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Materials and Methods 

Description of therapeutic antibody used (Hu5F9-G4). Hu5F9-G4 was constructed using 

CDR-grafting from a mouse anti-human CD47 antibody, clone 5F9. Because Hu5F9-G4 activity 

is primarily dependent on blocking the CD47-SIRPα interaction, a human IgG4 scaffold was 

selected to minimize the recruitment of Fc-dependent effector functions such as antibody-

dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and complement-

dependent cytotoxicity. The mechanism of action does not require these functions, and their 

presence may increase toxicity against normal cells. Hu5F9-G4 was engineered using a human 

kappa and IgG4 isotype with a Ser228Pro substitution to reduce Fab arm exchange. Detailed 

biochemical characterization and non-human primate safety assessment was previously 

published (22). 

Primary tissue dissociation and generation of primary cell lines. Pediatric brain tumor tissue 

samples were obtained under IRB protocol ID 18672 after informed patient consent at the Lucile 

Packard Children’s Hospital (Stanford, CA) in accordance with institutional review board 

protocols. For minors, consent was obtained from a parent or guardian. Human subjects approval 

was given under IRB number: 350 (Panel: 3). Tumor pathology and diagnosis were confirmed by 

the on call institutional neuropathologist. Samples were enzymatically dissociated to single cells 

by collagenase IV (1 mg/ml) and DNase I (250 units/ml), and cells were plated in neural stem 

cell expansion medium (NSCEM) consisting of Neurobasal (-A) (Invitrogen), B27 (-A) 

(Invitrogen), human-bFGF (20 ng/ml) (Shenandoah Biotech), human-EGF (20 ng/ml) 

(Shenandoah Biotech), human recombinant LIF (Millipore) (as required), and heparin (10 

ng/ml)(28). Pediatric glioblastoma cells were plated in pediatric glioma stem cell expansion 

medium (GSCEM) consisting of Neurobasal (-A) (Invitrogen), B27 (-A) (Invitrogen), human-



bFGF (20 ng/ml) (Shenandoah Biotech), human-EGF (20 ng/ml) (Shenandoah Biotech), human 

PDGF-AA (20 ng/ml), PDGF-BB (20 ng/ml) (Shenandoah Biotech), and heparin sulfate (10 

ng/ml) (Sigma). Cells were grown for 2 passages and infected with EF1-GFP-T2A-Luciferase 

(Systems Biosciences, BLIV503MN-1), then allowed to re-form spheres. Cells were then double 

sorted for GFP and further passaged in neural stem cell medium. Human fetal brain tissue from 

gestational weeks 16 to 22 was obtained from a non-profit source (Stem Express) and dissociated 

to single cells using TryPLE (Life Technologies), then cultured in NSCEM, as described above. 

Primary human pediatric brain tumor cell lines. The primary cell lines were generated at 

Stanford University in our laboratory or kindly provided by various collaborators as detailed 

below. All tumor lines were authenticated using short tandem repeat (STR) fingerprinting at the 

following 15 loci: D3S1358, TH01, D21S11, D18S51, Penta E, D5S818, D13S317, D7S820, 

D16S539, CSF1PO, Penta D, vWA, D8S1179, TPOX, FGA, AMEL. All cultures were routinely 

tested for mycoplasma contamination. 

Pediatric glioma lines. SU_DIPGVI, SU_DIPGXIII, and JHH DIPG1 (56) were from rapid 

autopsy specimens of patients who died from diffuse intrinsic pontine glioma after receiving 

radiation and chemotherapy. SU_pGBM001 and SU_pGBM002 were derived from surgically 

resected tumor samples of pediatric patients diagnosed with glioblastoma. 

Atypical teratoid rhabdoid tumor lines. CHB-ATRT1 was derived from a surgical specimen 

of a tumor from the posterior fossa. SU_ATRT002 was derived from a supratentorial surgical 

specimen.  

MB lines. D283 and D425 were generously provided by Dr. Darrell Bigner (Duke University, 

Durham, NC). D425s was subcloned from the original D425 for increased growth characteristics 

and incidence of spinal metastasis. SU_MB002 cells were derived postmortem from the 



leptomeningeal compartment of a child with metastatic, treatment-refractory (chemotherapy 

only) MB. SU_MB009 cells were derived from the primary surgical resection of a tumor in a 

child whose tumor recurred after therapy, and they have been described earlier (57). SU_MB012 

and SU_MB014 were derived from the primary surgical resection of a tumor in a child whose 

tumor recurred after therapy. MYC amplification in the SU_MB002 and D425s cells was 

confirmed with NanoString nCounter v2 Cancer CN Codeset. 

Human neural progenitor lines: Origin and maintenance. Neural progenitor line (NSC1) was 

derived from subventricular zone tissue surgically excised during a functional hemispherectomy 

in a child with refractory seizures. NSC2 was derived from human fetal brain tissue from 

gestational weeks 16 to 22. Human neural progenitor cell lines were routinely tested for multi-

potency and neurosphere self-renewal using standard protocols (28). 

GL261 mouse glioma cell line. GL261 was a kind gift from Dr. Michael Lim (Johns Hopkins 

University). The GL261 murine glioma model was established in 1970 by chemical induction 

with methylcholanthrene. Tumors generated were serially transplanted subcutaneously and 

intracranially in C57BL/6 mice. The list of primary cell lines used in this study is shown in table 

S2. 

Cell line maintenance. Primary pGBM and DIPG lines were maintained in serum-free glioma 

stem cell medium consisting of Neurobasal (-A) (Invitrogen), B27 (-A) (Invitrogen), human-

bFGF (20 ng/ml) (Shenandoah Biotech), human-EGF (20 ng/ml) (Shenandoah Biotech), human 

PDGF-AA (20 ng/ml), PDGF-BB (20 ng/ml) (Shenandoah Biotech), and heparin sulfate (10 

ng/ml). All patient-derived MB primary cells were maintained in NSCEM. The subventricular 

zone-derived neural stem cells were similarly maintained in NSCEM. All patient-derived cell 

lines were authenticated using sequence-tagged site fingerprinting. Each line was evaluated for 



its ability to fully recapitulate the tumor of origin by orthotopic transplantation into NSG mice 

and analysis of the engrafted tumors by H&E staining. 

Orthotopic transplantation of brain tumors and neural progenitor cells. Early passage 

spheres were transduced with either GFP or Td-tomato and luciferase-encoding lentivirus, 

expanded in (GSCEM), and double sorted for GFP or Td-tomato expression to obtain a >95% 

luciferase-expressing population. The selected population was expanded in (GSCEM) and 

orthotopically injected into the site of tumor resection. pHGG and ATRT cells were injected 2 

mm posterior to bregma, 2 mm lateral to midline, and 3-4 mm deep in the brain. MB, PNET, and 

DIPG cells were injected at coordinates 2 mm posterior to lambda on midline and 2 mm deep 

into 4-6-week-old NOD-SCIDγ mice. Fetal brain-derived NPCs were injected in the lateral 

hemisphere of 1 to 3-day-old pups.  

Flow cytometry analysis. Surgical brain tumor specimens were dissociated to single cells and 

stained with anti-CD47-PE. Hematopoietic and endothelial cells were gated out using a lineage 

mixture of Pacific blue conjugated anti-CD45 and anti-CD31. For analysis of MB initiating cells 

in xenografts, tumor-bearing mouse brains were dissociated to single cells. Anti-H2kb and anti- 

H2kd (Biolegend) antibodies were used to gate out mouse cells, and anti-CD15-FITC (BD 

Biosciences: Clone MMA) mAb was used to identify CD15+ human MB initiating cells. Flow 

cytometric analysis and cell sorting were performed on the BD FACS aria II (Becton Dickinson). 

Appropriate isotype and fluorescence, minus one control, were used to define the background 

gates. 

Osmotic pump implantation. To achieve continuous intraventricular CNS administration of the 

anti-CD47 antibody, osmotic pumps (Alzet Co., Model 1004; flow rate 0.11 µL/h) were loaded 

with 1.9 μg/µL of antibody (equivalent to previously established 10 mg/kg dosing) or phosphate-



buffered saline (PBS) (control). Pumps were coupled to brain infusion kits (Alzet Co., Model 

8851) and primed overnight at 37 °C, 5% CO2. Osmotic pumps were implanted subcutaneously 

on the dorsum, slightly caudal to the scapulae, through a 2.5 cm midline incision. Using a 

stereotaxic apparatus, brain cannulae were inserted intraventricularly per predefined coordinates 

(2 mm posterior to bregma, 0.5 mm right of midline, 1 mm deep) after removal of periosteal 

connective tissue, and secured with dental cement (Stoelting Co.). At the time of animals’ death, 

cannula patency and drug delivery were verified by comparing pump weight before and after 

implantation. 

In vivo sequential co-transplant xenograft cytotoxicity model. Human fetal-derived neural 

progenitor cells expressing Td-tomato and luciferase were injected into the lateral ventricle, 0.5 

mm lateral to midline, of neonatal NSG mouse pups at 1 to 3 days of age. Mice were followed 

with BLI to ensure engraftment and sustained expression of luciferase. Human progenitor 

engrafted mice were then injected with unlabeled human MB cells (SU_MB002) at 1.5 months 

of age. SU_MB002 was previously confirmed (58) to have 100% penetrance in multiple cohorts. 

14 d after tumor cell transplantation, the mice were randomized based on BLI values and treated 

with either Hu5F9-G4 or PBS. Human neural cell viability and proliferation were measured 

through subsequent BLI. 

Immunohistochemistry. Expression of CD47 protein on primary tumor samples was evaluated 

on 4-μm thick OCT embedded fresh frozen tissue sections. Sections were fixed with acetone, 

blocked with 5% goat serum, and incubated with anti-CD47 antibody (0.2 μg/ml, Abcam 

ab3283) followed by goat anti-mouse Alexa488 (Invitrogen) secondary antibody and counter-

stained with 4',6-diamidino-2-phenylindole (DAPI). The sections were mounted, and the imaging 

was done on a fluorescent microscope (Leica). Orthotopic tumor-bearing mouse brains were 



fixed in formalin and embedded in paraffin, and 8 μm sections were cut to reveal either coronal 

or sagittal views of the brains. Tissue sections were processed for standard H&E staining or for 

mouse macrophage markers using the anti-F4/80 (Abcam) antibody. The images were taken with 

a Nikon E1000M microscope with a Spot Flex camera. 

In vitro phagocytosis assay. In vitro phagocytosis assay was performed as described before (10) 

with both human and mouse macrophages analyzed by either FACS or microscopy. To obtain 

human monocytes, PBMCs collected from venous blood of healthy volunteers were separated on 

a Ficoll density gradient (GE Healthcare). CD14+ monocytes were positively selected to >95% 

purity by MACS using anti-CD14 microbeads (Miltenyi), then plated at 1 x 106/ml in 150 x 25 

mm tissue culture plates in RPMI 1640 with 10% FBS, penicillin/streptomycin, glutamine, and 

HEPES. To generate monocyte-derived macrophages, monocytes were treated for 7 d with 

human recombinant M-CSF (25 ng/mL). Mouse macrophages were obtained from mouse bone 

marrow after 7 d of bone marrow cell plating with mouse colony stimulating factor. 

For phagocytosis assays carried out by fluorescence microscopy, macrophages were stained with 

PKH26 (Sigma-Aldrich), and dissociated tumor cells were labeled with 2.5 μM 

carboxyfluorescein succinimidyl ester (CSFE) according to the manufacturer's description. Cells 

were co-incubated at a 1:2 ratio (macrophages:tumor cells) along with indicated antibodies (10 

μg/ml) or human IgG controls and incubated for 2 h at 37 °C. Wells were repeatedly washed to 

remove non-phagocytosed cells and subsequently imaged with an inverted microscope (Leica 

DMI6000B). The phagocytic index was calculated as the number of macrophages that had 

phagocytosed tumor cells per 100 macrophages. For FACS-based phagocytosis assay, CFSE 

labeled tumor cells were incubated with indicated antibodies (10 μg/ml) for 30 min at 37 °C 

before co-incubation with macrophages. Adherent macrophages were collected using TrypLE 



Express (Life Technologies) and incubated in serum-free medium. 5 x 104 macrophages were 

added to 1 x 105 CFSE-labeled live tumor cells per well for 4 h and returned to the incubator. 

Analysis was carried out by flow cytometry. Human macrophages were identified using anti-

human CD11b-Alexa647 and anti-human CD14- APC/Cy7 (BioLegend). Phagocytosis assays 

for each tumor type were performed in triplicates and repeated at least two times. 

Sorting of macrophage populations during phagocytosis. Macrophages (count 500,000) were 

incubated with MB cells (2 million) labeled with Calcein-AM (Life Technologies) in the 

presence of Hu5F9-G4 for 2 h. The population that was positive for macrophages (identified 

using anti-CD14 and anti-CD11b antibodies) and MB cells (identified with Calcein) was sorted, 

cytospun onto slides, stained with modified Wright-Giemsa Stain (Sigma-Aldrich) according to 

the manufacturer’s instructions, and imaged with light microscopy. 

Collection of cerebrospinal fluid. CSF sampling was performed from the cisterna magna, 

located between the cerebellum and dorsal surface of the spinal cord. The mouse was shaved in 

the neck area, anesthetized with isoflurane, and placed in a stereotaxic frame. A midline sagittal 

incision was made inferior to the occiput. The pyramid muscles were separated using blunt 

forceps. To get proper access to dura mater of the cisterna magna, the mouse head was 

repositioned making a 135-degree angle with the body. Subsequently, the dura mater of cisterna 

magna was punctured using a glass capillary. Five to ten microliters of clean CSF sample was 

drained from the cisterna magna. Samples testing positive for blood serum albumin or 

hemoglobin were discarded from analysis. 

Enzyme-linked immunosorbent assay (ELISA) for testing Hu5F9-G4 levels in blood and 

CSF. Ninety-six-well plates (Costar, 9018) were coated with huCD47/mFc at a concentration of 

1 µg/ml in PBS and incubated at 4 °C overnight. After the plates were blocked for 1 h with 0.4% 



bovine serum albumin in PBS at room temperature, mouse serum and CSF samples were added 

in four sequential dilutions. The plates were incubated for 1 h at room temperature. Ten 

micrograms/ml biotin-labeled mouse 5F9 was added to the wells in the presence of various 

concentrations of unlabeled Hu5F9-G4, and the plates were incubated at room temperature for 1 

h. After three successive washing steps, the plates were then incubated with HRP conjugated 

goat anti-human kappa-specific antibody for 1 h at room temperature. Plates were developed 

with OPT. The reaction was stopped with 2M H2SO4, and the results were recorded as optical 

density units at 490 nM. GraphPad Prism (GraphPad Inc.) was used to analyze the data. 

Mice. NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) and C57/BL6 mice were housed in specific 

pathogen-free conditions at a barrier facility at the Lokey Stem Cell Building at Stanford School 

of Medicine (Stanford, CA). All animal handling, surveillance, and experimentation were 

performed in accordance with and approval from the Stanford University Administrative Panel 

on Laboratory Animal Care (Protocol # 26548 and 26209). 

Tumor tissue dissociation. Tumor samples were enzymatically dissociated by collagenase IV (1 

mg/ml) in dissociation solution containing HBSS with calcium/magnesium (Cellgro), non- 

essential amino acids (Cellgro), sodium pyruvate (Cellgro), sodium bicarbonate (Cellgro), 

HEPES (25 mM) (Cellgro), 1X Glutamax-1 (Cellgro), 1X antibiotic antimycotic (Cellgro), 

DNase, and collagenase IV (Worthington) at 37 °C. The suspension was washed 2 times with 

HBSS and filtered using 100 μm and 40 μm filters, respectively. The cells were resuspended in 

0.9 M sucrose gradient solution in HBSS without Ca/Mg (Cellgro) to remove debris and dead 

cells. The cells were treated with ACK/RBC lysis buffer (Gibco), washed twice in PBS, and 

were then ready to use. For neurosphere formation, single tumor cells were plated in tumor-stem 

medium (TSM) consisting of Neurobasal (-A) (Invitrogen), B27 (-A) (Invitrogen), human-bFGF 



(20 ng/ml) (Shenandoah Biotech), human-EGF (20 ng/ml) (Shenandoah Biotech), human 

recombinant LIF (Millipore), and heparin (10 ng/ml). Early passage spheres were transduced 

with either GFP or Td-tomato luciferase encoding lentivirus and expanded in TSM. After 

secondary tumor sphere formation, the GFP or Td-tomato-positive cells were double sorted to 

obtain a pure population. The selected population was expanded in TSM medium and then 

injected intracranially into 5-6-week-old NSG mice using the stereotaxic frame. 

 

  



Supplementary Figures 
 

Supplementary Figure 1 

 

 

Fig. S1. Expression analysis of CD47 and cell surface CRT in MB. (A) Expression analysis of 

CD47 from the R2 dataset. Y-axis label is Log2 expression and expression values are depicted as 



Box-Dot-Plot. Box plot component: In this plot type, the middle 50 percent of the data is 

represented by a box. The median forms a horizontal line within this box. The whiskers of this 

plot represent the extremes within the group. Dot plot component: Illustrates expression values 

observed in individual tumor samples. Expression analysis of CD47 across (B) Toronto, (C) 

Boston, and (D) Heidelberg datasets shows subgroup-specific expression of CD47. (E) Analysis 

of CD47 expression across medulloblastoma samples in primary site and metastatic 

regions. (F) Cell surface expression of CD47 on low passage (<10) primary patient-derived 

medulloblastoma cell lines as analyzed by flow cytometry. Flow cytometry analysis of CRT on 

SU_MB002 and D425s cells (G). 

 

  



Supplementary Figure 2 

 

Fig. S2. Induction of potent macrophage-mediated phagocytosis of MB cells derived from 

surgical specimens by Hu5F9-G4. Phagocytosis assay was carried out as described in the 

Materials and Methods. Calcein AM-labeled tumor cells and macrophages were co-incubated in 

the presence of Hu5F9-G4 or IgG control. After an incubation period, cells were stained with 

anti-CD14 and anti-CD11b antibodies and analyzed on a flow cytometer. Macrophages were 

distinguished from tumor cells as being CD14+CD11b+. Macrophages with engulfed tumor cells 

in them were identified as CD14+CD11b+Calcein+. Efficiency of phagocytosis was calculated as 

the percentage of macrophages with engulfed tumor cells in them. Data are shown from (A) 

SU_MB002, (B) SU_MB014, (C) SU_MB012, and (D) D425s MB cells. Cells were subjected to 

phagocytosis by macrophages from at least two different blood donors. 

 



Supplementary Figure 3 

 

Fig. S3. Flow cytometry gating strategy. (A) Representative gating tree to illustrate the process 

used to select human macrophages for analysis of phagocytosis assay. Gating was done for 

debris exclusion (far left column), single cell isolation (left middle and middle column), and 

removal of dead cells (right middle column). Double positive CD14/CD11b cells were gated out 

to identify human blood-derived macrophages (far right column). (B) Representative sample 

gating of medulloblastoma xenografts from treated and control mice before brain tumor stem cell 

analyses. The tumors were dissociated and processed for removing debris (far left column), 

single cell isolation (left and right column), and purifying live population (far right column). The 

first SSC-A and FSC-A gate was re-drawn after back-gating for DAPI- (live)/mouse CD45-

CD31-H2Kd- (mouse hematopoietic and endothelial lineage cells)/GFP+ (human cells). 

 

 

 



Supplementary Figure 4

 

Fig. S4. Verification of phagocytic activity. (A) Macrophages were identified by their 

expression of CD14 and CD11b as detected by anti-CD14 and anti-CD11b antibodies, and the 

tumor cells were loaded with Calcein AM.  (B) The populations of cells that was positive for 

macrophage markers and Calcein (FITC) were sorted out. (C) Wright-Giemsa stain on the sorted 

cells revealed the engulfment of MB cells by macrophages (scale bar, 50 μm). (D) H&E staining 

of SU_MB002 xenograft orthotopic tissue treated with Hu5F9-G4 (scale bar, 2 mm). (E)  IHC 

staining for F4/80 protein (a mouse macrophage marker) revealed degraded medulloblastoma 

cells engulfed by macrophages (scale bar, 100 μm). (F) Higher magnification of (E) (scale bar, 

200 μm). 



 

 

 

 

Supplementary Figure 5

 



Fig. S5. Representative tumor burden at treatment initiation. H&E staining of SU_MB002 

xenografts at the time of treatment initiation. (A) Cerebellar tumor seen in SU_MB002 xenograft 

shows leptomeningeal metastasis as well as intraventricular spread 5 d after tumor 

transplantation (scale bar, 2 mm). Higher magnification of tumor spread in (B) cerebellar pia, 

(C) pial bars of ventral pons, (D) IVth ventricle, and (E) inferior forebrain (scale bar, 100 μm). 

(F) H&E staining of D425s xenograft, d 5 after transplantation (scale bar, 2 mm). (G) Higher 

magnification of (F) (scale bar, 100 μm). 



Supplementary Figure 6

 



Fig. S6. Efficacy and dose-dependent response of Hu5F9-G4 in cell line–derived cMYC-

amplified MB xenografts. (A, G, and M) Schematic timelines for study design. (B, H) 

Bioluminescence imaging from mice orthotopically injected with luciferase-expressing D425 

and D283 lines, randomized and treated with Hu5F9-G4 or control. (C, I) Bioluminescence 

signal declined  in Hu5F9-G4-treated versus control groups. (D, J) Significant improvement in 

survival is seen in Hu5F9-G4-treated mice compared to control group (D; D425, n= 10 per group, 

P<0.0001, log-rank analysis and J; D283, n= 10 per group, P<0.0001, log-rank analysis). (E, K) 

Representative H&E staining of brains from treated and control mice. Local and leptomeningeal 

tumor spread in control brain (upper panel) versus minimal tumor residue observed in treated 

brain (lower panel) (scale bars, 2 mm). (F, L) Immunohistochemistry staining of macrophages 

using the marker F4/80 shows increased macrophage infiltration in treated compared with 

control groups (scale bars, 50 m). (M-Q) D425s, a subclone of D425 cell line, generated 

aggressive behavior with 100% penetrance of spontaneous spinal metastasis and high morbidity 

and mortality in xenograft setting. (N) H&E staining shows tumor burden in control brains 

compared with treated brains (scale bars, 2 mm).  (O) IHC staining indicates macrophage 

involvement in tumor tissues in treated brains with Hu-5F9G4 compared with controls (scale 

bars, 50 m). (P, Q) An increase in survival was achieved with Hu5F9-G4 treatment at a higher 

dose of 450 g per mouse three times a week (Q, n= 5 per group, P<0.0023, log-rank analysis) 

compared to the standard dosing scale of 250 g (P, n= 5 per group, P<0.0018, log-rank 

analysis). 

 

 



Supplementary Figure 7

 

Fig. S7. Pharmacokinetic analysis and brain penetrance of Hu5F9-G4. 

(A) Serum concentrations of Hu5F9-G4 in mice engrafted with SU_MB002 and treated every 48 

h for 2 weeks with Hu5F9-G4 (100 g/dose) were determined by ELISA. Serum was collected 

before treatment and 2 h after treatment with Hu5F9-G4 after the 1st, 2nd, 3rd, and 5th doses. 

(B) CSF was collected from mice orthotopically xenografted with MB tumor and mice without 

tumor. The mice were treated with Hu5F9-G4 for 2 weeks before CSF collection. CSF 

concentrations of Hu5F9-G4 were determined with ELISA test. The concentrations were 



compared with the relevant values in control mice. (C) The image and sagittal schematic of a 

mouse brain with clear delineation of the spot for CSF collection. (D) IHC staining with anti-

IgG4 antibody showed IgG4 staining in tissues treated with Hu5F9-G4 compared to control 

group (scale bars, 50 m).  

 

  



Supplementary Figure 8 

 

Fig. S8. Flow cytometric analysis of myeloid cell infiltration after Hu5F9-G4 treatment. (A) 

Schematic illustration of experimental design. (B-F) MB xenografts were treated with either 

control or Hu5F9G4 for 10 d, and the macrophage population in the tumor area was quantitated 

by flow cytometry. GFP and luciferase-expressing MB cells were orthotopically implanted in 

NSG mice. After 10 d of treatment with either control or Hu5F9-G4, the brains were dissected 

and a sagittal midline section was made. The sagittal sections were visualized under a fluorescent 

stereomicroscope. GFP fluorescence revealed large primary tumors and leptomeningeal tumor 

spread in the control brain (B), whereas only localized tumor was observed at the primary 



cerebellar site with minimal residual leptomeningeal disease in the brain treated with Hu5F9-G4 

(scale bars, 5 mm) (D). The GFP-expressing tumors were microdissected and dissociated for 

flow cytometric analysis. GFP+ tumor cells were gated out.  Within the GFP- (mouse) cells, a 

significant (P=0.0143) increase in macrophage (CD14+ and CD11b+) was seen in Hu5F9-G4-

treated brains (E) compared with the control groups (C). The percentage of recruited 

macrophages from three brains treated with Hu5F9-G4 compared with three brains from the 

control cohort (F). 

 

  



Supplementary Figure 9

 

Fig. S9. Efficacy of Hu5F9-G4 against a primary patient-derived MB xenograft. (A) 

Treatment schema for the study design. (B) H&E staining shows tumor burden in control brains 

with SU_MB009 tumors compared with treated ones (scale bars, 2 mm). (C) IHC staining shows 

F4/80 positive macrophages in treated brain with Hu5F9-G4 (scale bars, 50 m). (D) 

Significantly improved survival was seen in SU_MB009-bearing mice treated with Hu5F9-G4 

(control=10, Hu5F9-G4=9, P<0.0001, log-rank analysis). (E) Mice xenografted with 

SU_MB009 and treated with Hu5F9-G4 had significantly higher weight compared with control 

mice 80 d after initiation of treatment (P<0.001). 

 

  



Supplementary Figure 10

 

Fig. S10. Stability of Hu5F9-G4. The stability of Hu5F9-G4 was studied by visual inspection, 

pH measurement, osmolality measurement, absorbance spectrophotometry, SDS-PAGE gel, 

weak cation exchange HPLC (WCX-HPLC), and size-exclusion HPLC (SE-HPLC). Hu5F9-G4 

was stable for at least 2 months when stored at -70°C, 2-8°C and ambient temperature.  

 

  



Supplementary Figure 11

 

Fig. S11. Evaluating the toxicity of Hu5F9-G4 against human normal neural cells. (A) 

WST-1 assay for evaluation of neural progenitor cell viability after Hu5F9-G4 treatment at 

different concentrations after 24 h (left panel) and 120 h (right panel). Each colored line 

represents a different neural progenitor cell line derived from a different fetal specimen. (B) 

Phagocytosis of differentiated neural cells (neurons and astrocytes) and medulloblastoma cells 

co-cultured with macrophages and treated with either Hu5F9-G4 or PBS. No significant change 

was observed in phagocytosis of neurons and astrocytes treated with Hu5F9-G4 compared with 

their control counterparts, whereas medulloblastoma (P<0.001) and pGBM (P<0.001) cells 

treated with Hu5F9-G4 show significant engulfment by macrophages in the same experiment. 

 

  



Supplementary Figure 12

 

Fig. S12. CD47 and CRT expression on primary pediatric brain tumor samples. (A) CD47 

expression across multiple databases for pediatric glioma, glioblastoma, pilocytic astrocytoma, 

ATRT, PNET, and ependymoma. Ubiquitous expression of CD47 is seen in all tumors analyzed. 

There is no significant difference in CD47 expression in tumors compared with normal brain or 

cerebellum. (B) Flow cytometric analysis of primary patient samples for surface expression of 

CD47. In most samples analyzed, >80% of the cells expressed CD47 on their surface. (C) Cell 

surface expression of CD47 in pediatric GBM and DIPG cancer stem cell lines.  (D) Cell surface 

expression of CRT on patient-derived pediatric glioma, ATRT, and normal neural cell lines 

analyzed by flow cytometry.  

 

  



Supplementary Figure 13

 

 

Fig. S13. Macrophage-mediated phagocytosis of pediatric brain tumor cells. Cells from 

three different pediatric brain tumor types, (A) CHB-ATRT1, (B) SU_pGBM001, (C) JHH-

DIPGI, and (D) SU_DIPGVI, were labeled with Calcein AM and incubated with human 

peripheral blood-derived macrophages in the presence of 10 g/nl Hu5F9-G4 or human IgG. 

Two hours later, the mixed samples were analyzed by flow cytometry to determine the 

percentage of phagocytosis. P-value was determined using a two-sided t-test.  

 

  



 

Supplementary Figure 14

 

 

Fig. S14. High expression of Olig2 and Nestin on CD47+ DIPG cells. (A) CD47-positive cells 

with high expression of nestin. (B) Some CD47-positive cells expressed olig2 

  



Supplementary Figure 15 

 

Fig. S15. Efficacy of Hu5F9-G4 in JHH-DIPGI xenografts. (A-D) In vivo anti-tumor efficacy 

of Hu5F9-G4 against JHH-DIPGI xenografts. Luciferase-expressing tumor cells were injected in 

the fourth ventricle (B) and treatment commenced after tumor was detected by bioluminescence 

imaging. (C) Significant decrease in total flux was observed after 34 weeks of treatment  

(p=0.0286). (D) Significant increase in survival was observed after Hu5F9-G4 treatment  

(p=0.006).  

 

  



Supplementary Figure 16 

 

Fig. S16. Contribution of CD47 expression to tumor growth and phagocytosis by 

macrophages in an immunocompetent setting. (A-F) shRNA-dependent CD47 knockdown in 

GL261 cells slows down tumor growth in vivo. Analysis of cell surface expression of CD47 in 

control and CD47 knocked down GL261 by flow cytometry (A). Western blot analysis for total 

CD47 protein in GL261:CD47-KD cells and control. (B) Study design timeline (C) for mice 

orthotopically injected with either vehicle or CD47 knocked-down cells, and follow up BLI 15 

days after tumor injection (shown in D and quantified in E).  Significant extension in survival is 

seen in mice engrafted with CD47 knocked-down GL261 cell compared to control group (n= 7 

per group, P=0.0002, log-rank analysis) (F). Immunohistochemical staining with F4/80 antibody 



showed a notable macrophage presence in tumor tissues from knocked-down CD47 GL261 cells 

compared to control group (G). 

  



Table S1. Quantitative IHC assessment of macrophage infiltration in vivo. 

 
Tumor xenograft Qualitative assessment of 

F4/80 staining  

(scale of 1 to 5) 

 Percent nuclei (eosin stain) 

surrounded by F4/80+ 

cytofilaments at tumor site 

 Hu5F9-G4 Control  Hu5F9-G4 Control 

SU_pGBM002 3 1  80 % 9 % 

SU_ATRT002 5 0  90 % 10 % 

sPNET 5 0  90 % 8 % 

SU_MB002 5 1  80 % 11 % 

SU_MB009 4 1  50 % 10 % 

D283 4 0  70 % 5 % 

D425 4 0  60 % 10 % 

D425s 5 1  80 % 9 % 

GL261 4 1  60 % 20 % 

  
  



Table S2. General characteristics of cell lines used in the study. 

 

Cell line Age at diagnosis 

(years) 

Gender Primary resection/ 

Post therapy 

Site of resection Known mutations/ 

Subgroups 

Number of injected 

cells in vivo 

SU_pGBM001      80,000 

SU_pGBM002 12 Male Primary resection  p53, EGFR 

amplification 

80,000 

SU_DIPGVI 7 Female Post Therapy  H3.3 K27M  

SU_DIPGXIII 6 Female Post Therapy  H3.3 K27M 100,000 

JHH-DIPG-1   Obtained at autopsy   100,000 

CHB-ATRT1  1 Female Primary resection Posterior-fossa  150,000 

SU_ATRT002  2 Male Primary resection Supratentorial  150,000 

sPNET  9 Female Primary resection   80,000 

SU_MB002 3 Male Obtained at autopsy Leptomeningeal 

spread 

Group 3 30,000 

SU_MB009 9 Female Primary resection  Group 4 80,000 

SU_MB012 6 Male Primary resection Primary site Group 3  

SU_MB014     Group 3  

D283 6 Male Primary resection Metastatic site: 

peritoneum 

Group 3 30,000 

D425 5 Male   Group 3 30,000 

D425s 10 Male Primary resection of 

recurred tumor post 

therapy 

 Group 3 30,000 

GL261 Mouse glioma 

line 

    300,000 

 

 

 



Movie legends: 

Movie S1. Qualitative behavioral assessment of SU_MB002 tumor-bearing mice treated 

with Hu5F9-G4 compared to control. SU_MB002 cells were transplanted into the cerebellum 

of NSG mice. Tumor engraftment was verified by bioluminescence (BLI) imaging and treated 

for 20 days with either Hu5F9-G4 or control. Mice treated with Hu5F9-G4 (right cage) 

maintained weight had normal feeding behavior and showed normal exploratory behavior. Mice 

in control group (left cage) exhibited cachexia, hunched back and decreased activity. 

 

Movie S2. Qualitative behavioral assessment of D425s tumor-bearing mice treated with 

Hu5F9-G4 compared to control. D425s cells were transplanted into the cerebellum of NSG 

mice. Tumor engraftment was verified by bioluminescence (BLI) imaging and treated for 20 

days with either Hu5F9-G4 or control. Mice treated with Hu5F9-G4 (left cage) maintained 

weight, had normal feeding behavior and showed normal exploratory behavior, whereas mice in 

control group (right cage) exhibited cachexia, hunched back, diminished eating and decreased 

activity. 

 

 




