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Abstract

The Neighbor-Joining algorithm is a recursive procedure for re-

constructing trees that is based on a transformation of pairwise dis-

tances between leaves. We present a generalization of the neighbor-

joining transformation, which uses estimates of phylogenetic diversity

rather than pairwise distances in the tree. This leads to an improved

neighbor-joining algorithm whose total running time is still polynomial

in the number of taxa. On simulated data, the method outperforms

other distance-based methods.

We have implemented neighbor-joining for subtree weights in a

program called MJOIN which is freely available under the Gnu Public

License at

http://bio.math.berkeley.edu/mjoin/
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1 Introduction

Distance based methods for phylogenetic reconstruction are based on the

observation that edge weighted phylogenetic X-trees (trees that have a set

X as their leaves, all interior vertices of degree at least three and non-negative

weights wT : E(T ) → R>0 on every edge) can be encoded by certain metrics

on X.

Theorem 1 (Four-point condition [Buneman, 1971]). Given a

metric D : X × X → R there exists an edge weighted phylogenetic X-tree T

such that D(i, j) =
∑

e∈E(T ) wT (e) iff

D(i, j) + D(k, l) ≤ max(D(i, k) + D(j, l), D(j, k) + D(i, l))

for every four leaves i, j, k, l. Furthermore, T is unique.

Such metrics are called tree metrics and many methods have been pro-

posed for projecting dissimilarity maps (functions D : X × X → R with

D(x, x) = 0 and D(x, y) = D(y, x)) to “nearby” tree metrics. The neighbor-

joining algorithm, introduced by [Saitou and Nei, 1987], is the most popular

and widely used. It is particularly convenient for reconstructing phyloge-

netic trees when the size of X is large, in which case methods that require an

exhaustive exploration of the space of trees are computationally prohibitive.

There are four parts to the neighbor-joining algorithm (see algorithm 1):

1. A procedure for estimating pairwise distances between elements of X.
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2. A criterion for identifying neighboring pendant edges (cherries) in a

tree.

3. A recursive reduction.

4. A branch length estimation formula.

The cherry picking criterion is based on the following theorem:

Theorem 2 ([Saitou and Nei, 1987, Studier and Keppler, 1988]). If

D is a tree metric and

QD(i, j) = (n − 2)D(i, j) −
∑

k 6=i

D(i, k) −
∑

k 6=j

D(j, k)

then the pair x, y that minimizes QD(x, y) is a cherry in the tree.

Although the exact formula for Q may seem a bit mysterious at first,

it is a very natural criterion. For example, the neighbor-joining algorithm

which is based on it is consistent (i.e. if D is a tree metric then the al-

gorithm returns the tree), the input order of the taxa does not change the

outcome of the algorithm, and the criterion is a linear function of the dis-

tances. [Bryant, 2005] has recently shown that the neighbor-joining selection

criterion Q(i, j) is the only one satisfying the properties above. Further-

more, [Gascuel, 1997b] has shown that the neighbor-joining criterion can be

interpreted as greedily minimizing a balanced minimum evolution criterion

which provides added understanding as to why it has been a very successful

method.
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The recursive reduction step and branch length estimation formula have

been examined extensively and have resulted in a number of improvements

to the basic neighbor-joining algorithm. For example, the reduction step

has been extensively investigated and has been shown to be optimal when

variances on the estimates are unknown, yet improvable when variance in-

formation is incorporated [Gascuel, 1994, Gascuel, 1997a, Gascuel, 1997b].

Algorithm 1: Neighbor-joining algorithm

Data : A set X together with sequences corresponding to the
elements of X

Result: Edge weighted phylogenetic X-tree T
for i, j ∈

(

X

2

)

do
Compute the maximum likelihood distance D(i, j) between taxa i
and j;

end
while |X| > 2 do

for i, j ∈
(

X

2

)

do
Set
QD(i, j) = (|X|−2)D(i, j)−

∑

k∈X\{j} D(i, k)−
∑

k∈X\{i} D(kj).

end
Choose a pair x, y ∈ X that minimizes QD(x, y);
Add a new element z|X| to the set X and remove x and y;
Let u|X| = x and v|X| = y.;
Set D(i, z|X|) = 1

2
(D(i, x) + D(i, y) − D(x, y));

end
while |X| ≤ n − 2 do

Set D(u|X|, z|X|) =
1

|X|−2

∑

k 6=u|X|,v|X|
D(u|X|, k) + D(u|X|, v|X|) − D(k, v|X|);

Set D(v|X|, z|X|) =
1

|X|−2

∑

k 6=u|X|,v|X|
D(v|X|, k) + D(u|X|, v|X|) − D(k, u|X|);

Add u|X| and v|X| into X.
end

Nevertheless, the main problem with neighbor-joining scheme is that in
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the first step, the distances are estimated from noisy data and the resulting

dissimilarity map is therefore very unlikely to be a tree metric. For bio-

logical sequences, the pairwise distance estimates are typically based on a

probabilistic model of evolution such as the [Jukes and Cantor, 1969] model:

given two sequences of length L with k differences between them, the distance

is estimated as

DJC = −
3

4
ln

(

1 −
4

3
p

)

where p = k
L
. The variance is given by

V ar(DJC) ≈
p(1 − p)

L(1 − 4
3
p)2

.

Notice that as p → 3
4

the variance approaches infinity, which reflects the fact

that long branch lengths are difficult to resolve with finite sequences. This

phenomenon exists whenever branch lengths are estimated using Markov

models of evolution. Although the neighbor-joining algorithm is consistent,

the fact that dissimilarity maps estimated from data are not tree metrics

means that there is no guarantee that the algorithm produces the correct

tree.

A number of attempts have been made to understand the good results

obtained with the neighbor-joining algorithm, especially given the problems

with the inference procedures used for estimating pairwise distances. One of

the main results is the following:

Theorem 3 ([Atteson, 1999]). Neighbor-joining has l∞ radius 1
2
.
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This means that if the distance estimates are at most half the minimal

edge length of the tree away from their true value then the neighbor-joining

algorithm will reconstruct the correct tree. However, as we will see in section

4, this criteria is rarely attained even in cases where neighbor-joining has a

high success rate.

Despite the unavailability of precise criteria for judging the success of

neighbor-joining, there have been efforts aimed at improving the distance es-

timates which form the input to the algorithm. For example, the TRIPLEML

method [Ranwez and Gascuel, 2002] improves on the pairwise distance esti-

mates by adjusting them using additional taxa: for each pair of leaves, a third

leaf is selected and an approximate (numerical) maximum likelihood estimate

for the branch lengths of the three leaf subtree is computed from which the

pairwise distance of the original leaves is estimated. In the WEIGHBOR al-

gorithm [Bruno et al., 2000], the neighbor-joining criterion is replaced so as

to weight long branch lengths. These methods, and others similar to them,

have the drawback that either their performance remains limited by the in-

herent uncertainty in pairwise distance estimates, or else the simple, natural,

and mathematically justified structure of the neighbor-joining algorithm is

abandoned.

It was suggested in [Pachter and Speyer, 2004] that an alternative encod-

ing of edge weighted phylogenetic X-trees may be used to improve phylo-

genetic reconstruction while preserving many of the properties of distance

based methods. Let Xm denote the mth Cartesian product of X and
(

X

m

)

all
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the m element subsets of X. For a phylogenetic X-tree T with R ⊂ X let

[R] denote the smallest subtree of T spanning R.

Theorem 4 ([Pachter and Speyer, 2004]). Let T be a phylogenetic X-

tree (|X| = n) and m ≥ 2 be an integer. Let n ≥ 2m−1, and let D : Xm → R

be the map R 7→
∑

e∈[R] wT (e) for each R ∈
(

X

m

)

. Then T is determined by

the set of values D(R) (and this is not true if 2m − 2 = n > 2).

Instead of reconstructing trees from dissimilarity maps (m = 2), it was

suggested that maximum likelihood methods could be used to more accu-

rately estimate the phylogenetic diversity values D(R) [Faith, 1992] for ev-

ery R ⊂ X, |R| = m. The phylogenetic diversity values are also conve-

niently called the m-subtree weight values. Such estimates result in
(

n

m

)

values which form an m-dissimilarity map, i.e. a function D : Xm → R with

D(x, x, . . . , x) = 0 and D(x1, . . . , xm) = D(xi1 , . . . , xim) for any permutation

(i1, . . . , im) ∈ Sm. The problem is then to develop consistent tree reconstruc-

tion algorithms that find a tree whose m-subtree weights are “close” to the

m-dissimilarity map.

In this paper we propose a practical, efficient method for tree reconstruc-

tion based on m-dissimilarity maps. We begin by refining theorem 4 and

show that even if n < 2m − 1 partial information about the tree is recov-

erable. We then describe a neighbor-joining algorithm whose cherry picking

criterion makes use of m-subtree weights. The algorithm is a generalization

of standard neighbor-joining (in the special case m = 2 the formulas in the

algorithm simplify to neighbor-joining). It also satisfies many of the same
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properties: the method is consistent, the input order of the taxa does not

change the outcome, and the cherry picking criterion is a linear function of

the distances. In section 4 we argue that it is more accurate than neighbor-

joining, and the fact that it is polynomial in the number of taxa means that it

is practical for the same kinds of large problems for which neighbor-joining is

used. In fact, the running time for m = 3 is O(n3), the same as for standard

neighbor-joining (only with a higher time constant for the initial estimation

of the weights).

Our main results depends on yet another encoding of phylogenetic X-

trees. Given four leaves i, j, k, l in a phylogenetic X-tree, we use the notation

|(i, j; k, l)| := |E([{i, j}] ∩ [{k, l}])|.

We say that (i, j; k, l) is a tree quartet if |(i, j; k, l)| = ∅. If q(T ) denotes

the set of tree quartets then there is a partial order ≤ on all X-trees where

T ′ ≤ T iff q(T ′) ⊆ q(T ).

Theorem 5 ([Buneman, 1971, Semple and Steel, 2003]). Let T and

T ′ be two phylogenetic X-trees. Then q(T ) = q(T ′) iff T ∼= T ′.

2 Tree metrics from m-weights

Our main results about m-subtree weights are based on a mapping that asso-

ciates to any m-dissimilarity map a 2-dissimilarity map which, for m-subtree
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Figure 1: A tree T and four subforests.

weights from a tree, preserves a certain subforest. This subforest is charac-

terized by containing those edges whose removal results in sufficiently small

components in the tree. Specifically, for a tree T , the removal of any edges

results in two components, and we denote by T≤k the subforest of T whose

edge set consists of edges whose removal results in one of the components

having size at most k. For example T≤1 consists of all the pendant edges

(adjacent to leaves), and T≤k = T for any k > n−1
2

because the removal of

any edge in a tree leaves a component of size at most n−1
2

. For the tree T in

figure 1 with 24 leaves, T = T≤12.

Theorem 6. Let D be an m-dissimilarity map on a set X of size n and

define

SD(i, j) =
∑

Y ∈(X\{i,j}
m−2 )

D(i, j, Y ). (1)

If D(R) =
∑

e∈[R] wT (e) for every R ∈
(

X

m

)

in some edge weighted phylo-

genetic X-tree T , then SD is a tree metric. Furthermore, if T ′ is the tree

corresponding to this tree metric, then T ′ ≤ T with T ′
≤n−m

∼= T≤n−m and

there is an invertible linear map between the edge weights in T≤n−m and the

corresponding edge weights in T ′
≤n−m (with the exception that in the case that

T 6= T≤n−m, the pendant edge weights are not uniquely determined.).

For a fixed tree T and integer m, let S = SD where D is the m-dissimilarity
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map induced by T . Observe that for an edge weighted phylogenetic X-tree,

T , any linear combination of the m-subtree weights is a linear combina-

tion of the edge weights wT (e) in the tree. For a linear function on the

m-subtree weights F : R
(n

m) → R, let vF (e) denote the coefficient of wT (e)

in F . For instance, vS(i,j)(e) denotes the coefficient of wT (e) in S(i, j). Note

that vF+G(e) = vF (e) + vG(e). We will also use the notation Li(e) to denote

the set of leaves in the component of T − e that contains leaf i and Pab is the

path from vertex a to b.

Lemma 7. Given a pair of leaves a, b and any edge e we have

vS(a,b)(e) =























(

n−2
m−2

)

e ∈ Pab;

(

n−2
m−2

)

−
(

|La(e)|−2
m−2

)

e /∈ Pab.

Proof: If e is on the path from a to b, then it will be included in all the

subtrees [a, b, Y ]. If e is not on the the path from a to b, then the only way

it will be excluded is if all the other leaves fall on the a side of e (which is

the same as the b side). That is, if Y ⊂ La(e) \ {a, b}. There are
(

|La(e)|−2
m−2

)

such sets.

Lemma 8. Given a quartet (a1, a2; a3, a4) in T with interior vertices b1 and
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b2 (figure 1), then,

vS(a1,a2)+S(a3,a4)(e) =















































2
(

n−2
m−2

)

−
(

n−|Lai(e)|−2
m−2

)

e ∈ Paib⌈i/2⌉
;

2
(

n−2
m−2

)

−
(

|La1(e)|−2
m−2

)

−
(

|La3(e)|−2
m−2

)

e ∈ Pb1b2 ;

2
(

n−2
m−2

)

− 2
(

|La1(e)|−2
m−2

)

e /∈ [a1, a2, a3, a4].

vS(a1,a3)+S(a2,a4)(e) =















































2
(

n−2
m−2

)

−
(

n−|Lai(e)|−2
m−2

)

e ∈ Paib⌈i/2⌉
;

2
(

n−2
m−2

)

e ∈ Pb1b2 ;

2
(

n−2
m−2

)

− 2
(

|La1(e)|−2
m−2

)

e /∈ [a1, a2, a3, a4].

and

vS(a1,a4)+S(a2,a3) = vS(a1,a3)+S(a2,a4)

Figure 2: A quartet (a1, a2; a3, a4)

Proof: We use the fact that vS(a1,a2)+S(a3,a4) = vS(a1,a2) + vS(a3,a4) and ap-

ply the previous lemma. We also note that for e /∈ [{a1, a2, a3, a4}], La1(e) =

Lai
(e) for all i.
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Corollary 9. For a quartet (a1, a2; a3, a4), we define

S(a1, a2; a3, a4) = S(a1, a2) + S(a3, a4) − S(a1, a3) − S(a2, a4).

Then,

vS(a1,a2;a3,a4)(e) =























−
(

|La1(e)|−2
m−2

)

−
(

n−|La1(e)|−2
m−2

)

e ∈ Pb1b2 ;

0 otherwise.

Corollary 9 implies that S satisfies the four-point condition (1), although

it may be that vS(a1a2;a3a4)(e) = 0 which means that there are interior edges

in T ′ which have been collapsed (with length equal to 0). Suppose, however,

that (a1a2; a3a4) ∈ q(T ) and [{a1, a2, a3, a4}] is in a connected component

of T≤n−m (in other words the subtree spanning the quartet consists of edges

whose removal leaves a small component). This means that if e ∈ Pb1b2 then

either La1(e) ≥ m or n − La1(e) ≥ m and so S(a1, a2; a3, a4) < 0 which

means that (a1, a2; a3, a4) ∈ q(T ′). Therefore q(T ′) ⊂ q(T ) and it follows

from theorem 5 that T ′
≤n−m

∼= T≤n−m.

It remains to show that there is an invertible linear map between the edge

weights in the forests T≤n−m and T ′
≤n−m:

Lemma 10. If e is an internal edge of T≤n−m with e′ the corresponding edge

13



Figure 3: The quartet (a, b; c, d) has only the one edge e on its splitting path.

in T ′ then

wT ′(e′) =
1

2

((

|La(e)| − 2

m − 2

)

+

(

|Lc(e)| − 2

m − 2

))

wT (e)

where a is a leaf in one component of T − e and c a leaf in the other.

Proof: Since e is an internal edge, we may choose a, b, c and d such that

e is the only edge on the splitting path of (a, b; c, d) (figure 3). Then

wT ′(e′) =
1

2
S(a, b; c, d)

=
1

2

((

|La(e)| − 2

m − 2

)

+

(

|Lc(e)| − 2

m − 2

))

wT (e).

Corollary 11.

wT (e) =
2wT ′(e′)

(

(

|La(e)|−2
m−2

)

+
(

|Lc(e)|−2
m−2

)

)

which is well defined if e ∈ T≤n−m.

Lemma 12. Denote the edges adjacent to the leaves by e1, . . . , en (with cor-

responding edges in T ′ e′1, . . . , e
′
n) and the set of internal (non-pendant) edges

14



Figure 4: The leaf edge ei is incident on two other edges. We may choose
leaves a and b such that Pia ∩ Pib = ei.

by int(E(T )). Let

Ci =
∑

e∈int(E(T ))

((

n − 2

m − 2

)

−

(

|Li(e)| − 2

m − 2

))

wT (e)

and let A be the matrix 2
(

n−3
m−2

)

I +
(

n−3
m−3

)

J. Then













wT ′(e′1)

...

wT ′(e′n)













=
1

2
A













wT (e1)

...

wT (en)













+
1

2













C1

...

Cn













Proof: The interior vertex of an edge e also adjacent to a leaf i is incident

to two other edges. Choose a leaf a such that Pia intersects one of the edges,

and b such that Pib intersects the other (figure 4). Then

wT ′(e′) =
1

2
(S(i, a) + S(i, b) − S(a, b))

which after some algebra gives the above lemma.
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Corollary 13.













wT (e1)

...

wT (en)













= A−1













2wT ′(e′1) − C1

...

2wT ′(e′n) − Cn













where A−1 = 1

2(n−3
m−2)

(

I − m−2
(m−1)(n−2)

J
)

.

In order to recover wT (e) for every edge, we start by calculating the

interior edge weights, after which we can calculate the values Ci. The matrix

A is always invertible if m ≤ n − 1; however, calculating Ci requires that

int(E(T )) = int(E(T ′)). If n < 2m − 1, then while we can determine all

the interior edge weights of T≤n−m from T ′, it is possible that some interior

edges of T have been collapsed in T ′: in particular, the set of edges in

E(T ) \ E(T≤n−m). If E(T ) \ E(T≤n−m) 6= ∅, then T≤n−m is composed of at

least two connected components and every connected component has strictly

fewer than m leaves. As a result, every m-subtree weight will include at least

one undetermined edge, and so there is no way to uniquely determine the

weights of the pendant edges.

3 Neighbor-joining with subtree weights

Theorem 6 forms the basis of the neighbor-joining algorithm with subtree

weights. First, we need a generalization of the neighbor-joining criterion:
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Theorem 14 (Cherry Picking Theorem). Let T be an edge weighted

phylogenetic X-tree with |X| = n let m be an integer satisfying 2 ≤ m ≤ n−1.

Let D : Xm → R>0 be the m-dissimilarity map corresponding to the weights

of the subtrees of size m in T . If QD(x, y) is a minimal element of the matrix

QD(i, j) =

(

n − 2

m − 1

)

∑

Y ∈(X\{i,j}
m−2 )

D(i, j, Y )−
∑

Y ∈(X\{i}
m−1 )

D(i, Y )−
∑

Y ∈(X\{j}
m−1 )

D(j, Y )

then x, y is a cherry in the tree T .

Note that when m = 2 this is exactly the neighbor-joining criterion (Q-

criterion of theorem 2) as described by [Studier and Keppler, 1988].

Proof: Let S(i, j) =
∑

Y ∈(X\{i,j}
m−2 ) D(i, j, Y ). By theorem 6 we know that

S is a tree metric. Observe that

QD(i, j) =
n − 2

m − 1
S(i, j) −

∑

Y ∈(X\{i}
m−1 )

D(i, Y ) −
∑

Y ∈(X\{j}
m−1 )

D(j, Y ))

=
1

m − 1
((n − 2)S(i, j) −

∑

k

∑

Y ∈(X\{i,k}
m−2 )

D(i, k, Y )

−
∑

k

∑

Y ∈(X\{j,k}
m−2 )

D(j, k, Y ))

=
1

m − 1
((n − 2)S(i, j) −

∑

k

S(i, k)

−
∑

k

S(j, k))

=
1

m − 1
QS(i, j)
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In other words, QD(i, j) is just a scalar multiple of the neighbor-joining

criterion for the tree metric S. By theorem 2 (m = 2) we know that the

minimal element of QS(i, j) is a cherry in T ′ (the tree corresponding to the

tree metric S). Since m ≤ n− 1, we know that T ′
≤1 is isomorphic to T≤1 and

therefore the minimal element of QD(i, j) is a cherry.

It follows from theorem 6 that if m ≤ n+1
2

then the neighbor-joining al-

gorithm applied directly to S is topologically consistent, i.e. will reconstruct

the correct tree topology starting with the weights of all subtrees of size m.

The fact that there is an invertible linear map between for the edge weights,

means that we can reconstruct T , thus leading to a consistent neighbor join-

ing algorithm with subtree weights (algorithm 2).

The running time for computing the weights of the subtrees is O(Lnm)

where l is the length of the alignment and the computation of S(i, j) is O(nm)

(both steps are trivially parallelizable). The subsequent neighbor-joining is

O(n3) and edge weight reconstruction is O(n2). It is interesting to note that

for fixed L the running time of the algorithm is O(n3) for both m = 2 and

m = 3.

4 Results

We have implemented the neighbor-joining algorithm for subtree weights in

a program called MJOIN. The implementation incorporates the fastDNAml

[Olsen et al., 1994] program for computing the subtree weights, and allows

18



Algorithm 2: Neighbor-joining algorithm with subtree weights

Data : A set X together with sequences corresponding to the
elements of X

Result: Edge weighted phylogenetic X-tree T
for R ∈

(

X

m

)

do
Estimate D(R) using a (numerical) maximum likelihood method;

end

for i, j ∈
(

X

2

)

do
Set S(i, j) =

∑

Y ∈(X\{i,j}
m−2 ) D(i, j, Y );

end
Apply algorithm 1 (neighbor-joining) to the “distances” S(i, j)
resulting in tree T ′; Set T = T ′;

Set wT (e) =
2wT ′(e′)

((|La(e)|−2
m−2 )+(|Lc(e)|−2

m−2 ))
;

for 1 ≤ i ≤ n do

Set Ci =
∑

e∈int(E(T ))

(

(

n−2
m−2

)

−
(

|Li(e)|−2
m−2

)

)

wT (e);

end

Set







wT (e1)
...

wT (en)






= 1

2(n−3
m−2)

(

I− m−2
(m−1)(n−2)

J
)







2wT ′(e′1) − C1
...

2wT ′(e′n) − Cn






;
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the user to select the sizes of the subtrees to be used.

Figure 5: T1 and T2 trees of Ota and Li.

We tested MJOIN with simulated data on the two parameter family of trees

described by [Ota and Li, 2000]. These are trees for which neighbor-joining

has difficulty in resolving the correct topology. We simulated 1000 data sets

on each of the two tree shapes, T1 and T2 (Figures 2, 3) at the three edge

length ratios, a/b = 0.01/0.07, 0.02/0.19, and 0.03/0.42. This was repeated

twice for sequences of length 500 and 1000BP. We also repeated the runs with

the Kimura 2-parameter model and obtained similar results (not shown).

Table 1 notes the success rate of MJOIN for m=2, 3, and 4 (denoted by

NJ(m)) for each data set and compares these results to the success rate of other

tree reconstruction methods. It is clear from the table that as m increases,

the success rate of MJOIN increases. Hence, for m > 2, MJOIN consistently

out-performs neighbor-joining (NJ(2)). For the T1 tree, NJ(4) out-performs

even fastDNAml.

Figure 4 shows the standard deviation in the m-weights. We believe it is

the relative improvement in the m-weight errors that is contributing to the

improved performance of MJOIN as m increases. Checking the l∞ distance

of the 2-distance maps from the true tree metric, we find that even in cases

where neighbor-joining has a high success rate, the number of distance maps

that satisfy Atteson’s condition is fewer than 1%. This suggests that the

20



Tree length (bp) a/b
T1 500 0.01/0.07

0.02/0.19
0.03/0.42

1000 0.01/0.07
0.02/0.19
0.03/0.42

T2 500 0.01/0.07
0.02/0.19
0.03/0.42

1000 0.01/0.07
0.02/0.19
0.03/0.42

NJ(2) NJ(3) NJ(4) BN WE NM QP FM
0.69 0.76 0.82 0.73 0.72 0.80 0.80 0.78
0.53 0.58 0.73 0.52 0.47 0.64 0.70 0.66
0.11 0.12 0.23 0.14 0.13 0.16 0.29 0.11
0.94 0.96 0.98 0.96 0.92 0.97 0.94 0.97
0.87 0.90 0.96 0.87 0.83 0.92 0.92 0.90
0.33 0.35 0.52 0.35 0.29 0.38 0.53 0.27
0.82 0.84 0.85 0.86 0.88 0.93 0.86 0.90
0.69 0.72 0.74 0.81 0.89 0.95 0.85 0.90
0.19 0.29 0.36 0.46 0.70 – 0.47 0.59
0.96 0.97 0.98 0.98 0.98 1 0.97 0.99
0.89 0.92 0.93 0.99 0.99 1 0.96 0.99
0.40 0.48 0.57 0.75 0.92 0.97 0.70 0.90

Table 1: Simulations with the Jukes-Cantor model. NJ(m) = MJOIN with
subtree size m; BN = BioNJ; WB = Weighbor; NM = NJML (NM); QP =
the quartet puzzling algorithm; FM = fastDNAml.

success of neighbor joining is due to other favorable features of the projection,

and we believe that a deeper understanding of neighbor joining is necessary

in order to rigorously understand the reasons for the improvements with

m-subtree weights.

Figure 6: Standard Deviation as a percent of total weight. For the Jukes-
Cantor method, sequence length of 500BP, m=2,3,4 and subtrees drawn from
T1 and T2.

21



5 Discussion

Theorem 6 establishes that pairwise distance based reconstruction methods

can be used to reconstruct trees from m-subtree weights. This immediately

suggests a number of potential improvements to the algorithm we have de-

scribed. For example, by taking into account the variances of the S(i, j), it

should be possible to improve on the neighbor-joining algorithm for subtree

weights with better agglomeration (as is done in BIONJ).

In tests we performed with n = 10 taxa and m = 5 (results not re-

ported) we observed a deterioration in the accuracy of the tree reconstruc-

tion algorithm, which we attribute to inaccuracies in the subtree weights

estimated with fastDNAml. In fact, tests with fastDNaml on five taxa re-

vealed that the algorithm fails to even reconstruct the correct tree topology

a significant fraction of the time. Thus, we believe that until further im-

provements are made in ML estimation of trees, the best subtree weight size

to use will be m = 4. We are encouraged by various efforts in this direction

[Contois and Levy, 2005, Hoşten et al., 2005].

We have found subtree weight reconstruction to be practical and efficient

for much larger examples than described here. We have run the algorithm

with m = 3 on trees of up to 50 taxa on a standard PC, and it is worth noting

that for larger problems it is trivial to parallelize the m-weight estimation.

Thus, we believe that our method is practical and recommended for large tree

constructions that currently rely on either a pairwise distance method, or a
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heuristic maximum likelihood search. Since the latter can fail with regularity

on trees with only five taxa, it is unlikely to be accurate for large trees.

Our investigations have opened up a number of interesting questions. For

example, it would be useful to obtain an analog of the four point condition

that characterizes the space of m-dissimilarity maps arising from trees. It

would also be of interest to develop a subtree-weight analog of the Neighbor-

Net algorithm [Bryant and Moulton, 2004].

Finally, we point out that our results can be viewed as providing ap-

proximations to maximum-likelihood tree reconstruction by refining distance-

based methods. We believe that a deeper understanding of m-dissimilarity

maps should yield further results in this direction.
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