, since it converges in the

fewest number of iterations. An alternative convex programming method which has been used

for LMI problems is the ellipsoid method, which is also a cutting-plane method. Although these

methods are easy to implement, they are generally too slow to warrant considerable attention.

Overton (1990) studies the optimality conditions, and develops quadratically convergent algo-

rithms for LMI’s.

Recently, interior point methods have been applied to LMI problems with favorable results.

Interior and exterior point methods are used to convert constrained minimization problems to

differentiable, unconstrained minimization problems, to which optimization algorithms such as

Newton’s method are applied (Nesterov and Nemirovsky, 1989 and 1990). Jarre (1991) has used
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an interior point algorithm for a problem similar to LMIs which required substantially fewer

iterations than does the cutting-plane algorithm used by Boyd and Yang. A similar approach is

taken by Boyd and El Ghaoui (1991). We are currently investigating alternative functions for

solving LMIs using both interior and exterior point methods (Beck, 1991).

13.3 µ, Q, and L1

We have considered several different measures of robust stability and performance in Section 10

from SSµ to the SSUB. We will concentrate on these two measures, and compare them briefly

with another very important measure that has emerged in the L1 theory of robust performance

with structured uncertainty. Space constraints preclude a review of the L1 theory, which has

undergone a dramatic and impressive development in the last 5 years in the work of Khammash

and Pearson (1991), and Dahleh and Khammash (1991) and references therein. For simplicity,

we will refer to the SSµ test as µ and the SSUB upper bound as Q (since it is directly related to

quadratic stability), and focus our attention on the robust performance problem, which clearly

includes robust stability as a special case.

The µ, Q, and L1 tests all guarantee robust performance, but with different assumptions about

perturbations and the norm used for measuring the performance objective. The µ and Q theories

are used for L2 induced norms, while the L1 theory is used for L∞ induced norms. A second

distinction is that the µ theory treats LTI perturbations, and the Q and L1 handle Nonlinear

and Time-Varying perturbations (NTV). This is summarized in the table below.

LTI NTV
L2 µ Q
L∞ µ L1

The cases on the diagonal, L2/LTI and L∞/NTV, are both necessary and sufficient for robust

performance. The L∞/LTI case is necessary and sufficient for robust stability, but the robust

performance question is open. The Q case (L2/NTV) is sufficient for robust performance, and

recent results, obtained independently using very different methods by Shamma and Megretskii,

suggest that it is necessary as well. Recall that in general, µ is computed using bounds, but that

Q involves solving LMIs, so is attractive computationally. L1 is also easy to compute, involving

only the evaluation of L1 norms and finding the spectral radius of a positive matrix (Khammash

and Pearson, 1991).

As a final comparison, it can be easily shown that the tests are ordered, with

µ ≤ Q ≤ L1 (13.4)

The interpretation of (13.4) for a given system is that if the Q test passes, the µ test must pass,

and similarly for L1 and Q. It was shown above that µ ≤ Q. The inequality Q ≤ L1 follows from

the equivalence of the SSUB and the FDCD problems, the fact that the L1 norm of a convolution

kernal is greater than the H∞ norm of it’s transform, and the results in (Khammash and Pearson,

1991). The inequalities are typically strict and it is possible for the gaps to be arbitrarily large.
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It is not clear exactly what the implications of these results are for control design or for further

research. Clearly there is a need for more refined results, and the ability to both combine LTI

and NTV uncertainty and exploit additional structure such as the slowly-varying nature of some

perturbations. The results in (Safonov, 1984), (Packard and Teng, 1990) and (Packard and

Zhou, 1989) suggest how this might be done in the LFT/µ/Q framework, but much more work

is needed. We also need more precise modeling and ID methods to exploit the detailed structure

of the uncertainty in our models.

If one accepts Q as the measure of robust performance, a rich theory can be developed, with

generalizations to uncertain systems of the conventional theories of robust stability and perfor-

mance, balanced realizations and model reduction (Wang, Doyle, et al, 1991), stabilization (Lu,

Zhou, et al, 1991), and model validation (Newlin and Smith, 1991). It is not surprising that

the easiest generalizations of standard results to uncertain LFT systems is done using the Q
framework. Indeed, most of the standard results rely on Q machinery, but since µ and Q are

the same for these simple block structures, we are less aware of the distinction. Once we begin

extending our results to systems with uncertainty, the distinction becomes significant. Of course,

a key feature of the Q theory is that computation involves solving LMIs.

13.4 µ with real perturbations

In recent years a great deal of interest has arisen with regard to robustness problems involving

parametric uncertainty. These problems involve uncertain parameters that are not only norm

bounded, but also constrained to be real. Robustness problems involving parametric uncertainty

can be reformulated as µ problems where the block structured uncertainty description is now

allowed to contain both real and complex blocks. This mixed µ problem can have fundamentally

different properties from the complex µ problem studied in this paper (where the block struc-

tured uncertainty description contains only complex blocks), and these properties have important

implications for computation. In this section we give a brief review of some recent results in this

area.

It is now well known that real µ problems can be discontinuous in the problem data (see (Barmish,

Khargonekar, et al, 1989)). As well as adding computational difficulties to the problem this sheds

serious doubt on the usefulness of real µ as a robustness measure in such cases, since the system

model is always a mathematical abstraction from the real world, and is computed to finite preci-

sion. However it is shown in (Packard and Pandey, 1991) that mixed µ problems containing some

complex uncertainty are, under some mild assumptions, continuous in the problem data (whereas

purely real µ problems are not). This is reassuring from an engineering viewpoint since one is

usually interested in robust performance problems (which therefore contain at least one complex

block), or robust stability problems with some unmodeled dynamics, which are naturally covered

with complex uncertainty. Thus in problems of engineering interest, the potential discontinuity

of mixed µ should not arise.

Recent results in (Rohn and Poljak) show that a special case of computing µ with real pertur-

bations only is NP complete. While these results do not apply to the complex only case, it is

certainly true that the general mixed problem is NP hard as well. These results strongly suggest

that it is futile to pursue exact methods for computing µ in the purely real or mixed case for
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even moderate (less than 100) numbers of real perturbations, unless one is prepared not only to

solve the real µ problem but also to make fundamental contributions to the theory of computa-

tional complexity. Furthermore, it may be that even approximate methods must have worst-case

combinatoric complexity (Demmel).

These results do not mean, however, that “practical” algorithms are not possible, where “prac-

tical” means avoiding combinatoric (nonpolynomial) growth in computation with the number of

parameters for all of the problems which arise in engineering applications. Practical algorithms

for other NP hard problems exist and typically involve approximation, heuristics, branch-and-

bound, or local search. Results presented in (Young, Newlin, et al, 1991) strongly suggest that

an intelligent combination of all these techniques can yield a practical algorithm for the mixed

problem.

Upper and lower bounds for mixed µ have recently been developed, and they take the form of

generalizations of the bounds for the complex µ problem presented here (i.e. by applying the

mixed µ bounds to complex µ problems one recovers the standard complex µ bounds). The

upper bound was presented in (Fan, Tits, et al, 1991) and involves minimizing the eigenvalues

of a Hermitian matrix. This can also be recast as a singular value minimization which involves

additional scaling parameters to the complex µ upper bound. It is shown in (Young and Doyle,

1990) that the mixed µ problem can be recast as a real eigenvalue maximization and that this

in turn can be tackled via a power algorithm, giving a lower bound for mixed µ. A practical

computation scheme for these bounds has recently been developed (Young, Newlin, et al, 1992)

and will be available shortly in a test version in conjunction with the µ-Tools toolbox (Balas,

Doyle, et al, 1991).

The quality of these bounds, and their computational requirements as a function of problem size,

are explored in (Young, Newlin, et al, 1991). While the bounds are usually accurate enough for

engineering purposes, in a significant number of cases of interest, they are not. This is in contrast

with the purely complex nonrepeated case, where no examples of problems with large gaps have

been found. The use of Branch and Bound schemes to improve upon existing bounds has been

suggested by several authors (see (Balakrishnan, Boyd, et al, 1991) and (Sideris and Peña, 1989,

1990) (de Gaston and Safonov, 1988) and references therein). There are some important issues

and tradeoffs to be considered in implementing such a scheme, which can greatly impact the

performance. A selection of results from a fairly extensive numerical study of these issues is

presented in (Young, Newlin, et al, 1991), and a Branch and Bound scheme is proposed which

should form the basis of a practical computation scheme for mixed µ. This will be further

explored in (Newlin, Young and Doyle).

The upper and lower bounds from complex µ theory not only serve as computational schemes,

but are theoretically rich as well. Connections between the bounds and various aspects of linear

system theory have been established, and further work in this area appears to have great promise.

A theoretical study of the mixed µ bounds may yield new insight as well, and this is a subject of

current research. Initial results in this area are presented in (Young and Doyle), where it is seen

that mixed µ inherits many of the (appropriately generalized) properties of complex µ, although

as has already been seen, in some aspects the mixed µ problem can be fundamentally different

from the complex µ problem.

Problems involving robustness properties of polynomials with coefficients perturbed by real pa-
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rameters have received a great deal of attention in the literature. This type of robustness problem

leads to a (real or) mixed µ problem. Several celebrated “Kharitonov-type” results have been

proven for special cases of this problem, such as the “affine parameter variation” problem (see

(Barlett, Hollet, et al, 1988) for example), and the solutions typically involve checking the edges

or vertices of some polytope in the parameter space. It can be shown that restricting the allowed

perturbation dependence to be affine leads to a real µ problem on a transfer matrix which is rank

one.

The rank one mixed µ problem is studied in detail by Chen, Fan, et al, 1991, (see also the

references therein). The authors develop an analytic expression for the solution to this problem,

which is not only easy to compute, but has sublinear growth in the problem size. They are then

able to solve several problems from the literature, noting that these problems can be treated as

special cases of “rank one µ problems” and are thus “relatively easy to solve”. Even the need to

check (a combinatoric number of) edges is shown to be unnecessary. While many of these results

were apparently well-known, (Chen, Fan, et al, 1991) provides a direct comparison between the

polynomial and µ-based approaches.

This rank one case is also studied by Young and Doyle, where it is shown that for such problems

µ equals its upper bound and is hence equivalent to a convex problem. This reinforces the results

of (Chen, Fan, et al, 1991) and offers some insight into why the problem becomes so much more

difficult when we move away from the “affine parameter variation” case to the “multilinear” or

“polynomial” cases (Sideris and Peña, 1989 and 1990). These correspond to µ problems which

are not necessarily rank one, and hence may no longer be equal to the upper bound and so may

no longer be equivalent to a convex problem. These results also underline why there are no

practical algorithms based on “edge-type” theorems, as the results appear to be relevant only to

a very special problem. Furthermore, even in the very special “affine parameter case” there are

a combinatoric number of edges to check.

13.5 Generalizations of µ

In this section we review an alternative formulation of µ due to Fan and Tits (1986) and use

it to consider one of several possible generalizations of µ. The most important motivation for

this generalization comes from the model validation problem (see (Smith and Doyle, 1992), and

(Newlin and Smith, 1991) for background).

For simplicity, the Fan-Tits formulation is considered here for the full block only case (S = 0).

For any vector or matrix A with n rows let Ai denote the rows of A corresponding to the ith

block of ∆. Thus Ai has mi rows. Also, let P := In be the identity matrix. An alternative

expression for µ is

µ = max
x
{ α : α‖xi‖ ≤ ‖Mix‖ ∀i ∈ {1, ..., F}} (13.5)

To see that this is equivalent to (3.3) in Definition 3.1, note that when det(I −M∆) = 0 there is

an x 6= 0 that satisfies (I −∆M)x = 0. This x achieves the maximum in (13.5). Conversely, any

x that achieves the maximum provides a way to constructing a a ∆: set ∆i equal to the dyad

that satisfies xi = ∆iMix.

An LMI formulation of the upper bound follows easily from (13.5). Again, we consider the full
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block only case.

α ≤ µ
⇐⇒ ∃x 6= 0 : α2‖xi‖2 ≤ ‖Mix‖2 ∀i
⇐⇒ ∃x 6= 0 : x∗(M∗

iMi − α2P ∗i Pi)x ≥ 0

⇐⇒ ∃x 6= 0 : x∗(M∗DM − α2D)x ≥ 0 ∀D ∈ D

where D :=

(

D =
∑

i

diP
∗
i Pi : di > 0 ∀i

)

= D

It follows that

α > µ ⇐= ∃D ∈ D : M∗DM − α2D < 0 (13.6)

This is the same as the LMI in equation (3.11).

The generalization of µ that we will study depends on a block structure as before along with an

index that specifies certain blocks as special or distinguished (Newlin and Smith, 1991). As an

example, consider equation 13.5 in the case of two full blocks:

µ = max
x
{ α : α‖x1‖ ≤ ‖M1x‖ & α‖x2‖ ≤ ‖M2x‖}

Suppose the second block has been designated as special. Then the generalization is

µ = max
x
{ α : α‖x1‖ ≤ ‖M1x‖ & α−1‖x2‖ ≥ ‖M2x‖}

In this example, the designation of the second block as special means that the direction of the

second inequality is reversed and the scaling changed.

The lower bound for this generalization of µ, though notationally awkward, is very similar to the

standard lower bound, and a power algorithm is being investigated. There is no upper bound

similar to the σ̄
(

D
1
2MD−

1
2

)

upper bound, but there is a generalization of the LMI above. Again

consider our two block example.

α ≤ µ

⇐⇒ ∃x 6= 0 :

{

α2‖x1‖2 ≤ ‖M1x‖2
α−2‖x2‖2 ≥ ‖M2x‖2

⇐⇒ ∃x 6= 0 :

{

x∗(M∗
1M1 − α2P ∗1P1)x ≥ 0

x∗(M∗
2M2 − α−2P ∗2P2)x ≤ 0

⇐⇒ ∃x 6= 0 : x∗(M∗DM − P 2(α)D)x ≥ 0 ∀D ∈ D
where D := ( d1P

∗
1P1 + d2P

∗
2P2 : d1 > 0; d2 < 0 )

and P (α) = α2P ∗1P1 + α−2P ∗2P2

It follows that

α > µ ⇐= ∃D ∈ D : M∗DM − P (α)2D < 0

We see that D is just as in the case of standard LMI upper bound for µ except that we require

for some blocks that Di < 0 rather than Di > 0. It is expected that algorithms for computing

positive definite solutions to LMIs will be easily generalized to solve this problem.
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ẏ +

k

m
y =

F

m
m

6F

»»XX
»» ck

Figure 4: Mass-Spring-Damper System

F=0 F=1 F=2 F=3 F=4
S=0 YES YES YES NO

Section 9.1 Section 9.3 Section 9.2
S=1 YES YES NO NO NO

Section 9.4 Section 9.6
S=2 NO NO NO NO NO

Section 9.5

Table 1: Guaranteed equality between µ and the upper bound
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