
Strategies for Parallel and

Numerical Scalability of CFD Codes

Ralf Winkelmann�, Jochem H�auser y

Department of Transportation, University of Applied Sciences

and

Center of Logistics and Expertsystems GmbH

http://www.cle.de

Karl-Scharfenberg Stra�e 55-57

38229 Salzgitter, Germany

Roy D. Williams

Center of Advanced Computing Research

California Institute of Technology

Pasadena, USA

May 18, 1998

�This paper contains a major part of the PhD work of the �rst author.
yPaper to be published in special issue of Computer Methods in Applied Mechanics

and Engineering on Parallel Computational Methods in Flow Simulation and Modeling,

North-Holland, ed. Tayfun E. Tezduyar.

1

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Solution Methods . 4

2 The Navier{Stokes Equations 5

3 Parallel Scalability for Large Scale CFD Applications 7
3.1 Parallelization Strategies for CFD Codes 8
3.2 Domain Decomposition 9
3.3 Message Passing Methods 12
3.4 Strategy for Dynamic Load Balancing 14

3.4.1 Task Mapping Decision 18
3.4.2 Task Migration . 18

4 Numerical Scalability for Large Scale CFD Applications 20
4.1 The Navier{Stokes Equations as a Set of ODEs 24
4.2 Domain Decomposition for Eigenvalue

Spectrum Compression and Preconditioning 24

5 Results Using the Tangled Web Approach 25
5.1 NACA Airfoil Inviscid Flow 26

5.1.1 Acceleration by Grid Sequencing 26
5.1.2 Acceleration by Domain Decomposition 26
5.1.3 Acceleration by Adaptive Coupling 27

5.2 NACA Airfoil Viscous Flow 28
5.2.1 Acceleration by Grid Sequencing 28
5.2.2 Acceleration by Domain Decomposition 30
5.2.3 Acceleration by Adaptive Coupling 31
5.2.4 Acceleration by Dynamic Loadbalancing 33

5.3 Huygens Space Probe Flow Simulation 34
5.3.1 Acceleration by Domain Decomposition 34

5.4 Simulation for an SSTO Con�guration 35
5.4.1 Acceleration by Grid Sequencing 35
5.4.2 Acceleration by Domain Decomposition 36
5.4.3 Parallel E�ciency 36

2

5.4.4 Dynamic Block Management based on

Residual Values . 37

6 Conclusions and Future Work 38

ABSTRACT
In this article we discuss a strategy for speeding up the solution of the Navier-
Stokes equations on highly complex solution domains such as complete aircraft,
spacecraft, or turbomachinery equipment. We have used a �nite-volume code
for the (non-turbulent) Navier-Stokes equations as a testbed for implementation
of linked numerical and parallel processing techniques. Speedup is achieved by
the Tangled Web of advanced grid topology generation, adaptive coupling, and
sophisticated parallel computing techniques.

An optimized grid topology is used to generate an optimized grid: on the block

level such a grid is unstructured whereas within a block a structured mesh is con-

structed, thus retaining the geometrical
exibility of the �nite element method

while maintaining the numerical e�ciency of the �nite di�erence technique. To

achieve a steady state solution, we use grid-sequencing: proceeding from coarse

to �ner grids, where the scheme is explicit in time. Adaptive coupling is derived

from the observation that numerical schemes have di�ering e�ciency during the

solution process. Coupling strength between grid points is increased by using an

implicit scheme at the sub-block level, then at the block level, ultimately fully im-

plicit across the whole computational domain. Other techniques include switching

numerical schemes and the physics model during the solution, and dynamic deac-

tivation of blocks. Because the computational work per block is very variable with

adaptive coupling, especially for very complex
ows, we have implemented parallel

dynamic load-balancing to dynamically transfer blocks between processors. Sev-

eral 2D and 3D examples illustrate the functioning of the Tangled Web approach

on di�erent parallel architectures.

1 Introduction

1.1 Motivation

Computational Fluid Dynamics is becoming increasingly sophisticated. Grids
de�ne highly complex geometries, and
ows are solved involving very di�er-
ent length and time scales. The number of grid points, and thereby the

3

number of degrees of freedom, is increasing as memory of supercomputers is
growing.

During the last few years new developments in computer hardware and
architectures have led to signi�cant advances in parallel computing and mul-
tiprocessing. It is believed that parallel computing is the most important
means of reducing turn around time and computational cost of large scale
applications. Furthermore, massively parallel computing is considered to be
the key technology in tackling the grand challenges facing CFD, such as
multidisciplinary analysis and optimization.

One of the main issues in parallel CFD is the
ow simulation past very
complex con�gurations and the design of numerical algorithms which e�-
ciently exploit the capabilities of the parallel hardware. Especially in the
case of distributed memory machines comprising several hundred or even
thousands of powerful processors, this is a non-trivial task. The important
aspects in designing parallel algorithms for these architectures are partition-
ing of data (domain decomposition), communication across internal bound-
aries, as well as dynamic load balancing (see Section 3.4) and minimizing
overhead caused by both communication and computation.

1.2 Solution Methods

Regarding the solution algorithm for the Navier-Stokes equations, an ex-
plicit algorithm is easy to implement, but is numerically less e�cient than
relaxation schemes in calculating a steady state solution. Often relaxation
schemes are used, but it should be remembered that even these methods may
not converge for highly stretched grids with large cell aspect ratios of e.g.
105 or even 106, as needed in many viscous
ows.

More generally, it can be demonstrated that a single numerical scheme has
varying numerical e�ciency during the course of the solution process. The
novel feature presented in this article is to apply a sequence of numerical
strategies, called the Tangled Web approach (see Section 4). The objective
is to use the optimal scheme at each stage of the solution process, switching
(automatically) when certain criteria are met.

These numerical methods include grid sequencing, domain decomposition,
adaptive coupling (moving from an explicit scheme, to block-implicit, fully
implicit, to Newton's method), use of iterative solvers such as CG-GMRES,
along with line-searching and backtracking for root polishing.

The utilization of the outlined strategy attempts to achieve both parallel

4

and numerical scalability. While the former concept concerns good scal-
ing of solution time with the number of processors, the latter concerns good
scaling with the problem size. This is, however, generally not encountered
in practice, for example the inversion of a matrix of size N elements, needs
O(N3)
oating point operations. Obviously, no parallel architecture could
keep pace with this computational demand { when problem size scales, we
need more sophisticated algorithms to provide the numerical scalability that
we seek.

It turns out that the combination of parallel computing and advanced
solving strategies is essential for the development of e�cient CFD codes that
will serve as design tools for aerodynamic shape optimization and multidis-
ciplinary analysis { not just a single "magic bullet" strategy, but a collection
of algorithms, each applied where appropriate. In this article, we show this
approach is e�ective for a number of test-cases, manually switching between
numerical strategies. In the future we will report on criteria for automati-
cally switching over to a di�erent numerical scheme as soon as the current
scheme becomes numerically ine�cient.

2 The Navier{Stokes Equations

The equations to be solved on highly complex geometries are the Navier{

Stokes equations that read in integral form

@

@t

Z
V
U dV +

I
A(V)

F� dA = 0; (1)

whereU is the vector of
ow variables and the tensor F denotes
uxes without
reference to a particular coordinate system. A
ux can be considered as a
vector of 3 quantities that each comprise a vector of 5 variables, the so called

ux components. In a Cartesian coordinate system, the vector of the
ow
variables and the
ux vector are denoted as

Û = (�; �u; �v; �w; �e)T (2)

F̂ :=
�
F̂; Ĝ; Ĥ

�
(3)

and the symbol ^ indicates Cartesian coordinates, while Û is known as the
vector of conservative variables where � denotes density, u, v, w are the

5

Cartesian components of the velocity vector, and e denotes the internal en-
ergy. The
uxes are written as

F̂ =

0
BBBBBBB@

F̂1

F̂2

F̂3

F̂4

F̂5

1
CCCCCCCA

; Ĝ =

0
BBBBBBB@

Ĝ1

Ĝ2

Ĝ3

Ĝ4

Ĝ5

1
CCCCCCCA

; Ĥ =

0
BBBBBBB@

Ĥ1

Ĥ2

Ĥ3

Ĥ4

Ĥ5

1
CCCCCCCA

(4)

Inviscid
uxes are of the form

F̂I =

0
BBBBBB@

�u
�uu+ p
�vu+ p
�wu+ p
�uH

1
CCCCCCA

; ĜI =

0
BBBBBB@

�v
�uv + p
�vv + p
�wv + p
�vH

1
CCCCCCA

; ĤI =

0
BBBBBB@

�w
�uw + p
�vw + p
�ww + p
�wH

1
CCCCCCA

(5)

where enthalphy H = p+ �e and p denotes pressure.
The Cartesian components of the
ux tensor are of the form

F̂V =

0
BBBBBB@

0
�xx
�xy
�xz

�xxu+ �xyv + �xzw + qx

1
CCCCCCA

(6)

ĜV =

0
BBBBBB@

0
�yx
�yy
�yz

�yyv + �yxu+ �yzw + qy

1
CCCCCCA

(7)

ĤV =

0
BBBBBB@

0
�zx
�zy
�zz

�zzw + �zxu+ �zyv + qz

1
CCCCCCA
: (8)

6

To close the system, the equation of state for a calorically perfect gas is used

p = (
 � 1)�(e�
1

2
jv2j) (9)

where
 = cp=cv is the speci�c heat ratio.
The stress tensor, �, is proportional to the strain, i.e. the velocity gradi-

ents. The Cartesian components of the stress tensor are

�ij = �

@vi
@xj

+
@vj
@xi

�
2

3
�ij

@vl
@xl

!
+ (�+

2

3
�)�ij

@vl
@xl

(10)

where the summation convention was used and xi, vi denote Cartesian coor-
dinates and velocity components. The coe�cients � and � are called shear
viscosity and volume viscosity, respectively. For Newtonian
uids like air,
the Cartesian components of the viscous force are of the form

@

@xj
�ij = (�+ �)

@

@xj
(r � v) + ��vi: (11)

The following relation holds

�+
2

3
� � 0: (12)

Using Stokes' assumption, the equal sign applies in Eq.12.
As can be seen from Eqs. 1-5, the Navier{Stokes equations are nonlinear,

and give rise to contact discontinuities and (in the limit of low viscosity)
shocks, requiring special numerical algorithms.

3 Parallel Scalability for Large Scale CFD

Applications

In the following we make the assumption that the Navier{Stokes equations
have been successfully solved on a single processor architecture. The next
question then is, can the same problem be solved on a parallel architec-
ture, resulting in a quasi linear speedup, that is, can parallel scalability be
achieved. For the time being, we do not consider numerical scalability, since
parallel and numerical scalability may be con
icting issues.

Parallel scalability is the ideal condition where, for a given problem, the
product of execution time and number of processors is constant. There are

7

basically three di�erent requirements that have to be ful�lled to achieve
parallel scalability, namely: (1) the code does not contain a sequential part,
(2) communication is at zero cost (no overhead time required), and (3) each
processor has the same workload. A discussion of issues in achieving parallel
scalability can be found in [1] and [2].

In general, (1) cannot be achieved for
exible and user friendly codes
because of program startup time, global communciation operations such as
calculation of residuals and stopping criteria, and sequential I/O operations.
Obviously, time is spent on sending messages between processors. Even
if computation can be overlapped with communication, a certain amount
of work for setting up the message transfer remains. Therefore, a certain
amount of parallel ine�ciency is invariably connected with (1) and (2). In
general, assigning equal workload to processors can be achieved by redis-
tributing work during the course of the simulation. However, it has to be
realized that load balancing by itself requires computational resources.

It should be noted that with an increasing number of processors the
amount of communication increases, which might cause a nonlinear response
of the communication channels. Also, the utilization of advanced solving
strategies (see Section 4) for complicated physical phenomena in conjunction
with highly complex geometries may show a dynamic behavior with regard
to computing time per grid point. Therefore, achieving the same workload
for each processor during the computation can only be ensured by dynamic
load balancing (see Section 3.4). In addition, the numerical algorithm
might cause a nonlinear increase in communication demand.

3.1 Parallelization Strategies for CFD Codes

There are basically three ways of parallelizing a code. First, a simple and
straightforward approach is to parallelize the do loops in the code. Many
so called automatic parallelizers analyze do loops and suggest a paralleliza-
tion strategy based on this analysis. This concept, however, is not scalable
to hundreds or thousands of processors, and results in very limited speedup
[3].

Most applications in science and engineering can be described by a set of
equations in some kind of solution space. A second approach is therefore to
parallelize the numerical solution process for these equations. For example, if
a matrix-vector multiplication occurs, this multiplication could be distributed
on the various processors and performed in parallel. Again, scalability to a

8

large number of processors cannot be obtained. Moreover, this technique
would work only for large regular matrices. If a problem were represented by
a large number of smaller matrices (often the case in practice (see Fig. 17)),
parallelization would be impossible.

The third approach is denoted as domain decomposition, sometimes also
referred to as grid partitioning. The idea is simple. The solution domain
is subdivided into a set of subdomains (blocks) that exchange information
to update each other during the solution process. The numerical solution
takes place within each domain, and thus is independent of the other do-
mains. The solution space can be the actual space-time continuum, or it can
be some abstract space. For the simulation process, this space is discretized
and thus is described by a set of points. Domain decomposition is the most
general and versatile approach. It also leads to the best parallel e�ciency,
since the number of points per subdomain can be freely varied as well as the
number of subdomains per processor. A large number of codes in science
and engineering use �nite elements, �nite di�erences, or �nite volumes on
either unstructured or structured grids. Very often, the governing physical
equations are converted into a set of linear equations. The process of paral-
lelizing this kind of problem is to decompose the physical solution domain.
Software is available to e�ciently perform this process both for unstructured
and structured grids [4]. Applying this strategy results in a fully portable
code, and allows the user to switch over to new parallel hardware as soon as
it becomes available.

3.2 Domain Decomposition

As pointed out in section 3.1, domain decomposition is the most general and
versatile approach for parallelizing a CFD code. In the following the impor-
tance of domain decomposition for achieving parallel scalability is discussed
in more detail.

Today, hardware vendors are not able to produce a shared memory system
with a large number of processors (more than 128) that has good parallel
scalability if the shared memory programming model is used. Therefore, as
pointed out in 3.1, simple loop transformations and parallelization of the
numerical solution process are not appropriate for today's grand challenge
problems.

In contrast, the domain decomposition approach exhibits a high degree
of parallelism. The general strategy in the solution procedure of multiblock

9

ow solvers is to construct a halo of cells which surround each block and that
contain information from corresponding cells of neighboring blocks. This halo
of cells, updated at proper times during the numerical procedure, allows the

ow solution inside each subdomain to proceed independently. In updating
halo cells parallelism can be achieved because updates are performed locally
between pairs of processors. No global operations are necessary.

There is, however, an important aspect of this parallelization approach,
namely the geometrical complexity of the solution domain (see Fig. 2). In
the following, a brief discussion on geometrical complexity is given and how
it a�ects parallelization. If the solution domain comprises a large rectangle
or box, domain decomposition is relatively straightforward. For instance,
the rectangle can be decomposed into a set of parallel stripes, and a box
can be partitioned into a set of planes. This leads to a one-dimensional
communication scheme where messages are sent to left and right neighbors
only. However, more realistic simulations in science and engineering require
a completely di�erent behavior. For example, the calculation past an entire
aircraft (see Fig. 1) or spacecraft (see Fig. 2) leads to a partitioning of

Figure 1: Generic aircraft con�guration generated by GridPro [5].

the solution domain that results in a large number of subdomains of widely

10

Figure 2: The surface grid for the ESA/NASA Huygens space probe. The grid

comprises 561,654 gridpoints in 462 blocks. The large number of blocks is needed

because of the high degree of geometrical complexity, modeling the probe's instru-

ments to measure the composition of Titan's atmosphere in 2004 [6].

di�erent size, because of a certain grid topology, optimized for particular
ow
phenomena, i.e. the number of grid points in the various blocks, may be dif-
ferent. As a consequence, it is unrealistic to assume that a solution domain
can be partitioned into a number of equally sized subdomains [7]. On the
contrary, the set of subdomains is unordered (unstructured) on the subdo-
main level, leading to random communication among subdomains. In other
words, the communication distance cannot be limited to nearest neighbors,
but any distance on the processor topology is possible (processor topology
describes how the processors are connected, for instance as a 2D mesh, as
a torus or as a hypercube etc.). Hence, the e�ciency of the parallel algo-
rithm must not depend on nearest neighbor communication. Therefore, the
parallelization of solution domains for complex geometries requires a more
complex communication pattern to ensure a loadbalanced application. It
also requires more sophisticated message passing among neighboring blocks,
which may reside on the same, on a neighboring, or on a distant processor
(see Fig. 3). The basic parallelization concept for this kind of problem is the
introduction of a new type of boundary condition, namely the inter-domain
boundary condition that is updated in the solution process by neighboring
subdomains via message passing. Parallelization then is simply achieved by

11

the introduction of a new type of boundary condition. Thus, paralleliza-
tion of a large class of complex problems has been logically reduced to the
well known problem of specifying boundary conditions.

Group P

Block 1,1

Block 1,1

Block 1,mP

Processor PProcessor 1

Group 1

Block 1,1

Block 1,2

Block 1,m1

Figure 3: Mapping of blocks to processors for general multiblock topologies.

Blocks are assembled into a set of groups, where each group contains the same

number of grid points. Each group then is assigned to a particular processor.

Communication then has to discern between communication of blocks residing on

the same processor and between blocks that reside on a di�erent processor.

3.3 Message Passing Methods

The ParNSS code [6], written in ANSI-C, used to solve the Navier{Stokes

equations (Eq.1), uses message passing for updating halo cells. Messages are
exchanged after every iteration by using the industry standard MPI (Message
Passing Interface) library or the PVM (Parallel Virtual Machine) library. For
viscous
ow an overlap of two cells is used. However, no messages are sent
across diagonals of a block. Instead, only faces are updated and �nite di�er-
ence formulas are used to approximate diagonal terms, i.e. mixed derivatives.

The update of halo cells can be done with either of two message passing
strategies (see Fig. 4):

� BSNR (Blocking Send, Non-blocking Receive). First, the code sets up
non-blocking receives for all incoming messages. Then, looping over all
blocks for each of the six faces of a block, a message is sent to each face
of a neighboring block, except wall faces.

12

� NSBR (Non-blocking Send, Blocking Receive). Here a single loop
over all blocks is used and messages are sent as soon as information
is ready. After that, for each face of a block, again wall faces are
excepted, a blocking receive is posted. There can be no deadlock, since
the mapping between faces of neighboring blocks is one-to-one.

BSNR

#initialization loop
loop over all blocks{
 exchange halo cells
}
loop over iterations{
 loop over blocks{
 compute
 }
 loop over blocks{
 exchange halo cells
 }
}

NSBR

#initialization loop
loop over all blocks{
 send halo cells
}
loop over iterations{
 loop over blocks{
 receive halo cells (blocking)
 compute
 send halo cells (non-blocking)
 }
}
loop over blocks{
 receive halo cells
}

Figure 4: Two di�erent message passing strategies for updating halo cells are

shown.

For the BSNR method, the communication is separated from the com-
putation; all the receives are posted, then all the messages are sent. On the
other hand, for the NSBR method, each message is sent as soon as it is ready,
spreading out the communication tra�c in time. Thus we could expect that
the impact of a slow communication fabric is felt to the greatest extent for
the BSNR method.

Even though the NSBR method has the advantage of spreading out the
message tra�c, it has a potential overhead in that messages are sent as
soon as they are available, meaning that they may be received before the
receiving process is ready to use them. Thus the message passing library
implementation must manage bu�ers to hold the messages until the receiving
process is ready.

These two di�erent message passing strategies have been tested on two
di�erent supercomputers at the Center of Advanced Computing Research,
California Institute of Technology, namely, the 256 processor HP Exemplar
and a 'Beowulf' system at Caltech.

13

The HP Exemplar system has (September 1997), 256 HP PA8000 pro-
cessors running at 180 MHz. Each processor has 256 MBytes memory and 4
Gbyte disk. The system is packaged as sixteen 'hypernodes', where each of
these nodes consists of 16 processors in a box with 4 Gbytes shared memory
and 64 Gbytes disk. Processors within a hypernode communicate with each
other at high bandwidth and with low latency via a crossbar switch. Proces-
sors on hypernodes communicate via CTI (Coherent Toroidal Interface) in a
ring, at a somewhat lower bandwidth, with somewhat higher latency. This
model of communication between processors is called NUMA (Non-Uniform
Memory Access).

Each processor of the Beowulf machine has (September 1997), 58 Intel
Pentium Pro compute processors, running at 200 MHz. Each processor has
128 MBytes memory and 3.1 Gbytes disk. The Beowulf is packaged as a con-
ventional PC box, with motherboard, power supply, disk,
oppy drive, ports
and so on. There is a host processor that is connected to the Internet through
which users can log in, compile, and launch jobs. In addition, each PC is
supplied with fast (100 Mbit/sec) ethernet for interprocessor communication,
which is routed by four crossbar switches.

The graphs in Fig. 5 show the impact of the message passing strategies
BSNR and NSBR on the parallel e�ciency of the computation. As a testcase,
the inviscid
ow past the Single-Stage to Orbit (X-33) con�guration at Mach
9.8 was chosen. A grid comprising 274 blocks and a total of 342,361 grid
points was used (Section 5.4).

3.4 Strategy for Dynamic Load Balancing

For some applications the workload per processor can be estimated or even
analytically determined in a preprocessing step before the simulation is started.
If the workload does not change during the course of the computation static
load balancing is su�cient. However, the majority of applications in com-
putational science and engineering show a more complex runtime behavior,
necessitating some kind of dynamic load balancing to provide the same work-
load on each processor at all times.

The goal of dynamic load balancing can be stated as follows:
Given a collection of tasks performing a computation and a set of processors

on which these tasks are to be executed, �nd the mapping of tasks to processors

that minimizes the run time.

As will be stated in Section 4 the numerical solution strategy is based

14

10 20 30 40

Processors

50

100

150

200

T
im

e
(s

ec
on

ds
)

Exemplar-NSBR

Beowulf-NSBR
Beowulf-BSNR

Exemplar-BSNR

Explicit Scheme

10 20 30 40

Processors

50

250

450

650

850

1050
1250
1450
1650
1850

T
im

e
(s

ec
on

ds
)

Exemplar-NSBR

Beowulf-NSBR
Beowulf-BSNR

Exemplar-BSNR

Implicit Scheme

Figure 5: Run times for 10 iterations of the ParNSS code, (top) Explicit Scheme

and (bottom) Implicit Scheme, solving the Euler equations at Mach 9.8 for the

X-33 model. Each panel shows computing times for both Beowulf and Exemplar

for the two message passing schemes. In both cases, the Exemplar is roughly two

times faster than the Beowulf machine. We note that the timestep for the implicit

scheme may be much larger than for the explicit, also that the implicit step may

decrease the residual by much more.

15

on the idea of a varying coupling strength among grid points during the
course of the solution in order to achieve numerical scalability. However,
this approach results in an algorithm that is not parallel scalable, because of
the load imbalance that is caused by the dynamic behavior of the implicit
GMRES algorithm. Therefore, in order to achieve both numerical and par-
allel scalability, it is necessary to implement dynamic load balancing in the
Navier-Stokes
ow solver.

typedef struct {
 char BlockName[32];
 int Block;
 int I,J,K; /* number of points in each direction */
 int NodeId;/* processor ID on which block resides*/
 int NumOfBc;
 int intbc,*ibc;
 bcond *bc;
 coord ***C;/* pointer to grid points */
 Qvector ***S, ***D;/* Flux vector Q and Delta_Q */
 double timestep; /* local timestep */

 double comptime;/*number of seconds needed for last
 iteration */
 int active; /* block is active(1) or non-active(0)*/
 int moveable;/*block is movable to other
 processor(1) or non-movable*/
} block;

Figure 6: The topology of the solution domain is described by the data structures
block and face.

Dynamic load balancing in the ParNSS code has been achieved through
the following �ve stages [8].

1. Load Evaluation: Estimates of the processor's workload must be
provided to determine the current load imbalance. In the ParNSS code
the runtime behavior of each block is monitored during an iteration.

2. Pro�tability: Once runtimes for each block have been collected via
global communication (see Fig. 8), the load imbalance is computed. If
the cost for a load balancing step is lower than the current imbalance,
load balancing actions are performed.

16

typedef struct {
 int I,Istart,J,Jstart;
 int IU,IstartU,JU,JstartU;
 int MyFace,MyPart,MyBlock,MyType,MyInd,
 nnode,nblock,nface,npart,op,nind;
 char NBlockName[32];
 char XYZchar;
 int scut1,scut2,sgcut,rcut1,rcut2,rgcut;
 int stype,rtype;
 double *inbuf; /* message buffer */
 double *outbuf; /* message buffer */
#ifdef MPI2
 MPI_Request send_request;
 MPI_Request receive_request;
 MPI_Status receive_status;
#endif
} face;

Figure 7: The topology of the solution domain is described by the data structures
block and face.

3. Selection of Moveable Tasks: Flags are attached to each block that
constrain the task selection process. First, blocks are marked as move-
able or non-moveable. Second, blocks are automatically deactivated,
if the local residual of this block compared to the global residual is
below a certain limit. However, a deactivated block is still updated via
message passing, and if a solution change above a speci�ed threshold
propagates into a deactivated block, this block is re-activated. Only
those blocks which are both moveable and active are distributable.

4. Task Mapping Decision: We now compute which processor should
be responsible for each distributable block; the details are in section
3.4.1.

5. Task Migration: In a loosely synchronous communication, the dis-
tributable blocks are moved to their new homes, and the face structures
updated so that each block knows the correct processor for its neigh-
bors; the details are in section 3.4.2.

By subdividing the load balancing process into single stages, a high degree
of
exibility is obtained for analyzing di�erent strategies in each stage.

17

3.4.1 Task Mapping Decision

Currently we use a simple bin-packing algorithm, designed to produce a
reasonable load-balance only, but neglecting the communication cost. This
is because much of the numerical operations take place in a block-implicit
scheme, where the ratio of communication to computation cost is very small
[7].

The computation of the mapping takes place serially, since it is easier that
way, and it takes such a small time. The workload resulting from the non-
distributable blocks is computed for each processor, providing a workload
number for each processor. The distributable blocks are sorted in decreasing
order of their workload to form a list. The largest block is removed from
this list and assigned to the processor with the smallest workload, thereby
increasing the workload. This is repeated until there are no more blocks in
the list.

When the new mapping of blocks to processors is complete, the parallel
e�ciency of the new map is estimated; only if this is su�ciently better than
the previous e�ciency does the expensive task migration actually take place.

3.4.2 Task Migration

This section describes how blocks are sent to their new processor, updating
the communication topology to ensure the correct block boundary exchange
for the next iteration.

Each block to be moved is serialized, including grid point coordinates,
numerical solution, message bu�ers, and
ags, and all its memory is freed
on the source processor. The set of messages are sent to the respective
destination processors, and �nally we need blocks that share a face to know
each others processor ID; this is stored in the data structure face.

This is done using the idea of the Voxel Database [9], which is, in essence,
a way to associate data with geometric points. A Voxel Database allows a dis-
tributed application to share data, using a key based on geometric position.
If one processor writes data 'at coordinates (x; y; z)', then another proces-
sor can inquire if there is any data at that position. Processors can also
write data into these shared, geometically-positioned memories in a weakly-
coherent fashion.

In this case, we use a Voxel Database to store lists of processor ID's,
which are positioned at the centers of the faces of the blocks. We �rst loop

18

Block 1

...
-compute time
-active flag
-moveable flag
...

Block 2

Block N

Block ...

Processor 2

Block 1

...
-compute time
-active flag
-moveable flag
...

Block 2

Block N

Block ...

Processor 3

Block 1

...
-compute time
-active flag
-moveable flag
...

Block 2

Block N

Block ...

Processor P

Block 1

...
-compute time
-active flag
-moveable flag
...

Block 2

Block N

Block ...

Processor 1 (Master)

Each processor sends the compute
time and the status flags of its
blocks to the master.

The master generates a new block
to processor mapping and performs
a broadcast (see Fig. 9).

Figure 8: The topology of the multiblock grid is described by the set of objects

of type block (see Fig. 6). In addition, for each block there is a set of up to 6

faces described by object type face (see Fig.7). Each processor holds the entire

grid topology information.

19

All processors:

Master:

Master:

Master:

All processors:

All processors:

Loop over all blocks of SD n=1,...,N
 if (n is mapped to a new processor)
 action on the source processor:
 -send block data to destination processor
 -free memory used by this block
 -set new processor id
 action on the destination processor:
 -allocate memory for arriving block
 -receive block
 -set new processor id

Broadcast new mapping to all processors.

Compute new mapping of blocks to processors.

Determine load imbalance.

Send runtime and status flags of own blocks
to master.

For each face of each block determine processor id
of neighboring block using global combine function.

Figure 9: The sequence of commands illustrates how dynamic load balancing is

implemented in the ParNSS code.

over all such faces, putting the processor ID in the list associated with the
position of the center, then synchronize the database. When we can look at
the list associated with a given face, its length is one for a boundary face,
and two for a face that is shared with another block, i.e., and interior face.
In the latter case, one of the processor ID's in the list is the processor ID
of the block that shares the face, which is what we wanted to �nd. A more
complete description of this process is given in [17].

The Voxel Database can be used in a more general way to dispense with
connectivity �les for multiblock grids. Given only the geometric coordinates
of the vertices of the blocks, we can synthesize the connectivity of faces,
edges, and vertices, similarly to the above.

4 Numerical Scalability for Large Scale CFD

Applications

In this section we describe how numerical scalability can be achieved. It is
believed that the successful solution of the large scale parallel N-S equations
can only be performed by combining grid generation, domain decom-
position, and numerical solution scheme. Each of the three elements

20

has its own unique contribution in the numerical solution process. However,
in the past, these topics were considered mainly separately and their close
interrelationship has not been fully recognized.

In this chapter domain decomposition along with the numerical so-
lution scheme will be discussed. Grid generation will not be discussed here
(see instead [10], [11]); but it should be noted that grid generation has a
major in
uence on the overall accuracy of the solution and the convergence
properties of numerical methods.

In the following, strategies are considered for e�ciently solving the system
of linear equations that arises from the discretized Navier{Stokes Equations.

Ideally, numerical scalability would mean that computing time required
to solve a problem is linearly related to problem size. Provided parallel
scalability is achieved, the solution time for a problem would remain constant
if both problem size and the number of processors increase at a �xed ratio.
For example, if a system of linear equations of size N is to be solved and a
direct method like LU-decomposition is used, the number of
oating point
operations is O(N3), which is far from being numerically scalable. There are
also many iterative solution procedures for which the convergence speed is of
order O(h2), h being a measure of the so called grid spacing, simply denoting
the distance between two neighboring grid points. The convergence speed is
a measure of how fast the residual in the solution is reduced. For small h,
many of the iterative solution procedures stall [12]. For an equidistant mesh
in 3D, h = N�1=3. The number of
oating point operations to reach a certain
convergence level is then of order O(N5=3) for O(N) denoting the number of
operations per iteration. Therefore, in order to obtain a numerically scalable
algorithm additional measures have to be taken.

Numerical experience has shown that a single numerical scheme has vary-
ing numerical e�ciency during the course of the solution process. The novel
feature presented in this article is to apply a sequence of numerical strategies,
and to establish criteria for switching over to a di�erent numerical scheme
as soon as the present scheme becomes numerically ine�cient.

The Tangled Web approach is a combination of the following techniques
that will be brie
y discussed below:

� Grid sequencing: this was mentioned in Section 4.1, and consists of
using a set of nested grids, analogous to multigrid methods. There is
a sequence of grids, each with 8 times as many points as the last, and
we loop through these from coarsest to �nest, interpolating the �nal

21

solution on one grid as the initial solution on the next �ner grid. At
the same time coarsening is used to compress the Eigenvalue spectrum
(GMRES technique).

� Domain decomposition: This several bene�ts. First, it allows the
construction of completely
exible topologies which, in turn, allow for
grid point clustering and grid optimization. Second, the inversion of a
set of small matrices, arising from the implicit solution of each block, is
faster than the inversion of a single large matrix. Third, for each block
the implicit solution is obtained by the so called Dynamic GMRES

technique that might exhibit a di�erent numerical behavior because the
Krylov basis may be of di�erent size. This may lead to load imbalance
and limit parallel e�ciency, requiring dynamic load balancing (Section
3.4). Fourth, the sparse linear system to be solved with GMRES re-
quires an e�cient and e�ective preconditioner. Domain decomposition
is one technique to reduce the condition number [13].

� Adaptive coupling strength: The dynamic coupling strength ap-
proach is shown in Figs. 10 and 11 and accounts for the fact that
coupling of grid points should increase during the computation.

� Dynamic load balancing: As noted above, there are several reasons
for load imbalance, including the unequal number of iterations of the
GMRES linear solver in the block-implicit phase of the solution. There
are other reasons for load imbalance, the most important being the
ow
physics and the local grid density. It may also be necessary to utilize
a di�erent set of physical equations within di�erent blocks, depending
upon the prevailing
ow features.

� Block activation/deactivation: Subdomain or block activation or
deactivation is where the
ow is converged in some parts of the com-
putational domain, but not in others, so it is natural to concentrate
resources only where necessary. The activation and deactivation is
steered by both the change in the numerical solution within the block
and by the amount of change received by message passing.

The important feature is that these acceleration techniques are applied
in combination for the sake of synergistic e�ects.

22

Newton’s Method

Cost:
 Linear system, size N
 Expensive
Benefit:
 Log residual is
 doubled (decrease in
 log residual is log
 residual)

J:=df/du
u <- u -J-1 f(u)

Quasinewton Method

Approximate J
as block-diagonal
using B blocks

Cost:
 B independent linear
 systems of size N/B
Benefit:
 Log residual is reduced
 by O(1/NB)
 (constant decrease per
 step)

Explicit Method

Approximate J
as diagonal

Cost:
 N independent updates
 of N variables
 Cheap
Benefit:
 Log residual is reduced
 by O(1/N2)
 (constant decrease per
 step)

Figure 10: The three plots depict the coupling strength (black area) for solving a

linear system of equations, described by matrix J . Coupling strength is dynam-

ically increased during the course of the computation. N denotes the size of the

system, B is the number of blocks.

Explicit (B=N)
 then
Block-Implicit (B large)
 then
Block-Implicit (B small)
 then
Newton (B=1)
 "Root Polishing" In

cr
ea

si
ng

 c
ou

pl
in

g
st

re
ng

th

In
cr

ea
si

ng
 c

om
pu

tin
g

tim
e

pe
r

gr
id

 p
oi

nt

In
cr

ea
si

ng
 n

um
be

r
of

ite
ra

tio
ns

 to
 r

ea
ch

 a
st

ea
dy

 s
ta

te

Figure 11: The relations between coupling strength, computing time per grid

point, and iterations needed to reach a steady state is presented. B is the number

of blocks and N denotes the problem size, e.g. the number of grid points.

23

4.1 The Navier{Stokes Equations as a Set of ODEs

We distinguish space discretization from time discretization. The space dis-
cretization produces a set of Ordinary Di�erential Equations:

dU

dt
= f(U); (13)

and we assume the existence of a steady state U� such that f(U�) = 0.
Discretizing time, we approach U� by a sequence of explicit or implicit steps,
repeatedly transforming an initial state U0 into a �nal state U�.

The explicit step is, for example, the two-stage Runge-Kutta

Un+1 = Un + f(Un + f 0(Un)�t=2)�t: (14)

As the implicit time step a backward Euler is used

Un+1 = Un + f(Un+1)�t: (15)

The �nal step, i.e. attaining the steady state directly via Newton [14]
[15], can be thought of as an implicit step with in�nite �t: Solve f(U) = 0.
There is also a weaker version of the implicit step, which we might call the
linearized implicit step, that is actually just the �rst Newton iteration of the
fully nonlinear implicit step:

Un+1 = Un + [1� df=dU �t]�1f(Un)�t: (16)

The resulting linear system is solved by the GMRES method [16].

4.2 Domain Decomposition for Eigenvalue

Spectrum Compression and Preconditioning

A major question arises in how the decomposition process a�ects the con-
vergence rate of the implicit scheme. First, it should be noted that the N-S
equations are not elliptic, unless the time derivative is omitted and inertia
terms are neglected (Stokes equations). This only occurs in the boundary
layer when a steady state has been reached or has almost been reached. How-
ever, in this case the Newton method will converge quadratically, since the
initial solution is close to the �nal solution. The update process via overlap
boundaries should therefore be su�cient. In all other cases, the N-S equa-
tions are dominated by hyperbolic phenomena. Hence, a full coupling of all

24

points in the solution domain would be nonphysical, because of the �nite
propagation speed, and is therefore neither desirable nor necessary.

Continuing the discussion of convergence speed, it should be remembered
that for steady state computations implicit techniques converge in fewer steps
than fully explicit schemes, but each step takes more computing. The for-
mer are generally more computationally e�cient, in particular for meshes
with large variations in grid spacing. However, since a full coupling is not
required by the physics, decomposing the solution domain should result in
a convergence speed up. This is due to the inversion of a set of small ma-
trices being faster than the inversion of the single large matrix, although
boundary values are dynamically updated. In the preconditioning process
used for the Conjugate-Gradient technique, domain decomposition is used
to decrease the condition number (ratio of largest to smallest Eigenvalues)
of the matrix forming the left hand side, derived from the discretized N-S
equations. In other words, the Eigenvalue spectrum is compressed because
the resulting matrices are smaller. It is shown in [16] that this ratio is a mea-
sure of the convergence speed for generalized conjugate residual algorithms.
Having smaller matrices, the condition number should not increase; based on
physical reasoning it is to be expected that, in general, the condition number
should decrease. On the other hand, if the decomposition leads to a blocksize
of 1 point per block, the scheme is fully explicit and hence computationally
less e�cient than the fully implicit scheme. Therefore, an optimal decompo-
sition topology must be selected and most likely depends on the
ow physics
and the type of implicit solution process. However, a number of numerical
experiments has been performed with the ParNSS code, clearly demonstrat-
ing the convergence speed up. Block numbers have been varied from 2 to
1024 in 2D (see Tab. 2) and from 6 to 384 in 3D (see Tab. 5), using an
otherwise identical grid.

5 Results Using the Tangled Web Approach

In this section we present results attained by using the Tangled Web Approach
on four di�erent examples:

� A Mach 1.7 Euler
ow over the NACA0012 airfoil,

� A Navier-Stokes computation for the NACA0012 airfoil. The viscous
laminar
ow was computed for an angle of attack of 7 degrees at Mach

25

1.7 for a Reynolds number of 5� 106,

� Flow around the ESA/NASA Huygens space probe which is scheduled
to enter Titan's atmosphere in 2004,

� A modi�ed X-33 vehicle, serving as a prototype for the new generation
SSTO spaceplane. The Euler
ow at Ma 9.8 was computed at an angle
of attack of 40�.

For all testcases the parallel numerical strategy of section 4 was applied.
Computations were performed on a 10 processor Silicon Graphics Power
Challenge XL at Center for Logistics and Expert Systems in Germany, as
well as on the HP Exemplar and a Beowulf machine at the Center of Ad-
vanced Computing Research, California Institute of Technology.

5.1 NACA Airfoil Inviscid Flow

The Euler simulation was carried out on a 2 block grid with a total of 48,000
grid points. The e�ects of both domain decomposition and grid sequencing
were investigated and are reported in the following two sections. The original
grid was split into 2, 32, 120, 128, 256, 480, and 1024 blocks. In addition,
three coarse grid-levels were extracted from this 2 block grid.

5.1.1 Acceleration by Grid Sequencing

In Table 1 we show the speedup obtained by grid sequencing using the two
block grid. The last row of Table 1 has the scaled computing time of 1.
Adding up the computing time on all grid levels results in a speedup value
of 1.68.

5.1.2 Acceleration by Domain Decomposition

A similar analysis was done for the NACA0012 airfoil investigating the e�ect
of domain decomposition (see Table 2). The same grid with 48,000 points was
used. The Euler solution was computed by the implicit GMRES algorithm
for a Mach number of 1.7. The computation ended after the residual dropped
by 10 orders of magnitude. The optimal speedup was obtained for 480 blocks
(see Sec. 4.2).

26

Grid level Grid points Scaled computing time
3 832 0.0026
2 3162 0.0150
1 12,322 0.1200
0 48,000 0.4600

0 (no grid 48,000 1.0000
sequencing)

Table 1: Results for solution acceleration by using multilevel grids for a 48,000

point NACA0012 airfoil. The Euler solution was computed by implicit GMRES

for a Mach number of 1.7. The algorithm switched to the next �ner grid after the

residual dropped to 10�12 on the coarse grid level. A speedup of 1.68 is obtained

by this technique.

Number of Number of Number of Speedup
blocks points per block iterations

2 24000 253 1.00
32 1560 305 1.55
120 435 317 2.33
256 213 333 2.73
480 119 349 2.96
1024 61 380 2.92

Table 2: Results for solution acceleration by variation of block number for a 48,000
point NACA0012 airfoil. The Euler solution is computed by the implicit GMRES

algorithm for a Mach number of 1.7. The computation stops after the residual

drops to 10�12. The optimal speedup is obtained for 480 blocks, resulting in a

speedup of 2.96 as compared to the 2 block grid.

5.1.3 Acceleration by Adaptive Coupling

A combination of the explicit Runge-Kutta scheme and the implicit GMRES

scheme, termed adaptive coupling, was used for the Euler computation of
the NACA0012 airfoil (see Fig. 12). A set of three grids, comprising 8, 32,
and 128 blocks was used.

In stage 1, (see Fig. 12), four di�erent computations are performed.
An explicit scheme is used on an 8 block grid, and the implicit GMRES

27

scheme is used on 8, 32, and 128 blocks. In each computation the residual
is reduced by two orders of magnitude to 0:1. As can be seen from Fig. 12,
the explicit scheme is fastest. In stage 2, we try to reduce the residual from
0:1 to 10�3. Now the situation has changed completely, because the explicit
scheme stalled. The fastest solution is delivered by GMRES on the 128 block
grid. In stage 3, the residual is to be further decreased to 10�5. Again, the
same phenomenon as in stage 2 is observed, namely, increasing the coupling
strength results in solution speedup. In other words, the GMRES solution
on 8 blocks is fastest. Obviously, adaptively increasing the coupling strength
at each stage leads to a decrease in overall computing time.

5.2 NACA Airfoil Viscous Flow

The Navier-Stokes computation was performed on a sequence of grids and
a varying number of blocks. The original grid was a 26 block (27,120 cells)
grid that was further split into a 40, 68, and 272 blocks. These grids had
exactly the same number of grid cells and the same grid point coordinates.
Furthermore, two coarse grid-levels were extracted from the 26 block grid
comprising 6,780 and 1,712 grid cells, repectively. The left picture in Fig.
13 shows the 26 block �ne grid. The multiblock topology has been chosen
to automatically cluster grid points at the airfoil surface. The right plot in
Figure 13 depicts the Mach number contour plot of the steady state solution.

5.2.1 Acceleration by Grid Sequencing

The computation was started on the coarsest grid. The residual was reduced
by about 6 orders of magnitude by applying �rst the explicit scheme, followed
by the implicit GMRES scheme. The solution on this grid was then used as
initial solution to the next �ner grid. The same strategy was used on each
grid level, until the steady state solution on the �ne grid was obtained. The
grid sequencing approach delivered a speedup of 1.25 in comparison to a
computation using the �ne grid only. Table 3 summarizes the results of the
simulation.

28

Figure 12: Solution acceleration using adaptive coupling. The computation was

done for a NACA0012 airfoil.

29

Figure 13: NACA0012 airfoil. Navier-Stokes grid and Mach number contour plot.

The �ne grid consists of 26 blocks and some 27,000 cells.

Grid level Grid points Computing time in s
2 2156 55
1 7638 335
0 28810 2222

0 (no grid 28810 3269
sequencing)

Table 3: Results for solution acceleration using multilevel grids for a 27,000 cell

NACA0012 airfoil.

5.2.2 Acceleration by Domain Decomposition

The in
uence of domain decomposition as a preconditioner for the implicit
GMRES solver is illustrated by the results in Table 4. Here, computations on
26, 40, 68, and 272 block grids were done. All runs were based on the same
parallel numerical strategy, namely, using �rst the explicit scheme followed
by the implicit GMRES scheme. Again, the residual is reduced by about 6
orders of magnitude. The decoupling of grid points by splitting the solution
domain into smaller blocks reduced the time for each GMRES iteration, but
required a larger number of iterations. For this con�guration the optimal
speedup was obtained for 68 blocks.

30

Number of Number of Implicit Speedup
blocks iterations time

26 148 2623 1.00
40 153 2202 1.19
68 161 2066 1.27
272 243 2201 1.19

Table 4: Results for solution acceleration by variation of block number for a 27,000
cell NACA0012 airfoil. The Navier-Stokes solution is computed by using both the

explicit and the implicit GMRES scheme.

5.2.3 Acceleration by Adaptive Coupling

Grid sequencing, in combination with adaptive coupling, was used in the
Navier-Stokes computation of the NACA0012 airfoil (see Fig. 14). First, a
converged solution was computed on the 26 block coarse grid which served as
the initial condition for the computations in stages 1 to 3. It turns out that
the combination of grid sequencing and adaptive coupling results in substan-
tial speedups in comparison with fully explicit or block implicit solutions on
the �ne grid only. The speedups are 5.91 and 2.11, respectively. It should
be mentioned that a further reduction in the total execution time will be
possible using dynamic load balancing.

31

Figure 14: Grid sequencing, in combination with adaptive coupling was used in the
Navier-Stokes computation of the NACA0012 airfoil. The thick-lined boxes show

the optimum sequence: in stage 1, the 68 block computation is fastest. However,

in stage 2 the 40 block computation is fastest while in stage 3 the 26 block grid

gives the lowest computing time. This clearly shows the speedup achievable by

the adaptive coupling strength strategy.

32

5.2.4 Acceleration by Dynamic Loadbalancing

The 68 block grid of the NACA0012 airfoil con�guration was used to show
the in
uence of dynamic loadbalancing on total run time for the Navier-
Stokes computation on 9 processors of the Silicon Graphics Power Challenge
XL. The two curves in Fig. 15 show the comparison between runs with and
without dynamic loadbalancing. Both simulations were performed using the
same numerical strategy. A reduction of 7% in computing time was achieved.
While the two strategies require the same resources for the explicit part of the
computation, dynamic loadbalancing reduces the cost of the implicit part by
10% in this example. A higher percentage for 3D computations is expected.

0 500 1000 1500
Wall clock Time [s]

10-7

10-6

10-5

10-4

10-3

10-2

R
es

id
ua

l

dynamic

static

Figure 15: The graph shows the in
uence of dynamic load balancing on the total

computing time for a Navier-Stokes computation of the 68 block NACA0012 airfoil.

A total reduction of 7% in computing time was achieved.

33

5.3 Huygens Space Probe Flow Simulation

In Fig. 16 an Euler
ow solution for the ESA/NASA Huygens space probe is
shown. This probe was launched in 1997 and will enter Titan's atmosphere
in 2004 measuring its composition. The instruments on the windward side
have been modeled to simulate microaerodynamics e�ects during the entry
phase.

Figure 16: The Mach 3.1 Euler
ow was computed for the Huygens Space Probe.

A 462 block grid comprising 561,654 grid points was used. The modeling of the

instruments on the windward side of the probe should be noted.

5.3.1 Acceleration by Domain Decomposition

Number of Number of Number of Scaled computing
blocks points per block iterations time

6 12167 350 1.00
48 1728 351 0.53
384 343 420 0.59

Table 5: Convergence behavior for 3D Huygens Space Probe (see also Fig. 2).

Speedup resulting from employing block decomposition as a preconditioner. The

results clearly demonstrate that this strategy is successful for large 3D grids.

34

5.4 Simulation for an SSTO Con�guration

The SSTO testcase is similar to the X{33 Lockheed Martin con�guration
(Fig. 17). The Euler equations are solved for a Mach number of 9.8 at angle
of attack of 40�. The highly complex 3D geometry is modeled by 274 blocks
using 256,268 grid cells. The large number of blocks is caused by the high
degree of geometric complexity. The surface grid together with parts of the
symmetry plane and the outer boundary are shown in the left plot of Fig. 17.
The grid is mirrored about the symmetry plane for visualization purposes.
For the computation only half of the vehicle is simulated. The right picture
in Fig. 17 shows the Mach number contour plot in the symmetry plane. The
surface of the vehicle is shaded.

Ma

9.64923
9.04615
8.44308
7.84
7.23692
6.63385
6.03077
5.42769
4.82462
4.22154
3.61846
3.01539
2.41231
1.80923
1.20616
0.603079
0

Euler Simulation for X33-Configuration
- Mach Number Contour Plot for Ma=9.8
- 256268 Cells, 274 Blocks

Figure 17: The Tangled Web approach was used to compute the inviscid
ow at

Mach 9.8 for this highly complex SSTO con�guration. The grid comprises 274

blocks (subdomains) of widely di�erent size with a total of 342,361 grid points.

The grid is almost orthogonal everywhere and grid point clustering does not extend

into the far �eld. This is a result of the topology chosen.

5.4.1 Acceleration by Grid Sequencing

The in
uence of grid sequencing on the total computing time is given in Table
6. The Euler solution is computed by the explicit scheme. If grid sequencing
is applied, a total of 605s+ 5; 027s = 5; 632s is needed to obtain the steady
state solution that has to be compared with the 7; 166 seconds needed for a
computation on the �ne grid only. Thus, a speedup of 1.43 is achieved. For

35

this computation the residual is reduced by 6 orders of magnitude on both
the coarse and the �ne grids. Only two grid levels are used, because the next
coarser grid would comprise about 4,600 cells and thereby would no longer
be su�cient to represent the surface geometry of the vehicle.

Grid level Cells Computing time in s
1 34196 605
0 256268 5027

0 (no grid 256268 7166
sequencing)

Table 6: Results for solution acceleration by using multilevel grids for the modi�ed
X-33 SSTO con�guration.

5.4.2 Acceleration by Domain Decomposition

A 331 block grid was generated from the 274 block grid by splitting larger
blocks into sub-blocks. It should be noted that both grids have exactly the
same number of cells as well as identical coordinates. However, the number of
halo cells is larger for the 331 block grid. Hence, more communication occurs
on the network which makes the update of the halo cells somewhat more
costly. Two numerical experiments were carried out to illustrate the in
uence
of varying coupling strength for this con�guration. First, the Euler
ow was
computed for the coarse 274 and 331 block grids using the explicit scheme
to provide a good starting solution for the implicit GMRES algorithm. The
steady state solution was then obtained by the implicit GMRES algorithm
in combination with dynamic load balancing. Table 7 gives the results for
this comparison. Only minor speedup was observed following the increase of
the number of blocks from 274 to 331.

5.4.3 Parallel E�ciency

Results for parallel e�ciency are given in Fig. 18. An almost ideal speedup
for the 274 block grid of the X-33 con�guration is obtained on the 10 Pro-
cessor Power Challenge XL. The explicit scheme was used to measure the
performance of the message passing. It should be noted that the ratio of
computation to communication is lower for the explicit than for the implicit

36

Number of Number of Computing Speedup
blocks cells time in s

274 34196 1223 1.00
331 34196 1264 0.97

Table 7: Results for solution acceleration by variation of block number for the

modi�ed X-33 SSTO con�guration.

scheme, resulting in a better parallel scalability for the implicit scheme. The
load balancing algorithm explicitly takes into account that a mixture of 75
Mhz and 90 Mhz R8000 processors is used. The coarse mesh has a total num-
ber of 256,268 cells. The �ne mesh was generated by doubling the number
of cells in each direction. Hence the total number of cells is 2,050,144.

2 4 6 8 10
Processors

1

2

3

4

5

6

7

8

9

S
pe

ed
up

Ideal Speedup

Speedup on fine mesh
Speedup on coarse mesh

Figure 18: Parallel E�ciency of explicit X-33 computation on 10 processor
Silicon Graphics Power Challenge XL. The speedup is almost linear.

5.4.4 Dynamic Block Management based on

Residual Values

The rate at which the
ow �eld changes during the course of the compu-
tation is di�erent for individual blocks in a multiblock grid. In hypersonic

37

ow computations it is common practice to use freestream conditions as ini-
tial solution. This means that during the �rst few iterations
ow variables
are changed only in blocks with physical boundary conditions, e.g. wall, in-

ow, or out
ow conditions. For this reason, only these blocks need to be
updated. It would not make any di�erence if all other blocks were switched
o�. However, these deactivated blocks still need to be involved in the up-
date process via block boundaries. Using the update information they can
determine whether or not to activate themselves. On the other hand, active
blocks are deactivated if their local residual is much smaller than the global
residual and if no su�cient change in the solution is transported across block
boundaries.

First investigations have been made to implement this dynamic behavior
into the ParNSS code. Figs. 19 and 20 illustrate this dynamic behavior for
the SSTO vehicle simulation.

The �rst row of plots in Fig. 20 shows all of the blocks that are active
in the beginning of the computation. At this stage, only those blocks that
have at least one �xed boundary face are active. During the course of the
simulations additional blocks are turned on, because information propagates
from active blocks into non-active blocks. Towards the end of the computa-
tion (Fig. 19) the residual in some of the blocks indicates that a steady-state
solution has been reached, automatically switching o� these blocks, while
other blocks have not converged. Finally, almost all blocks are switched o�
and the computation is stopped.

6 Conclusions and Future Work

In this article a strategy has been presented to achieve both parallel and nu-
merical scalability for the solution of the Navier-Stokes equations with com-
plex
ows in complex geometries. The strategy consists of using numerical
and computational accelerators such as grid sequencing, domain decomposi-
tion, adaptive coupling, dynamic load balancing, and block deactivation.

The ParNSS Navier-Stokes code has been used to demonstrate parallel
scalability for these test cases, as well as the scalability of the acceleration
strategies.

ParNSS has also been used for numerical scalability studies, by imple-
menting the Tangled Web collection of acceleration strategies. We computed
Euler and Navier-Stokes airfoil
ows, simulations for the Huygens space probe

38

0 100 200
Block number

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
es

id
ua

ls

Figure 19: The �gure shows the distribution of the residual values (norm of the

ux) versus block number for the 274 block X-33 con�guration when the solution is

close to convergence. The residuals among blocks di�er by up to 13 orders of mag-

nitude. By switching o� those blocks having a low residual value, computation cost

can be reduced substantially. The ParNSS code automatically determines those

blocks to be switched on/o� during the computation. Dynamic load balancing is

used to provide an equal workload for each processor.

39

Figure 20: The 12 plots illustrate the dynamic behavior of a ParNSS simulation

with regard to dynamic activation and deactivation of blocks during a run.

and an SSTO con�guration. In each case, speedups of 1.5 to 3 have been
obtained, and we have shown that combining these strategies according to
the Tangled Web methods multiplies the speedups, as expected.

Heuristic algorithms have been used to increase the adaptive coupling of
grid points during the solution process. In the next stage, a more formal ap-
proach will be taken to forecast or estimate the condition number to improve
the adaptive coupling strategy. These kind of automatic transitions between
the numerical strategies form the core of our future research: deciding when
to change to a coarser or �ner grid, when to split blocks, when to change
from explicit to implicit schemes, when to do load balancing, which blocks
ahould be active. Further ahead, we hope to dynamically switch between
physics modules, with or without turbulence, with or without chemistry or
ionization physics.

The dynamic load-balancing strategy was one of the most di�cult to
implement, both conceptually and technically, yet the speedup was only
1.07: we believe that this is because the test-cases are too simple. Since
the cost of doing the dynamic load balance is roughly constant, and the

40

bene�t increases with workload imbalance, then the greater the imbalance,
the greater the speedup. The load-imbalance is not as sharp as it would be,
for example, with strong shocks moving through the
uid, with the great
disparity in length scales charactaristic of complex
ows, or with chemistry
and turbulence models being switched on and o�. Dynamic load balancing
for three-dimensional testcases will be investigated, too. Additional numeri-
cal experiments for large 3D examples will be performed to demonstrate the
viability of the Tangled Web approach.

We are also working on an environment for distributed computing on a
client-server basis as well as an internet based environment for integration
of multidisciplinary codes. Investigations are being conducted on the use
of Java threads to boost utilization of parallel resources, and on leveraging
ParNSS to a distributed, collaborative design tool.

Acknowledgement
The authors are grateful to Prof. Mark Cross, University of Greenwich,

London, for numerous stimulating discussions.
The authors are particularly grateful to Yang Xia, CLE for providing the

complex grids used in this article.
The continuous support by Jean Muylaert andMartin Spel, ESTEC, ESA,

Noordwijk, The Netherlands is gratefully acknowledged.
This work was partly funded by the Ministerium f�ur Wissenschaft und

Kultur, Niedersachsen, Deutschland, AGIP Projekt F.A.Nr. 1997.262.

References

[1] Gustavson, J. L., Montry, G. R. and Benner, R. E, Development of Parallel
Methods for a 1024-Processor Hypercube, SIAM J. Sci. Stat. Comp., 9 (1988)
4.

[2] Fox, G. C., Williams, R. D. and Messina, P. C., Parallel Computing Works!,
Morgan Kaufmann, 1994.

[3] EUROPORT, http://www.gmd.de/SCAI/europort-1, 1996.

[4] Walshaw C., Cross M., and Everett M, Mesh partitioning and load-balancing
for distributed memory parallel systems, In B. Topping, editor, Proc. Parallel
& Distributed Computing for Computational Mechanics, Lochinver, Scotland,
1997, 1997.

41

[5] Eiseman P.R. et al., 1998: GridPro v3.1, Users's Guide and Reference Man-
ual, 111 pp., 2nd edition, Program Development Corporation of Scarsdale,
Inc.

[6] H�auser, J. et al., 1994: ParNSS : An E�cient Parallel Navier-Stokes Solver
for Complex Geometries, AIAA 94-2263, 9pp.

[7] H�auser, J. and R. D. Williams, Strategies for Parallelizing a Navier-Stokes
Code on the Intel Touchstone Machines, Int. J. Num. Meth. Fluids, 15 (1992)
51-58.

[8] Willebeek-Le Mair, M.,Reeves, A Strategies for dynamic load balancing on
highly parallel computers, IEEE Trans. on Parallel and Distributed Systems
4 1993 979-993

[9] Williams, R. D., Voxel Databases: A Paradigm for Parallelism with Spatial
Structure, Concurrency, 4 (1992) 619, 1992.

[10] H�auser, J., J. Muylaert, H.-G. Paap, M. Spel, and P.R. Eiseman, Grid Gen-
eration for Spaceplanes, 3rd Space Course, University of Stuttgart, Germany,
February 20{ March 3, 1995, 66pp.

[11] H�auser, J., J. Muylaert, and Y. Xia, 1996: Grid Generation for the Halis Con-
�guration in Numerical Grid Generation for Computational Fluid Dynamics,
eds. B. Soni et al, MSU Press, USA

[12] Jameson, A., Yoon S.: Lower Upper Implicit Schemes with Multiple Grids for
the Euler Equations, pp. 929-935, AIAA Journal, Vol. 25, No. 7, 1987

[13] H�auser, J., Williams, R.D., Winkelmann, R., Parallel Implementation of
Large CFD Codes, European Shortcourse on Strategies and Tools for Par-
allelising Large Computational Mechanical Codes, 1996, 130 pp., available
through F.Barkshire@gre.ac.uk.

[14] Whit�eld, David L., 1990: Newton-Relaxation Schemes for Nonlinear Hyper-
bolic Systems, MSSU-EIRS-ASE-90-3, 14 pp.

[15] Whit�eld David L.: Perspective on Applied CFD, AIAA-95-0349, 33rd
Aerospace Sciences Meeting and Exhibit, January 9-12, 1995, Reno, NV,
USA

[16] Golub,G., J.M. Ortega, 1992: Scienti�c Computing and Di�erential Equa-
tions, Academic Press.

42

[17] Winkelmann R., 1998, Strategies for Parallel and Numerical Scalability of
CFD Codes, PhD Thesis, University of Greenwich, London, UK.

43

