Supplementary Information

Impact absorption properties of carbon fiber reinforced bucky sponges

Ramathasan Thevamaran^{1,2}, Deepika Saini³, Mehmet Karakaya³, Jingyi Zhu³, Ramakrishna Podila³, Apparao M. Rao³, Chiara Daraio^{1,*}

¹Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125.

²Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005.

³Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson SC 29634.

*Corresponding author: daraio@caltech.edu

Figure S1: Recovery of the bucky sponge samples with varying impact velocities.

Figure S2: Dynamic properties of the CF-reinforced bucky sponges compared to the control sample (CF₀): (a) variation of peak stress with impact velocity; (b) variation of hysteretic energy dissipation with impact velocity; (c) variation of unloading modulus with impact velocity; (d) variation of dynamic cushion factor with peak stress.

Figure S3: Dynamic stress-strain responses of bucky sponges compared to that of a VACNT foam of similar density.