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ABSTRACT

We present sub-arcsecond (FWHM ∼ 0′′.7), near-infrared (NIR) JHKs-band

images and a high sensitivity radio continuum image at 1280 MHz, using SIRIUS

on UH 88-inch telescope and GMRT. The NIR survey covers an area of ∼ 24

arcmin2 with 10 σ limiting magnitudes of ∼ 19.5, 18.4, and 17.3 in J, H, and

Ks-band, respectively. Our NIR images are deeper than any JHK surveys to

date for the larger area of NGC 7538 star forming region. We construct JHK

color-color and J-H/J and H-K/K color-magnitude diagrams to identify young

stellar objects (YSOs) and to estimate their masses. Based on these color-color

and color-magnitude diagrams, we identified a rich population of YSOs (Class

I and Class II), associated with the NGC 7538 region. A large number of red

sources (H-K > 2) have also been detected around NGC 7538. We argue that

these red stars are most probably pre-main sequence stars with intrinsic color

excesses. Most of YSOs in NGC 7538 are arranged from the north-west toward

south-east regions, forming a sequence in age: the diffuse H II region (north-west,

oldest: where most of the Class II and Class I sources are detected); the compact

IR core (center); and the regions with the extensive IR reflection nebula and

a cluster of red young stars (south-east and south). We find that the slope of

the Ks-band luminosity function of NGC 7538 is lower than the typical values

reported for the young embedded clusters, although equally low values have also

been reported in the W3 Main star forming region. From the slope of the Ks-

band luminosity function and the analysis by Megeath et al. (1996), we infer

that the embedded stellar population is comprised of YSOs with an age of ∼

1 Myr. Based on the comparison between models of pre-main sequence stars

with the observed color-magnitude diagram we find that the stellar population

in NGC 7538 is primarily composed of low mass pre-main sequence stars similar

to those observed in the W3 Main star forming region. The radio continuum

image from the GMRT observations at 1280 MHz shows an arc-shaped structure

due to the interaction between the H II region and the adjacent molecular cloud.

The ionization front at the interface between the H II region and the molecular

cloud is clearly delineated by comparing the radio continuum, molecular line, and

near-infrared images.

Subject headings: ISM: clouds — stars: formation — stars: pre-main sequence

1On leave from Tata Institute of Fundamental Research, Mumbai (Bombay) - 400 005, India

(ojha@tifr.res.in)
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— open clusters and associations: general — ISM: individual (NGC 7538) —

infrared: stars

1. Introduction

The H II region NGC 7538, which is part of the Cas OB2 complex at a distance of 2.8 kpc

(Blitz, Fich, & Stark 1982; Campbell & Thompson 1984), harbors massive stellar objects in

various early stages of development (Campbell & Persson 1988, and references therein). The

NGC 7538 star forming region consists of an optically visible H II region and at least 11 high

luminosity infrared sources (NGC 7538 IRS 1–11), probably corresponding to young massive

stars (Kameya et al. 1990). There are three major activity centers in NGC 7538; the north-

west region contains IRS 4–8, the central region IRS 1–3, and the south-east companion IRS 9

(Werner et al. 1979). McCaughrean, Rayner, & Zinnecker (1991) discussed their NIR images

from a morphological perspective and suggested several different evolutionary stages in the

NGC 7538 star forming complex with considerable substructure. The central region hosts a

pair of ultra-compact (UC) H II regions, NGC 7538A and NGC 7538B (Wood & Churchwell

1989). The far-infrared luminosity from IRS 1–3 in the central region is 2.5×105 L⊙ (Werner

et al. 1979). The luminosity of IRS 9 is 4×104 L⊙. NGC 7538 IRS 1 is associated with a

large variety of molecular maser species (Dickel et al. 1982; Kameya et al. 1990; Menten et

al. 1986; Rots et al. 1981; Madden et al. 1986; Gaume et al. 1991). VLA radio observations

were made by Rots et al. (1981) and Campbell (1984). Campbell (1984) presented strong

evidence for the existence of a collimating disk around NGC 7538 IRS 1 and an associated

outflow of ionized gas.

Momose et al. (2001) presented imaging polarimetry of the 850 µm dust continuum

emission in the NGC 7538B region with the SCUBA Polarimeter on JCMT. They found

two prominent cores associated with IRS 1 and IRS 11 in the surface brightness map of

the continuum emission. The total cloud mass derived from the surface brightness map is

6.7×103 M⊙. The polarization map shows a striking difference between IRS 1 and IRS 11,

suggesting that small scale fluctuations of the magnetic field are more prominent in IRS

1. They interpreted this in terms of a difference in evolutionary stage of the cores. Inside

IRS 1, which seems to be at a later evolutionary stage than IRS 11, substructures such

as subclumps or a cluster of infrared sources have already formed. A 2 mm continuum

mapping observation around NGC 7538 IRS 1–3 was made by Akabane et al. (2001) using

the Nobeyama Bolometer Array (NOBA) mounted on the Nobeyama 45m telescope. They

derived the total cloud mass of about 6.9×103 M⊙, which is almost the same as that of

Momose et al. (2001).
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Bloomer et al. (1998) imaged the NGC 7538 IRS 1–3 region in various infrared wave-

length bands. They studied in detail the infrared-bright knots due to very young O-type

stars (IRS 1, 2, and 3) behind an extinction of at least AV = 16 mag. They found a shell-like

structure which presumably corresponds to a shock caused by the high-velocity stellar wind

from IRS 2 colliding with the surrounding molecular cloud. The Ks-bright source, IRS 9,

was discovered at the tip of the south-eastern nebula and was identified as a protostellar

object by Werner et al . (1979). There are powerful bipolar outflows from the three domi-

nant IR sources in the region, IRS 1, IRS 9 and IRS 11 (Kameya et al. 1989; Davis et al.

1998) of which IRS 1 and IRS 11 are well-known OH maser sources. IRS 1 and IRS 9 are

identified as the most likely powering sources of massive, bipolar CO outflows, based on the

morphology and polarization of their associated near-infrared reflection nebulae (Tamura et

al. 1991). Numerous H2 features have been observed in the NGC 7538 region, in particular

a collimated “jet” associated with the IRS 9 outflow, as well as possible bow shocks in both

the IRS 1 and IRS 9 flows (Davis et al. 1998). These are closely associated with the bipolar

CO outflows.

The high spatial resolution submillimeter maps show filamentary dust ridges extending

from and connecting to the three major activity centers (IRS 1–3, IRS 11, and IRS 9) in

the NGC 7538 star forming cloud (Sandell & Sievers 2004). In addition to the three already

known star formation centers, Sandell & Sievers (2004) find a fainter extended submillimeter

source near IRS 4 inside the optical H II region. Sandell et al. (2003) reported the detection

of a massive rotating disk around the high mass Class 0 candidate NGC 7538 S both in

continuum and in molecular lines, about 80′′ to the south of IRS 1. NGC 7538 S is the

strongest submillimeter continuum source in NGC 7538 (Sandell & Sievers 2004).

In this paper we present high resolution J, H, and Ks-band observations over a large

area (∼ 24 arcmin2) centered on IRS 1–3. To complement NIR data and to understand the

H II region more comprehensively radio continuum observations are also obtained. As in our

previous work on the W3 Main star forming region (Ojha et al. 2004), our motivation is to

look for new YSOs associated with the NGC 7538 region and to classify their evolutionary

stages. From the slope of the Ks-band luminosity function (KLF), we discuss the age-

sequence and the mass-spectrum of YSOs in the NGC 7538 region. In the case of W3 Main

we find that the power-law slope of the KLF is lower than the typical values reported for

embedded young clusters. Another motivation of this work is to compare the KLF slope of

NGC 7538 with that of W3 Main to find any similarity or difference in the properties of the

two high-mass star forming regions and of the sub-regions within the NGC 7538.

In §2 we present the details of observations and data reduction procedures, §3 deals with

the results and discussion on mostly point-like YSOs and describe the details of individual
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nebulosity and YSO. We then summarize our conclusions in §4.

2. Observations and data reduction

2.1. NIR observations

The sub-arcsec imaging observations of the NGC 7538 star forming region in the NIR

wavelengths J (λ = 1.25 µm), H (λ = 1.63 µm), and Ks (λ = 2.14 µm) were obtained on

2000 August 15 with the University of Hawaii 2.2 m telescope and SIRIUS (Simultaneous

three-color InfraRed Imager for Unbiased Surveys), equipped with three 1024×1024 HgCdTe

arrays. The field of view in each band is ∼ 4′.9 × 4′.9, with a pixel scale of 0′′.28 at the

f/10 Cassegrain focus. The HgCdTe arrays work linearly within 3% upto 15,000 ADU and

saturate at ∼ 25,000 ADU (Nagayama et al. 2003). At Ks = 12 mag, the ADU counts are

well below 15,000, thus we consider the source magnitudes to be correct within 3%. Further

details of the instrument are given in Nagashima et al. (1999) and Nagayama et al. (2003).

We obtained 27 dithered exposures of the target centered at (α, δ)2000 = (23h13m43s.95,

+61◦28
′

44
′′

.2), each 20s long, simultaneously for each band and 9 dithered sky frames cen-

tered at (α, δ)2000 = (23h15m59s.60, +61◦28
′

44
′′

.2), which is ∼ 34′ east of the target position.

The sky frame was also used as a reference field to assess the stellar populations within the

NGC 7538 star forming region (see §3). Total on-target integration time in each of the bands

was 9 minutes. All the observations were done under good photometric sky conditions. We

found an rms magnitude fluctuation of less than 0.04 mag in JHKs-bands during the NGC

7538 observations. The average seeing size (FWHM) in the J, H, and Ks-band was 0′′.7, 0′′.7,

and 0′′.6, respectively during the observations. The observations were made at air masses

between 1.3 and 1.5. Dark frames and dome flats were obtained at the beginning and end of

the observations. The photometric calibration was obtained by observing the standard star

9183 in the faint NIR standard star catalog of Persson et al. (1998) at air masses closest to

the target observations. The J, H, and Ks-band images of the NGC 7538 star forming region

are shown in Fig. 1.

Data reduction was done using the pipeline software based on NOAO’s IRAF1 pack-

age tasks. Dome flat-fielding and sky subtraction with a median sky frame were applied.

Identification and photometry of point sources were performed by using the DAOFIND

and DAOPHOT packages in IRAF, respectively. Because of source confusion and nebulos-

1IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Asso-

ciation of Universities for Research in Astronomy, Inc., under contract to the National Science Foundation.
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ity within the NGC 7538 region, photometry was obtained using the point-spread function

(PSF) algorithm ALLSTAR in the DAOPHOT package (Stetson 1987). For the JHKs-band

images the adopted fitting radii were 3 pixels (∼ 1 FWHM of the PSF), and the PSF radius

was 13 pixels. The local sky was evaluated in an annulus with an inner radius of 12 pixels

and a width of 21 pixels. We used an aperture radius of 3 pixels (∼ 0′′.84) with appropriate

aperture corrections per band for the final photometry.

The resulting photometric data are in the SIRIUS system. For the purposes of plotting

these data in color-color and color-magnitude diagrams, we have converted them into the

California Institute of Technology (CIT) system using the color transformations between the

SIRIUS and CIT systems (Nagashima et al. 2003)2, which have been obtained by observing

several of the red standard stars of Persson et al. (1998). Absolute position calibration was

achieved using the coordinates of a number of stars from the 2MASS catalogue. The position

accuracy is better than ±0.′′05 rms in the NGC 7538 field.

The completeness limits of the images were evaluated by adding artificial stars of dif-

ferent magnitudes to the images and by determining the fraction of these stars recovered in

each magnitude bin. The recovery rate was greater than 90% for magnitudes brighter than

19, 18.5, and 17.5 in the J, H, and Ks-bands respectively. The observations are complete

(100%) to the level of 17, 16 and 15 magnitudes in J, H and Ks-bands respectively. The lim-

iting magnitudes (at 10 σ) are estimated to be ∼ 19.5, 18.4, and 17.3 at J, H, and Ks-bands,

respectively. We found that within the 10 σ detection limit, the accuracy on magnitudes of

∼ 98% stars in our sample is better than 0.2 mag. The sources are saturated at Ks < 12.

We estimated the errors in photometry due to source confusion and nebulosity through

artificial star experiments. The difference between the magnitudes of the added and recovered

stars should reflect the effect of confusion with other stars and the background nebulosity.

We find that for J = 19.5, H = 18.4, and Ks = 17.3 stars (at our 10 σ mag detection limit),

the rms error of the difference is 0.17, 0.15, and 0.14 mag, respectively. The rms error of the

difference is 0.14, 0.15, and 0.15 mag, respectively for J = 19, H = 18.5, and Ks = 17.5 stars

(corresponding to the 90% completeness level). The error increases rapidly with increasing

magnitude.

2also available at http://www.z.phys.nagoya-u.ac.jp/∼sirius/about/color−e.html
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2.2. GMRT radio continuum observations

The ionized gas within and around the H II region associated with NGC 7538 star form-

ing region has been mapped at low and high angular resolutions using the Giant Metrewave

Radio Telescope (GMRT) array in India. The radio continuum observations centered at (α,

δ)2000 = (23h13m43s.95, +61◦28
′

44
′′

.2) have been carried out at 1280 MHz on 2004 January

26. The source 3C48 was used as the primary flux calibrator for 1280 MHz observations,

while the source 2355+498 was used as a secondary calibrator. The GMRT antennas and

their configurations are discussed in detail by Swarup et al. (1991).

Data reduction was done in classic AIPS. Bad data (dead antennas, interference, spikes,

etc.) were identified and flagged using UVFLG and TVFLG. Images of the field were

formed by Fourier inversion and cleaning (IMAGR). The initial images were improved by

self-calibration (CALIB) in both phase and amplitude.

Fig. 2 shows the radio continuum image of the whole NGC 7538 region, generated from

the GMRT interferometric observations at 1280 MHz. This image has a resolution of 22′′.5

×12′′.4 and an rms of ∼ 4 mJy beam−1. The total flux density is 13.1 Jy in the map. The

inset in Fig. 2 is a high resolution GMRT map of the central radio peak. This image has a

resolution of 6′′.6 × 4′′.7, an rms of ∼ 1.3 mJy beam−1, and the total flux density of 978.7

mJy. The primary FOV at 1280 MHz is about 0.4 degree.

3. Results and Discussion

3.1. Prominent infrared nebulae

A composite color image is constructed from the SIRIUS J, H, and Ks-band images (J

represented in blue, H in green, and Ks in red) and is shown in Fig. 3. The individual

prominent IR sources are marked in the Ks-band image in Fig. 1. The most prominent

features are the diffuse purple-pink color to the N-W, the compact and bright orange color

at the center and the fluffy and dark orange color to the S-E. It is noteworthy that the scarce

star field (black) extends to the S-W of the field, where the dense CO molecular cloud is

located (see Fig. 4 and Davis et al. 1998). We briefly describe the infrared appearance of the

nebulae from a morphological perspective here, then discuss the point-like sources in detail

below.

The large diffuse emission extending to N-W of IRS 1, 2, and 3 (see Fig. 3) is probably

due to the combination of free-free and bound-free emissions, corresponding to what is seen

optically and coincides well with the radio brightness of GMRT at 1280 MHz shown in Fig.
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4. The extended filaments of H2 line emission to the N-W of the IRS 1–3 cluster around

the photo-dissociation regions (PDRs) at the interface between H II and molecular cloud are

particularly striking (Fig. 5 and Davis et al. 1998).

The bright and compact infrared nebula embedded with IRS 1, 2, and 3 at the center

of Fig. 3 (see also Fig. 12a) is coincident with the peak of radio continuum, although the

IRS sources remain unresolved with GMRT. The radio peak in the center of the map in

Fig. 2 appears elongated northward by 60′′. The high resolution radio map (inset in Fig. 2)

resolves this elongation into two lobes with a separation of 26′′ in the N-S direction.

The fluffy nebula associated with IRS 9 is revealed ∼ 2′ south-east of IRS 1. A few red

young stars are located at the easternmost tip of the nebula. The fluffy morphology as well

as the dark patches extending 70′′ to the west plausibly arises from reflection illuminated

by these red sources (see Fig. 12b and §3.8.2). The direction of the NGC 7538 IRS 9 “H2

jet” reported by Davis et al. (1998) is indicated in Fig. 5. Two small peculiar nebulosities

are also revealed at the north-east corner in the composite image of Fig. 3 and in the

continuum-subtracted H2 image of Fig. 5. The enlarged view of this region is shown in Fig.

12d.

The selected regions with individual IR sources and associated nebulosities are described

in detail in §3.8.

3.2. Ionizing sources of H II region

In the diffuse H II region, there lie five radio peaks in Fig. 4. Although three bright

IRS sources lie therein, none of them coincide with any radio peaks. IRS 5, located close (∼

6′′ N-W) to the brightest radio peak and assigned as O9 type star in the H-K vs. K color-

magnitude diagram (see Fig. 7; Moreno & Chavarria 1986), might be responsible for the

nearby radio peak, but is still insufficient to power the whole H II region. IRS 6, the brightest

infrared source in the H II region, is located ∼ 27′′ (∼ 0.37 pc in projection) north-east of the

brightest radio peak and is estimated to be an O6-O7 type from its color and IR luminosity

(Wynn-Williams et al. 1974; Moreno & Chavarria 1986). IRS 7 has been identified as a

K type foreground star (Moreno & Chavarria 1986), and IRS 8 does not coincide with any

optical or radio feature (Wynn-Williams et al. 1974). IRS 7 and IRS 8 are most probably

not associated with the NGC 7538 nebula (Wynn-Williams et al. 1974; Zheng et al. 2001).

It is most plausible that IRS 6 is the main exciting source responsible for this H II

region. However, the theoretical Stromgren radius of the H II region ionized by an O6 type

star is roughly fifteen times larger than the observed one (see Fig. 3). It means that the
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H II region is under expansion and the central star (IRS 6) is at a very early stage of its

evolution. But the number of UV photons emitted by O stars dramatically changes with the

spectral sub-class. In addition, young O stars are often surrounded by some amount of dust,

which attenuates the UV emission to ionize the surrounding gas. As a result the size of the

Stromgren sphere is reduced compared to the ideal case. Therefore, the precise spectral type

of the exciting star and information on the amount of the surrounding dust are required for

a quantitative discussion of the evolution of the NGC 7538 H II region.

In Figs. 4 & 5, a cavity wall is apparent with a steep cliff running from N-W to S-E of

both CO and radio emission (but with opposite gradients in the N-E/S-W direction), and a

gradual decrease of the radio emission as well as the Hα emission (see Moreno & Chavarria

1986) from S-W to N-E. At the cliff the H II region is plausibly ionization-bounded, while it

is density-bounded toward the N-E.

3.3. Photometric analysis of point-like sources

3.3.1. Color-Color diagram

We obtained photometric data of 1364 sources in J, 1679 in H, and 1682 in Ks-band.

Figs. 6a and 6b show the J-H/H-K color-color (CC) diagrams of the NGC 7538 star forming

region and the reference field, respectively, for the sources detected in the JHKs bands with

a positional agreement of less than 2′′ and with photometric errors in each color of less than

0.1 mag. The reference field is also used for the correction of field star contamination in the

raw Ks-band luminosity function of NGC 7538 (see §3.5). In Figs. 6a and 6b, the solid and

broken heavy curves represent the unreddened main sequence and giant branches (Bessell

& Brett 1988) and the parallel dashed lines are the reddening vectors for early and late

type stars (drawn from the base and tip of the two branches). The dotted lines indicate the

locus of T-Tauri stars (Meyer et al. 1997). We have assumed that AJ/AV = 0.282, AH/AV

= 0.175, and AK/AV = 0.112 (Rieke & Lebofsky 1985). As can be seen in Fig. 6a, the

stars in NGC 7538 are distributed in a much wider range than those in the reference field

(Fig. 6b), which indicates that a large fraction of the observed sources in NGC 7538 exhibit

NIR excess emission characteristics of young stars with circumstellar materials as well as

a wide range of reddening. We classified the sources into three regions in the CC diagram

(see e.g. Tamura et al. 1998; Sugitani et al. 2002; Ojha et al. 2004). “F” sources are

located between reddening vectors projected from the intrinsic color of main-sequence stars

and giants and are considered to be field stars (main-sequence stars, giants), or Class III /

Class II sources having small near-infrared excess. “T” sources are located redward of region

“F” but blueward of the reddening line projected from the red end of the T-Tauri locus of
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Meyer et al. (1997). These sources are considered to be mostly classical T-Tauri stars (Class

II objects) with large near-infrared excess. There may be an overlap in NIR colors of Herbig

Ae/Be stars and T-Tauri stars in the “T” region (Hillenbrand et al. 1992). “P” sources

are those located in the region redward of region “T” and are most likely Class I objects

(protostar-like objects). The total number of “T” (Class II) and “P” (Class I) sources are

268 and 18, respectively. By de-reddening the stars on the CC diagram that fell within the

reddening vectors encompassing the main sequence and giant stars, we found the amount

of visual extinction (AV ) for each star. The individual extinction values range from 0 to 40

magnitudes with an average extinction of AV ∼ 7 mag.

3.3.2. Color-Magnitude diagram

The color-magnitude (CM) diagram is a useful tool to study the nature of the stellar

population within star forming regions and also to estimate its spectral types. Fig. 7 is the

H-K vs K CM diagram where all the sources detected in JHKs bands, plus some 180 stars

fainter than our limit at J-band but still above the detection threshold in H and Ks-bands are

plotted. An apparent main sequence track is noticeable with AV ∼ 4 mag in this diagram;

but a comparison of it with a similar diagram for the stars in the reference field shows that

it is a false sequence caused by field stars in the foreground of the NGC 7538 region. The

vertical solid lines (from left to right in Fig. 7) represent the main sequence curve reddened

by AV = 0, 20, 40 and 60 mag, respectively. We have assumed a distance of 2.8 kpc to

the sources to reproduce the main sequence data on this plot. The parallel slanting lines in

Fig. 7 trace the reddening zones for each spectral type. YSOs (Class II and I) found from

the CC diagram (Fig. 6a) are shown as stars and filled triangles, respectively. However, it

is important to note that even those sources not shown with stars or filled triangles may

also be YSOs with an intrinsic color excess, since some of them are detected in the H and

Ks-bands only and are not in the J-band due to their very red colors. Three bright and very

red objects (K < 12.0, H-K > 4.0) located in the upper right corner of the figure are the

very young stars IRS 1, IRS 9, and IRS 9N1 in their earliest evolutionary phases (see §3.8

and Figs. 12a and 12b). The bright infrared sources labeled as IRS numbers in Fig. 7 are

associated with the H II region and the molecular cloud (see Figs. 1, 4 & 5). These sources

are shown in Table 1.
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3.4. Spatial distribution of YSOs and cool red sources

In our deep NIR observations 46 very red sources are detected only in the H, and Ks-

bands. These sources have colors redder than H-K > 2 in Fig. 7. In Fig. 8, the spatial

distribution of the YSO candidate sources identified in Figs. 6a and 7 are shown. Stars

(in blue color) represent sources of T-Tauri type (Class II), filled triangles (in green color)

indicate protostar-like objects (Class I), and filled circles (in red color) denote the very red

sources (H-K > 2).

Most of the YSOs in the NGC 7538 are arranged in the north-west and south-east

regions. Class II or T-Tauri type objects and Class I or protostar-like objects (located in

“T” and “P” regions in Fig. 6a, respectively) are distributed in the north-west and south-

east regions over the field, but there is an apparent concentration of these sources mainly

towards north-west (the optically visible H II region). Class I type sources are distributed

along the interface between the optical H II region and the molecular cloud region to the

west. Stars with large color indices (H-K > 2) are seen near the dense parts of the molecular

cloud towards south and south-east (Fig. 4 and Sunada et al., in preparation). Most of

them are clustered near the massive molecular clumps surrounding the luminous infrared

sources IRS 1–3. Some of them are expected to be members of the embedded stellar clusters

around IRS 1–3 and to the south of IRS 1–3 (i.e. around IRS 11). Therefore, these sources

associated with the molecular clumps around IRS 9, IRS 11 and IRS 1–3 (Sunada et al., in

preparation) are embedded PMS stars, presumably. A few red sources are also seen around

the ionization front at the interface between the H II region and the molecular cloud, which

might have formed due to the triggered star formation.

The average extinction through the molecular cloud in NGC 7538 that hosts the very

red sources is AV ∼ 15 mag (H-K ∼ 1). If we assume that the large H-K (> 2) color results

merely from interstellar reddening affecting normal stars, then the extinction value might

even exceed 40 mag in the molecular cloud where most of the red stars are found. However,

with such a large amount of absorption, diffuse emissions are unlikely to be detected in the

NIR. Since most of the red sources are associated with faint diffuse emission around IRS

1–3, IRS 9, and IRS 11, this provides evidence that these sources are YSOs with intrinsic

NIR excess and possibly local extinction also. In Fig. 7, a large fraction (∼ 96%) of these

sources are located above the straight line drawn from an A0 star parallel to the extinction

vector. This suggests that they are intermediate mass stars with circumstellar materials.

Based on the clustering of different YSO candidates in NGC 7538, the overall morphol-

ogy is of three major condensations, which may form a sequence in age : the diffuse H II

region (north-west : oldest); the compact IR core (center); and the regions with the extensive

IR reflection nebula and a cluster of red young stars (south-east and south : youngest). This
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subject is further discussed in §3.7.

3.5. The Ks-band Luminosity Function

We use the Ks-band luminosity function (KLF) to constrain the initial mass function

(IMF) and age of the embedded stellar population in NGC 7538. To derive the KLF, we have

determined the completeness of the data through artificial star experiments using ADDSTAR

in IRAF. This was performed by adding fake stars in random positions into the images at 0.5

magnitude intervals and then by checking how many of the added stars could be recovered at

various magnitude intervals. We repeated this procedure at least 8 times. We thus obtained

the detection rate as a function of magnitude, which is defined as the ratio of the number of

recovered artificial stars over the number of added stars.

In order to estimate the foreground and background contaminations, we made use of

both the galactic model by Robin et al. (2003) and the reference field star counts. The star

counts were predicted using the Besançon model of stellar population synthesis (Robin et

al. 2003) in the direction of the reference field close to the NGC 7538 (see §2), that is also

corrected for the photometric completeness. By comparing the resultant model KLF with

that of the reference field (see Fig. 9), we found that the simulation fits fairly well with

the data. An advantage of using the model is that we can separate the contamination from

the foreground (d < 2.8 kpc) and the background (d > 2.8 kpc) field stars. As we saw in

§3.4, the average extinction to the NGC 7538 region is AV ∼ 15 mag (H-K ∼ 1). Assuming

spherical geometry, then background stars are seen through AV ∼ 30 mag (2×15 mag).

Therefore, we applied an extinction value of AV = 30 mag (or AK = 3.36 mag) in simulating

the background stars. We combined the foreground and background stars to make a whole

set of the contamination field and obtained the fraction of the contaminating stars over the

total model counts. Then we scaled the model prediction to the star counts in the reference

field, and subtracted the combined foreground (d < 2.8 kpc) and background (d > 2.8 kpc

with AK = 3.36 mag) data from the KLF of the NGC 7538 region.

After correcting for the foreground and background star contamination and photometric

completeness, the resulting KLFs are presented in Fig. 10 for the whole NGC 7538 region.

They follow power-laws in shape. In Fig. 10, a power-law with a slope α [dN(mK)/dmK ∝

10αmK , where N(mK) is the number of stars brighter than mK ] has been fitted to each KLF

(Figs. 10a and 10b) using the linear least-squares fitting routine. To discuss the relationship

between the KLF slopes and the star forming environment of each region, we divided the

NGC 7538 region into two rectangular areas : the “younger” region (IRS 1–3, IRS 9, and

IRS 11 regions), and the “older” region above IRS 1–3 (see Figs. 1 and 8 and §3.4). The
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derived power-law slopes for the “younger”, “older”, and whole NGC 7538 regions are shown

in Table 2. We also note that the background subtraction does not significantly change the

power-law slope (Fig. 10 and Table 2).

We find a small increase (1σ result, see Table 2) in the KLF slope from the “younger”

region (α ∼ 0.27) to the most evolved “older” region (α ∼ 0.33) in NGC 7538 (see §3.4).

This is consistent with an expected change in the KLF slope with age if the IMF is identical

in the whole NGC 7538 region (Megeath et al. 1996). However, such a small effect is not

significant in view of the reddening and excess due to circumstellar material. We, therefore,

assume a coeval population of stars and derive the KLF of the whole NGC 7538 star forming

region for comparison with other regions and a rough estimate of stellar masses in the next

section.

The KLF of the whole NGC 7538 region shows a power-law slope that is lower than

those generally reported for the young embedded clusters (α ∼ 0.4, e.g. Lada et al. 1991,

1993; Lada & Lada 2003), although equally low values have also been reported in the W3

Main star forming region (Megeath et al. 1996; Ojha et al. 2004). Thus, this low value of

the slope is indeed the intrinsic property of the stellar population in this region. Using the

analysis as given in detail by Megeath et al. (1996), the estimated KLF slope of the whole

NGC 7538 region is roughly consistent with the Miller-Scalo IMF if the age of NGC 7538

population is ∼ 1 Myr.

3.6. Stellar Mass Estimates

Fig. 11 shows the CM diagram (J-H vs J) for 286 YSO candidate sources identified in

Figs. 6a and 7. We estimate the mass of the stellar sources by comparing them with the

evolutionary models of PMS stars (Palla & Stahler 1999). The solid curve in Fig. 11 denotes

the loci of 106 yr old PMS stars and the dotted curve for those of 0.3×106 yr old PMS stars.

Masses range from 0.1 to 4 M⊙ from bottom to top, for both curves. To estimate the stellar

masses, we use the J luminosity rather than that of H or Ks, as J-band is less affected by

the emission from circumstellar materials (Bertout, Basri, & Bouvier 1988).

If the age of NGC 7538 population is ∼ 1 Myr as estimated from the KLF slope (see

§3.5), ∼ 88% of the YSO candidates detected in J, H, and Ks-bands have masses less than 3

M⊙, and at least ∼ 80% of the stars have masses less than 2 M⊙ (Fig. 11). Even if the age

of the stars is 0.3 Myr, ∼ 92% of the stars have masses below 3 M⊙. At the distance of 2.8

kpc, assuming an age of ∼ 1 Myr, and an extinction at J band of up to ∼ 2 mag (AV ∼ 7),

the J magnitude limit (corresponding to 10 σ mag detection limit) corresponds to M ∼ 0.1
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M⊙, according to the PMS evolutionary tracks from Palla & Stahler (1999). This gives an

estimate of the lowest mass limits of the detected stars in the NGC 7538 star forming region

in our sample.

Therefore, the stellar population in NGC 7538 may be primarily composed of low mass

PMS stars similar to those observed in the W3 Main star forming region (Ojha et al. 2004).

We also see the presence of lower mass stars forming the clusters (e.g. near the IRS 1–3

and IRS 4–8 regions) together with the newly formed O-B type stars. These results further

support the hypothesis that the formation of high mass stars is associated with the formation

of clusters of low mass stars (e.g. Lada & Lada 1991; Zinnecker, McCaughrean, & Wilking

1993; Persi et al. 1994; Tapia et al. 1997; Ojha et al. 2004).

3.7. Star formation activity in NGC 7538

The NGC 7538 star forming complex seems to be composed of several structures of

different evolutionary stages aligned from north-west to south-east. The first is the north-

western region, which corresponds to the visible H II region. Here, in addition to the optically

visible O-type stars (e.g., IRS 5 and 6) we detect a large number of Class II and Class I sources

(see Fig. 8). This north-western region is undoubtedly more evolved than other regions of

the NGC 7538 complex, which contains the majority of red sources but, in contrast, a far

smaller number of Class II and Class I sources. Presumably the star forming activity has

already been over in this region except for the interface with the molecular cloud to the

south-west, where we notice a few red sources.

Secondly, a distinct core of star forming activity is found near the center of our survey

area. It is a compact region around IRS 1-3 surrounded by the bright IR nebula. These

IR sources are all newly formed OB-star candidates. Together with the (ultra-) compact

H II regions which they have started to develop, they are deeply embedded in the dense

molecular core. Here we also notice a concentration of red sources. Most probably extensive

star forming activity is currently taking place in this region.

Turning our eyes further to the south-east, we find a rather scattered distribution of

red sources and Class II candidates. We consider they comprise the third region of star

forming activity in the NGC 7538 complex. It seems to be composed of two substructures;

one corresponds to the fluffy reflection nebula associated with IRS 9, 9N1, 9N2 and 9N3

(the south-eastern region), the other is the region surrounding IRS 11 and an elongated

grouping of red stars (the southern region). The extensive reflection nebula is a manifes-

tation of massive outflows associated with IRS 9 (Tamura et al. 1991). The presence of
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massive outflows associated with IRS 9 and the existence of masers and NGC 7538 S (Class

0 candidate, §3.8.3) around IRS 11 are a clear signpost of an early phase of star formation

in these regions. Therefore, this third region, both south-eastern and southern, is located in

the molecular cloud and must be very young in terms of star formation.

The question can then be raised: what is the time sequence of star formation history

in NGC 7538 ? The central region appears to be the result of the propagation of star

formation activity from the north-west region due to the expansion of the H II region and

the compression of the molecular cloud in the north-western interface. Its location adjacent

to the NGC 7538 H II region and the dense concentration of YSOs between H II region and

IRS 1-3 core match quite well the characteristics of sequential star formation (Elmegreen &

Lada 1977). The complex to the south and south-east might have evolved independently

from the same molecular cloud. Since this region is separated from the optical H II region

of NGC 7538, the star formation here is independent of the action of its expansion, and

appears to have been taking place spontaneously, as suggested by McCaughrean, Rayner &

Zinnecker (1991). Alternatively, it could be possible that some larger scale trigger might

have played a role, resulting in the entire sequence of these three stages of star formation

activity. In order to answer this question, however, it might be crucial to reveal the YSO

population on a much larger scale.

3.8. Individual sources and regions

In Fig. 12 we present some selected areas of the NGC 7538 star forming region in our

high resolution (0′′.7) NIR images that are of particular interest.

3.8.1. IRS 1, 2, and 3

NGC 7538 IRS 1–3 is a group of three infrared sources in the very bright red core in the

center of the image (Fig. 12a). These three high luminosity infrared sources are located at

the boundary of the H II region (see Fig. 1). They were found in a 2.2 µm and 20 µm survey

of NGC 7538 (Wynn-Williams et al. 1974), south-east of the optical H II region. IRS 1 is

identified as an ultracompact (UC) H II region, while IRS 2 and 3 are compact and optically

thin compact H II regions, respectively (Campbell 1984; Campbell & Persson 1988). IRS 2

is embedded in the center of the compact IR nebula, whereas IRS 1 and IRS 3 are located

near the south and south-western borders of the nebula, respectively (Fig. 12a).

IRS 1 is the most luminous (LNIR = 1.5×105 L⊙; Willner 1976; Hackwell et al. 1982)
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of the three infrared sources. This source is detected only in H and Ks-band among our

images (Table 1). The high spatial resolution submillimeter data resolved the young UC H

II region around IRS 1 and it was shown that the UC H II region is surrounded by a cluster

of submillimeter sources, none of which have near or mid-infrared counterparts (Sandell &

Sievers 2004). We see an elongated group of red stars in a filamentary structure around IRS

1 in our NIR image (see Fig. 8). IRS 2 inferred to be an O9.5 ZAMS star with a luminosity

of ∼ 3.8×104 L⊙ (Campbell & Persson 1988; Campbell & Thompson 1984) based upon its

ionizing flux, is situated ∼ 10′′ north of IRS 1 and possesses the most extended H II region

of the cluster sources. A red star is located about 2′′ north-west of IRS 2 (Fig. 8). IRS 3,

the least luminous of the cluster sources is situated about 15′′ west of IRS 1. No red stars

are seen close to IRS 3 (Fig. 8).

3.8.2. IRS 9 reflection nebula

Located about 2′ south-east of IRS 1, IRS 9 is a bright, pointlike IR source at the

apex of a complex reflection nebula (marked by “9” in Fig. 12b). IRS 9 is detected only

in our H and Ks-band images (Table 1). The CO outflow driven by IRS 9 (Kameya et al

1989) is associated with extensive H2 emission (Fig. 5 and Davis et al. 1998). Sandell

& Sievers (2004) found IRS 9 to be extended and disk-like in their high spatial resolution

submillimeter maps. The total mass of the IRS 9 submillimeter source is ∼ 150 M⊙. The

bolometric luminosity of IRS 9 is ∼ 2×104 L⊙ (Werner et al. 1979; Thronson & Harper

1979).

The striking reflection nebula in Fig. 12b is associated with IRS 9 (Werner et al. 1979;

Tamura et al. 1991), which shows very delicate and complex features of structure and color.

This suggests a complex structure of circumstellar material and their massive YSOs.

At the easternmost tip of the nebula, four extremely red infrared sources including IRS

9 are located (marked by the thin solid lines in Fig. 12b; see also Fig. 8). We designate

these sources as IRS 9N1, IRS 9N2, and IRS 9N3 (see Figs. 1, 7 and Table 1). Two of them

near the tip are associated with a “silhouette shell”. While comparing with the polarization

map (Tamura et al. 1991), we find that IRS 9N1 is probably not an independent source but

is most likely an unresolved gaseous knot in the nebula, because the degree of polarization

is very high at the position of IRS 9N1 and the polarization pattern is not disturbed. For

other sources (IRS 9N2 and 9N3) the polarization is locally small or the pattern is disturbed.

These red sources as well as a nearby bluer source IRS N4 (marked by “N4” in Fig. 12b;

see Table 1) are most probably very young stars in their earliest evolutionary phases and

appear to be associated with small scale circumstellar matter that obscures the background
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nebula (we call them silhouette shell). It is possible that the kinematics of the IRS 9 region

is influenced by these YSOs (Sandell & Sievers 2004).

3.8.3. IRS 11 and NGC 7538 S

IRS 11 is situated ∼ 1′ south of IRS 1 (marked by an arrow in Fig. 12c). This IRS

source is associated with a tiny nebulosity (Fig. 12c) and a knot of vibrationally excited H2

emission (Davis et al. 1998), suggesting that it is most likely a young star with an outflow.

Kameya et al. (1989) also reported a CO outflow in this region. The CO outflow associated

with IRS 11 appears poorly collimated, though, roughly aligned with that associated with

IRS 1. A large number of red young stars are also seen around IRS 11 region (Fig. 8). This

fact, together with the results of the submillimeter polarimetry by Momose et al. (2001),

indicates that the IRS 11 region is younger than the IRS 1 region.

NGC 7538 S (α2000, δ2000 = 23h13m44s.51, +61◦26
′

48
′′

.7 at 850 µm), a high mass Class

0 candidate, is about 80′′ to the south of IRS 1 (850 µm position is shown by a cross symbol

in Fig. 12c; Sandell & Sievers 2004). These authors resolved the submillimeter emission

into an elliptical source (NGC 7538 S) of 14′′× 7′′ P.A. = 58◦ ± 3◦. We find two very

red sources associated with this elliptical source (α2000, δ2000 = 23h13m44s.65, +61◦26
′

47
′′

.9;

23h13m43s.96, +61◦26
′

44
′′

.9; see Figs. 8 and 12c). However, they are unlikely to be the

counterparts to the submillimeter source, considering the Class 0 nature of NGC 7538 S. The

existence of NGC 7538 S and a concentration of red sources further support the conclusion

that the southern region is younger than other regions in NGC 7538.

3.8.4. Bow shock region?

Fig. 12d is a section in the north-east corner of our JHKs image in Fig. 3, where we

detect peculiar nebulosities. The northern one shows a cone-shaped silhouette enveloped by

a faint nebulosity, probably, due to bow-shaped H2 emission (Fig. 5 and Davis et al. 1998).

The southern one shows an oval-shape overlaid by dark patches, which is associated with at

least two YSOs (see Fig. 8). This nebula is within a local deep obscuration in an optical

image. About 40′′ north of this object a bow-shaped structure of H2 emission, which is made

of two elongations, one in E-W and the other in N-S, is found (Fig. 5, see also Fig. 7 of

Davis et al. 1998). This structure is presumably caused by an outflow from the north-east

of this region.
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3.8.5. NGC 7538 IRS 4

Fig. 12e shows the barely resolved double source IRS 4 (separation ∼ 1′′4) in our near-

infrared images (marked by an arrow in the center of the image). It is an isolated red source

(H-K = 1.94) associated with local nebulosity, which is located towards the north-west of

IRS 2 at the boundary of the optical H II region.

A faint, extended dust condensation was seen about 15′′ in the south-west of IRS 4 in 850

µm map (Sandell & Sievers 2004). These authors also found a fainter extended submillimeter

source near the 20 µm source IRS 4. IRS 4, in view of its significant 20 µm flux, is most

probably a compact H II region. It is also situated close to a knot in the ammonia emission

and appears to be close to the interface between the H II region and the molecular cloud

(Zheng et al. 2001).

4. Conclusions

A sub-arcsec JHKs-band NIR imaging survey of YSOs associated with the NGC 7538

star forming region is presented. The survey covers a 4′.9×4′.9 area down to a limiting

magnitude (10 σ) of J = 19.5, H = 18.4, and Ks = 17.3. The NIR images presented in this

work are deeper than any JHK surveys to date for the larger area of NGC 7538 star forming

region. From the analysis of these images we derive the following conclusions :

1) We see several different evolutionary stages in the NGC 7538 star forming complex

with considerable substructure, as also suggested by McCaughrean, Rayner, & Zinnecker

(1991). There are lines of evidence for sequential star formation in NGC 7538.

2) Most of the YSOs in the NGC 7538 are arranged in the north-west and south-east

regions, which form a sequence in age: the diffuse H II region (north-west, oldest : where

most of the Class II and Class I sources are detected); the compact IR core (center); and the

regions with the extensive IR reflection nebula and a cluster of red young stars (south-east

and south).

3) A large number of red stars (H-K > 2) are detected in the NGC 7538 molecular cloud

region, most of which are clustered around the molecular clumps associated with IRS 1–3

and toward south and south-east of IRS 1–3.

4) The YSOs in the central region are probably the results of the propagation of star

forming activity from the north-western region due to the expansion of the H II region and

the compression of the molecular cloud (sequential star formation, Elmegreen & Lada 1977).

The south-eastern/southern region is independent of the above action and presumably the
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star formation there is taking place in a spontaneous and gradual process.

5) The KLF of the whole NGC 7538 region shows a power-law slope : α = 0.30±0.03,

which is lower than the typical values reported for the embedded young clusters, although

equally low values have also been reported in the W3 Main star forming region. We also find

a small increase in the KLF slope from the “younger” region (α ∼ 0.27) to the most evolved

“older” region (α ∼ 0.33) in NGC 7538. The resulting KLF slopes may therefore indicate

the age sequence of various regions in NGC 7538.

6) Using the age of ∼ 1 Myr, we find that about 88% of the YSO candidates have an

upper mass limit of 3 M⊙. We estimate that the lowest mass limit of Class II and Class I

candidates in our observations is 0.1 M⊙. Therefore, the stellar population in NGC 7538 is

primarily composed of low mass PMS stars.

7) The radio continuum image based on the GMRT observations at 1280 MHz shows

interesting morphological details, including an arc-shaped structure highlighting the interac-

tion between the H II region and the adjacent molecular cloud. The ionization front at the

interface between the H II region and the molecular cloud is clearly seen by comparing the

radio continuum, molecular line, and molecular hydrogen images. It is most plausible that

NGC 7538 IRS 6 is the main exciting source responsible for the H II region.
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Table 1: Bright infrared sources associated with the H II region and molecular clump (labeled

as IRS numbers in Fig. 7

Source RA (2000) DEC (2000) J H K Remark/Sp. Type

hh mm ss dd mm ss mag mag mag (From CM diagram)

IRS 1 23 13 45.32 +61 28 11.7 ∗∗14.10±0.10 ∗∗8.90±0.10

IRS 2 23 13 45.47 +61 28 19.9 ∗11.83±0.06 ∗10.33±0.08 ∗9.18±0.10 O5

IRS 3 23 13 43.65 +61 28 14.0 16.56±0.04 13.63±0.03 ∗∗11.60±0.10 O6-O9

IRS 4 23 13 32.39 +61 29 06.2 ∗9.74±0.05 ∗7.80±0.01

IRS 5 23 13 30.24 +61 30 10.3 ∗10.38±0.03 ∗9.82±0.04 ∗9.43±0.04 O9

IRS 6 23 13 34.38 +61 30 14.6 ∗8.71±0.02 ∗8.21±0.04 ∗8.00±0.01 O5-O6

IRS 7 23 13 36.80 +61 30 39.6 ∗8.44±0.04 ∗7.63±0.04 ∗7.37±0.01

IRS 8 23 13 27.58 +61 30 50.1 12.09±0.02 ∗9.94±0.03 ∗9.03±0.02 O5

IRS 9 23 14 01.76 +61 27 19.9 15.70±0.04 ∗10.19±0.05

IRS 9N1 23 14 01.36 +61 27 18.4 19.79±0.11 15.46±0.08 ∗11.32±0.08

IRS 9N2 23 14 02.70 +61 27 14.1 18.39±0.08 15.89±0.03

IRS 9N3 23 14 02.56 +61 27 24.6 17.72±0.05 15.22±0.07

IRS 9N4 23 14 02.40 +61 27 20.4 17.84±0.11 15.39±0.10

IRS 11 23 13 43.92 +61 26 57.8 18.50±0.03 15.02±0.03 12.88±0.04 B0
∗ 2MASS magnitudes.
∗∗ Magnitudes are from Bloomer et al. (1998).
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Table 2: Power-law fits to KLFs in NGC 7538

Region α

Whole NGC 7538 0.28±0.02 completeness corrected

0.30±0.03 completeness corrected, foreground,

and background subtracted

Younger (IRS 1–3, 9, and 11) 0.27±0.03

Older (optical H II) 0.33±0.04
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Fig. 1.— J, H, and Ks-band images of the NGC 7538 star forming region displayed in a

logarithmic intensity scale. The field of view is ∼ 4′.9×4′.9. The locations of the individual

IR sources are marked in the Ks-band image. The direction of the NGC 7538 IRS 9 “H2

flow” reported by Davis et al. (1998) is also indicated in the Ks-band image. North is up

and east is to the left. The abscissa and the ordinate are in J2000 epoch.
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Fig. 2.— GMRT low resolution map of the whole NGC 7538 region at 1280 MHz. The

resolution is 22′′.5×12′′.4 along PA = 4.6◦, and the rms noise in the map is ∼ 4 mJy beam−1.

The abscissa and the ordinate are in J2000 epoch. The inset is a GMRT high resolution map

of the central radio peak. The high resolution image has a resolution of 6′′.6 × 4′′.7 along

PA = 21.4◦, an rms of ∼ 1.3 mJy beam−1, and a total flux density of 978.7 mJy. The lower

part of the map is the same area as the JHKs image (see Fig. 4).
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Fig. 3.— JHKs composite image of the NGC 7538 star forming region (J: blue, H: green,

Ks: red) obtained with the three-color SIRIUS infrared array mounted on the UH 2.2 m

telescope. The field of view is ∼ 4′.9×4′.9. North is up and east is to the left.
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Fig. 4.— SIRIUS Ks-band image overlayed by the GMRT radio continuum contours in blue

color. The red contours show the integrated emission of the CO (J = 2–1) line (from Davis

et al. 1998). The CO contours start at 50 K km s−1 and increase in steps of 15 K km s−1.

The CO data are taken with JCMT at ∼ 20′′ resolution. The positions of the IRS sources

(see Table 1) are marked by crosses. The abscissa and the ordinate are in J2000 epoch.



– 29 –

Fig. 5.— Continuum-subtracted molecular hydrogen emission at 2.122 µm of the NGC 7538

region (Davis et al. 1998). Residual artifacts left over by the subtraction of the 2.140 µm

image from the 2.122 µm image are seen around the positions of some bright stars. The

overlaying contours and symbols are same as shown in Fig. 4. The direction of the IRS 9

“H2 jet” in the south-eastern corner and the bow shock region in the north-eastern corner

of the image are indicated. The abscissa and the ordinate are in J2000 epoch.
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Fig. 6.— Color-color diagrams of (a) the NGC 7538 star forming region and (b) the reference

field for the sources detected in JHKs-bands with photometric errors less than 0.1 mag. The

sequences for field dwarfs (solid curve) and giants (thick dashed curve) are from Bessell &

Brett (1988). The dotted line represents the locus of T-Tauri stars (Meyer et al. 1997).

Dashed straight lines represent the reddening vectors (Rieke & Lebofsky 1985). The crosses

on the dashed lines are separated by AV = 5 mag.
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Fig. 7.— H-K/K color-magnitude diagram for the sources detected in H and Ks-bands with

photometric errors less than 0.1 mag. Stars and filled triangles represent the YSOs identified

from the regions “T” and “P” in Fig. 6a, respectively. The vertical solid lines from left to

right indicate the main sequence track at 2.8 kpc reddened by AV = 0, 20, 40, and 60

magnitudes, respectively. The intrinsic colors are taken from Koornneef (1983). Slanting

horizontal lines identify the reddening vectors (Rieke & Lebofsky 1985). Also shown are the

positions of known IRS sources as open squares.
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Fig. 8.— Spatial distribution of the YSO color-excess candidates superposed on the Ks-

band image with a logarithmic intensity scale. Blue asterisks represent T-Tauri and related

sources (Class II), green filled triangles indicate Class I sources, and red filled circles denote

the red sources (H-K > 2). The abscissa and the ordinate are in J2000 epoch.
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Fig. 9.— Comparison of the observed KLF in the reference field and the simulated KLF

from star count modelling. The filled circles and solid line denote the K star counts in

the reference field and the filled triangles and dotted line represent the simulation from

the galactic model (see the text). The KLF slope (α, see §3.5) of the dotted line (model

simulation) is 0.29±0.01.
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Fig. 10.— (a) and (b) Corrected Ks-band luminosity function for the whole NGC 7538

region. In (a), the dotted line denotes the raw KLF and the solid line shows the KLF

corrected only for the completeness. In (b), the dotted line shows the KLF corrected only

for the completeness. The dashed line denotes the field star counts from the reference field

corrected for the completeness and modified to reflect the unextincted foreground stars and

the background stars reddended by AV = 30 mag (AK = 3.36 mag), with the help of the

galactic model (Robin et al. 2003). The solid line corresponds to the field star subtracted

KLF. (c) and (d) are the completeness-corrected and field star-subtracted KLF of the NGC

7538 region, respectively. The solid lines are the best linear fit to the data points.
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Fig. 11.— Color-magnitude diagram for the YSO candidates in NGC 7538. Class II candi-

dates are indicated by stars, filled triangles represent Class I candidates, and the filled circles

are red sources with H-K > 2 with J-band counterparts. The solid curve denotes the loci of

106 yr old PMS stars, and the dotted curve is for those that are 0.3×106 yr old, both derived

from the model of Palla & Stahler (1999). Masses range from 0.1 to 4 M⊙ from bottom to

top, for both curves. The dotted oblique reddening line denotes the position of a PMS star

with 3 M⊙ for 0.3 Myr, and the solid oblique lines denote the positions of PMS stars with

0.1, 2, and 3 M⊙ for 1 Myr, respectively, in this diagram. Most of the objects well above the

PMS tracks are luminous and massive ZAMS stars (see Table 1, Fig. 7).
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Fig. 12.— Enlarged view of the color image of selected areas (see Fig. 3 and §3.8). a) NGC

7538 IRS 1–3 region. The three high luminosity infrared sources IRS 1–3 are located at the

boundary of the H II region. b) The striking reflection nebula in the south-eastern corner

of our JHKs image in Fig. 3. NGC 7538 IRS 9 is a bright and pointlike infrared source

at the apex of the complex reflection nebula (marked by “9”). In its immediate vicinity

three more extremely red infrared sources, IRS 9N1, IRS 9N2, and IRS 9N3 are located

(marked by “N1”, “N2”, and “N3”; see §3.8.2). c) NGC 7538 IRS 11 (marked by an arrow)

is most likely a young star associated with nebulosity. The cross shows the 850 µm position

of NGC 7538 S (a high mass Class 0 candidate). d) The small peculiar nebulosities seen in

the north-east corner of our JHKs image in Fig. 3. The northern one shows a cone-shaped

silhouette enveloped by a faint nebulosity, probably due to bow-shaped H2 emission (see Fig.

5 and Davis et al. 1998). The southern one shows an oval-shaped overlaid by dark patches.

e) The barely resolved double source NGC 7538 IRS 4 (arrowed) associated with the local

nebulosity, which is located towards north-west of IRS 2 at the boundary of the optical H II

region.
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