provided by Caltech Authors - Ma

Caspi, Garg, and Stoltz: Reductive Isomerization Supporting Information S1

A Heterogeneous Reductive Isomerization Reaction Using Catalytic Pd/C and H₂

Daniel D. Caspi, Neil K. Garg, Brian M. Stoltz*

The Arnold and Mabel Beckman Laboratories of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

Supporting Information

Materials and Methods. Unless stated otherwise, reactions were conducted in flame-dried glassware under an atmosphere of nitrogen using anhydrous solvents (either freshly distilled or passed through activated alumina columns). 10% Pd/C was purchased from Aldrich Chemical Company, Inc. (20,569-9). All commercially obtained reagents were used as received. Reaction temperatures were controlled using an IKAmag temperature modulator, and unless stated otherwise, reactions were performed at 23 °C. Thin-layer chromatography (TLC) was conducted with E. Merck silica gel 60 F254 pre-coated plates, (0.25 mm) and visualized using a combination of UV, anisaldehyde, ceric ammonium molybdate, and potassium permanganate staining. ICN silica gel (particle size 0.032-0.063 mm) was used for flash column chromatography. ¹H NMR spectra were recorded on a Varian Mercury 300 (at 300 MHz) and are reported relative to Me₄Si (δ 0.0). Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. ¹³C NMR spectra were recorded on a Varian Mercury 300 (at 75 MHz), or a Varian Inova 500 (at 125 MHz) and are reported relative to Me₄Si (δ 0.0). Data for ¹³C NMR spectra are reported in terms of chemical shift. NOESY-1D, gCOSY, and homodecoupling NMR experiments were performed on a Varian Inova 300 (at 300 MHz) or a Varian Mercury 600 (at 600 MHz). IR spectra were recorded on a Perkin Elmer Spectrum BXII spectrometer and are reported in terms of frequency of absorption (cm⁻¹). Optical rotations were measured with a Jasco P-1010 polarimeter. High resolution mass spectra were obtained from the California Institute of Technology Mass Spectral Facility. Analytical chiral HPLC was performed on a Chiralcel AD column (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd.

Note: Supporting information for compounds **9** and **14** has been previously reported as part of the (+)-dragmacidin F synthesis. ^{1a} Supporting information for: **10**, **11**, **17**, **20**, **22-27**, **38**, and **39** has been previously reported as part of an enantiodivergent approach to (+)- and (–)-dragmacidin F. ^{1b}

Methyl Ester 18. To lactone 9^{1a} (510.1 mg, 1.80 mmol) in THF (25 mL) and freshly distilled AcOH (300 µL, 5.24 mmol) was added TBAF (1.0 M in THF, 4.0 mL, 4.0 mmol) in a dropwise fashion over 3 min. The reaction was stirred for 16 h, and then the solvent was evaporated in vacuo. R_f 0.25 (3:1 EtOAc:hexanes). This crude material was dissolved in CH₂Cl₂ (17 mL) and pyridine (1.02 mL, 12.6 mmol) was added. A solution of Ac₂O (355 µL, 3.76 mmol) in CH₂Cl₂ (355 µL) was added via syringe pump at a rate of 170 µL/hr. After the addition was complete, the reaction was quenched by the addition of 10% (w/v) ag. citric acid (35 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 50 mL). The combined organic extracts were dried over MgSO₄, and the solvent was evaporated under reduced pressure. The crude product was purified by flash chromatography (3:2 hexanes:EtOAc eluent) to provide acetoxylactone 15 (235 mg, 62% yield, 2 steps) as a white crystalline solid. R_f 0.52 (3:1 EtOAc:hexanes); mp 87-89 °C; ¹H NMR (300 MHz, CDCl₃): δ 5.54-5.44 (m, 1H), 5.16 (d, J = 2.4 Hz, 1H), 5.09-5.04 (comp. m, 2H), 3.26 (br s, 1H), 2.70 (ddd, <math>J = 11.4, 6.1, 2.9 Hz,1H), 2.52-2.42 (m, 1H), 2.14-2.08 (m, 1H), 2.12 (s, 3H), 1.87 (dd, J = 12.0, 10.4 Hz, 1H); 13 C NMR (75 MHz, CDCl₃): δ 177.7, 169.9, 140.4, 111.6, 79.2, 72.9, 67.4, 44.2, 40.3, 21.0; IR (film) 3441 (br), 1790, 1743, 1240, 1128, 1042 cm⁻¹; HRMS-EI (m/z); $[M + H]^+$ calc'd for $C_{10}H_{13}O_5$, 213.0763; found, 213.0769; $[\alpha]^{25}D_-$ -229.70° (c 1.0, C_6H_6).

To acetoxylactone **15** (310 mg, 1.46 mmol) and oven-dried powdered 4ÅMS (220 mg) was added MeOH (20 mL). The suspension was stirred for 1 h, and then filtered over Celite (EtOAc eluent). The filtrate was evaporated *in vacuo*, and was subsequently passed over a plug

¹ a) Garg, N. K.; Caspi, D. D.; Stoltz, B. M. J. Am. Chem. Soc. **2005**, 126, 9552-9553. b) Garg, N. K.; Caspi, D. D.; Stoltz, B. M. J. Am. Chem. Soc. **2005**, 127, 5970-5978.

of SiO₂ gel (EtOAc eluent). Following evaporation of the solvent under reduced pressure, this material was used in the next step without further purification. R_f 0.33 (3:1 EtOAc:hexanes). To this crude material in DMF (7.3 mL) was added Et₃N (1.63 mL, 11.7 mmol) and DMAP (17.8 mg, 0.15 mmol). TBSCl (880 mg, 5.84 mmol) was added, and the solution was warmed to 40 °C. After stirring for 1 h, the solution was allowed to cool to 23 °C and quenched by the addition of 10% (w/v) ag, citric acid (10 mL). The reaction mixture was poured over H₂O (10 mL) and Et₂O (40 mL), and the phases were partitioned. The aqueous phase was extracted with Et₂O (2 x 30 mL), and the combined organic extracts were washed with brine (15 mL) and dried over MgSO₄. Following evaporation of the solvent in vacuo, the crude product was purified by flash chromatography (2:1 hexanes:EtOAc eluent) to afford methyl ester 18 (376 mg, 72% yield, 2 steps) as a white solid. $R_f 0.53$ (1:1 hexanes:EtOAc); ¹H NMR (300 MHz, CDCl₃): δ 5.62 (app. t, J = 3.7 Hz, 1H), 5.24 (app. t, J = 1.9 Hz, 1H), 5.10 (app. t, J = 1.7 Hz, 1H), 4.73-4.63 (m, 1H), 3.74 (s, 3H), 3.16 (br s, 1H), 2.14 (dd, J = 14.9, 4.3 Hz, 1H), 2.09-2.00 (comp. m, 2H), 2.03 (s, 3H), 1.90 (dd, J = 12.5, 10.6 Hz, 1H), 0.88 (s, 9H), 0.05 (s, 6H); 13 C NMR (75 MHz, CDCl₃): δ 175.5, 170.2, 146.6, 111.7, 75.3, 74.0, 66.8, 53.2, 45.7, 38.8, 26.0 (3C), 21.5, 18.4, -4.8, -4.9; IR (film) 3481 (br), 2955, 2930, 2858, 1734 (br), 1372, 1251, 1237, 1124, 1108, 1069, 1016 cm⁻¹; HRMS-FAB (m/z): $[M + H]^+$ calc'd for $C_{17}H_{31}O_6Si$, 359.1890; found, 359.1894; $[\alpha]^{26}D$ -7.32° (c1.0, CHCl₃).

AcO OTBS
$$K_2CO_3$$
 HO OTBS CDI Toluene, Δ OMe $(81\% \text{ yield})$ HO OMe $(61\% \text{ yield})$ OMe $(61\% \text{ yield})$ OMe $(61\% \text{ yield})$ OMe $(61\% \text{ yield})$ OMe

TBS Carbonate 21. To methyl ester **18** (201 mg, 0.56 mmol) in MeOH (5 mL) was added powdered K₂CO₃ (150 mg, 1.09 mmol). After stirring 10 min, the MeOH was evaporated *in vacuo* and the residue was diluted in Et₂O (50 mL) and saturated aq. NH₄Cl (25 mL). The layers were partitioned, and the aqueous phase was extracted with Et₂O (25 mL). The combined organics were successively washed with H₂O (15 mL) and brine (15 mL), and dried over MgSO₄. The solvent was evaporated *in vacuo*, and *syn*-diol **SM1** (143.9 mg, 81% yield) was carried on to the next step without further purification. R_f 0.38 (1:1 hexanes:EtOAc).

To *syn*-diol **SM1** (48.9 mg, 0.15 mmol) in toluene (3 mL) was added 1,1'-carbonyldiimidazole (80 mg, 0.50 mmol), and the reaction mixture was heated to reflux for 2.5 h. After cooling to 23 °C, the residue was chromatographed directly (7:3 hexanes:EtOAc eluent) to afford TBS carbonate **21** (32.2 mg, 61% yield). R_f 0.47 (1:1 hexanes:EtOAc); ¹H NMR (300 MHz, CDCl₃): δ 5.34 (dd, J = 2.2, 1.1 Hz, 1H), 5.21-5.19 (m, 1H), 5.15 (dd, J = 4.0, 1.8 Hz, 1H), 4.55-4.47 (m, 1H), 3.82 (s, 3H), 2.62 (ddd, J = 13.6, 6.2, 2.6 Hz, 1H), 2.45 (ddd, J = 14.2, 4.1, 2.7 Hz, 1H), 2.26 (dd, J = 14.2, 1.8 Hz, 1H), 1.92 (dd, J = 13.5, 10.7 Hz, 1H), 0.90 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 168.6, 147.2, 144.9, 113.4, 82.1, 79.9, 65.7, 53.6, 43.5, 33.0, 25.9 (3C), 18.3, -4.7, -4.9; IR (film) 2957, 2930, 2857, 1748 (br), 1254, 1178, 1103, 1054 cm⁻¹; HRMS-FAB (m/z): [M + H]⁺ calc'd for C₁₆H₂₇O₆Si, 343.1577; found, 343.1592; [α]²⁶_D -81.11° (c 1.0, C₆H₆).

Dioxasilylcyclohexane 28. To *syn*-diol **SM1** (19.3 mg, 0.06 mmol) in CH₂Cl₂ (1.2 mL) was added 2,6-lutidine (30 μL, 0.26 mmol) followed by rapid dropwise addition of (t-Bu)₂Si(OTf)₂ (30 μL, 0.08 mmol) over 1 min. The reaction was stirred for 16 h at 23 °C, and then quenched by the addition of saturated aq. NH₄Cl (1 mL). The phases were partitioned, and the aqueous phase was extracted with CH₂Cl₂ (3 x 1 mL). The combined organic extracts were dried over MgSO₄, and evaporated *in vacuo*. Purification by preparative thin-layer chromatography (11:2 hexanes:EtOAc eluent) afforded dioxasilylcyclohexane **28** (9.0 mg, 32% yield) as a colorless oil. R_f 0.50 (4:1 hexanes:EtOAc); ¹H NMR (300 MHz, CDCl₃): δ 5.17 (app. t, J = 1.9 Hz, 1H), 5.14-5.06 (comp. m, 2H), 4.78 (dd, J = 3.8, 2.1 Hz, 1H), 3.73 (s, 3H), 2.71 (app. dt, J = 9.1, 4.9 Hz, 1H), 2.42 (ddd, J = 13.1, 7.2, 2.9 Hz, 1H), 2.00-1.80 (comp. m, 2H), 1.08 (s, 9H), 1.07 (s, 9H), 0.89 (s, 9H), 0.06 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 173.6, 150.2, 110.6, 76.8, 74.9, 66.6, 52.6, 45.4, 39.1, 29.2 (3C), 28.7 (3C), 26.0 (3C), 21.7, 21.6, 18.3, -4.3, -4.5; IR (film) 2937, 2860, 1758, 1739, 1473, 1243, 1112 cm⁻¹; HRMS-EI (m/z): [M]⁺ calc'd for C₂₃H₄₄O₅Si₂, 456.2727; found, 456.2740; [α]²¹D -47.35° (c 1.0, C₆H₆).

Pyrrolocarbonate 30. To diol SM2^{1b} (114.5 mg, 0.33 mmol) in THF (6 mL) at 23 °C was added 1,1'-carbonyldiimidazole (86.9 mg, 0.54 mmol) followed by NaH (60% dispersion in mineral oil, 55.2 mg, 1.38 mmol). After stirring for 40 min at 23 °C, saturated aq. NH₄Cl (10 mL) was added to quench the reaction and EtOAc (50 mL) was added. The phases were partitioned, and the aqueous layer was further extracted with EtOAc (2 x 75 mL). The combined organic layers were successively washed with H₂O (15 mL) and brine (15 mL), dried over MgSO₄, and evaporated under reduced pressure. The residue was purified by flash chromatography (4:1 hexanes:EtOAc eluent) to provide pyrrolocarbonate 30 (114.3 mg, 93% yield) as a pale yellow oil. $R_f 0.53$ (1:1 hexanes:EtOAc); ¹H NMR (300 MHz, C_6D_6): δ 7.85 (dd, J = 4.1, 1.4 Hz, 1H), 6.70 (dd, J = 2.7, 1.8 Hz, 1H), 6.04 (dd, J = 4.1, 2.7 Hz, 1H), 5.52 (d, J =9.9 Hz, 1H), 5.48 (d, J = 10.0 Hz, 1H), 4.91-4.86 (m, 1H), 3.78 (app. t, J = 3.0 Hz, 1H), 3.41 (t, J = 3.0 Hz, 1H), 3.42 (t, J = 3.0 Hz, 1H), 3.41 (t, J = 3.0 Hz, 1H), 3.42 (t, J = 3.0 Hz, 1H), 3.41 (t, J = 3.0 Hz, 1H), 3.42 (t, J = 3.0 Hz, 1H), 3.41 (t, J = 3.0 Hz, 1H), 3.42 (t, J = 3.0 Hz, 1H), 3.43 (t, J = 3.0 Hz, 1H), 3.43 (t, J = 3.0 Hz, 1H), 3.44 (t, J = 3.0 Hz, 1H), 3.45 (t, J = 3.0 Hz, 1H), 3.45 (t, J = 3.0 Hz, 1H), 3.41 (t, J = 3.0 = 7.8 Hz, 2H, 2.42-2.37 (comp. m, 2H), 1.97 (ddd, J = 14.1, 3.3, 1.0 Hz, 1H), 1.83 (dd, J = 14.2, 1.3)2.3 Hz, 1H), 1.40 (app. q, J = 2.0 Hz, 3H), 0.83 (t, J = 7.8 Hz, 2H), -0.07 (s, 9H); ¹³C NMR (75) MHz, C_6D_6): δ 187.6, 147.5, 132.6, 131.9, 127.1, 125.1, 122.6, 110.2, 85.9, 78.7, 73.8, 66.5, 37.9, 30.4, 21.0, 18.3, -1.0 (3C); IR (film) 2952, 1751, 1643, 1413, 1178, 1093 cm⁻¹; HRMS-EI (m/z): [M]⁺ calc'd for C₁₉H₂₇NO₅Si, 377.1658; found, 377.1655; $[\alpha]^{24}$ _D +2.72° (c 1.0, C₆H₆).

Reduced Lactone 36. A mixture of methylene lactone 9^{1a} (63.1 mg, 0.22 mmol) and 10% Pd/C (39.8 mg, 0.04 mmol) in EtOAc (2 mL) was evacuated and back-filled with H₂ (3x). After 7 min at 23 °C, the mixture was filtered over a pad of Celite (EtOAc eluent) and the solvent was evaporated *in vacuo*. The crude product was purified by flash chromatography (2:1 hexanes:EtOAc eluent) to provide reduced lactone **36** (8.7 mg, 14% yield) as a white amorphous

solid and a 1:1 mixture of diastereomers. R_f 0.59 (1:1 hexanes:EtOAc); ¹H NMR (300 MHz, CDCl₃, 1:1 mixture of diastereomers): δ 4.68-4.63 (m, 1H), 4.51 (d, J = 6.4 Hz, 1H), 4.04-3.94 (m, 1H), 3.45 (ddd, J = 12.9, 6.2, 4.1 Hz, 1H), 2.63 (app. d, J = 10.1 Hz, 1H), 2.49 (ddd, J = 11.2, 6.4, 3.2 Hz, 1H), 2.44-2.33 (m, 1H), 2.29-2.22 (comp. m, 2H), 2.14 (ddd, J = 12.1, 6.6, 2.9 Hz, 1H), 2.08 (app. d, J = 11.2 Hz, 1H), 2.00-1.82 (comp. m, 3H), 1.65-1.54 (comp. m, 2H), 1.12 (d, J = 6.9 Hz, 3H), 0.92 (d, J = 7.4 Hz, 3H), 0.86 (s, 9H), 0.85 (s, 9H), 0.03-0.02 (comp. m, 6H), 0.02-0.01 (comp. m, 6H); ¹³C NMR (75 MHz, CDCl₃, 1:1 mixture of diastereomers): δ 178.5, 178.2, 80.4, 80.0, 73.5, 72.8, 71.4, 67.0, 44.8, 43.6, 41.9, 41.4, 37.4, 35.9, 25.9 (6C), 18.2, 18.1, 16.1, 10.7, -4.0, -4.6, -4.6, -4.8; IR (film) 3424 (br), 2930, 1787, 1099 cm⁻¹; HRMS-EI (m/z): [M]⁺ calc'd for C₁₄H₂₆O₄Si, 286.1600; found, 286.1612; [α]²⁵_D -64.48° (c 1.0, C₆H₆).

Table 1. Reductive isomerization reaction^a

entry	substrate	product	time	yield ^b
1	AcO 15	AcO 16	15 min	71%
2 ^c	TBSO ,,,OAc 10	HO OMe	1 h 35 min	3% ^d 10% ^{e,f}
3 ^{c,e}	AcO OTBS 18 HO OME	HO OME	1.5 h	27%
4 5	ON 20 OMe 21	OMe 17 R = Ac	1 h 8 min	81% 94%
6 7	O N SEM 22	OR 23 R = Ac NOR 25 R = H	20 min 15 min	94% 80%
8 0 ⁼	O N SEM	HO N SEM	4 h	90%
9 (1	P-Bu) ₂ Si O OMe	(<i>t</i> -Bu) ₂ Si O OMe	1 h	68%
10 ⁹	30 SEM	HO NEM	1.3 h	91%

 $[^]a$ Standard conditions: H_2 (balloon, 1 atm), 10% Pd/C (2 mol % Pd), MeOH, 0 °C. b Isolated yield. c Yield based on 1H NMR integration. d 10% Pd/C (0.5 mol % Pd). e 10% Pd/C (1 mol % Pd). f Reaction performed at 23 °C. g Product formed in 7.2% ee.

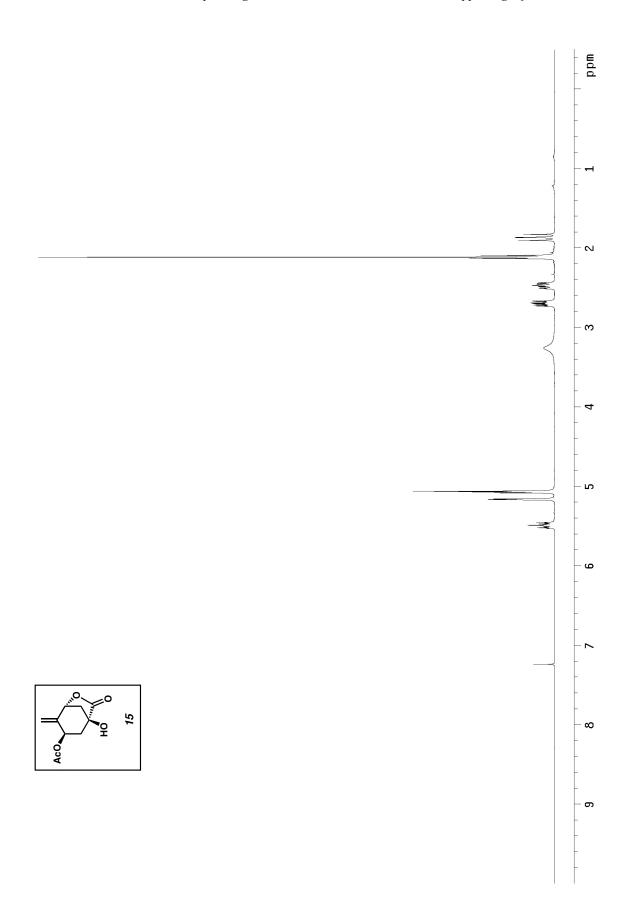
Representative Procedure for Reductive Isomerizations (Table 1, Entry 10 is used as an example):

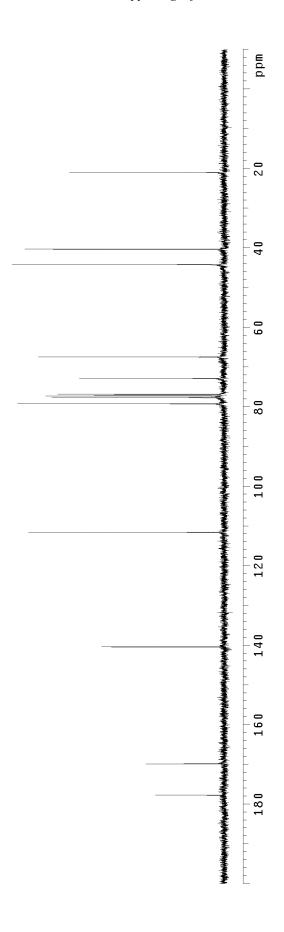
A mixture of pyrrolocarbonate **30** (41.6 mg, 0.11 mmol) and 10% Pd/C (2.3 mg, 0.002 mmol) in MeOH (2.0 mL) was cooled to 0 °C. The reaction vessel was then evacuated and back-filled with H_2 (3x). After 1.3 hr at 0 °C, the reaction mixture was filtered over a Celite plug (MeOH eluent)

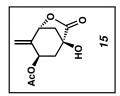
and the solvent was evaporated in vacuo. The residue was by purified by preparative thin-layer chromatography (13:4:3 hexanes:EtOAc:CH₂Cl₂ eluent) to afford pyrrolocyclohexene **31** (33.5 mg, 91% yield) as a colorless oil.

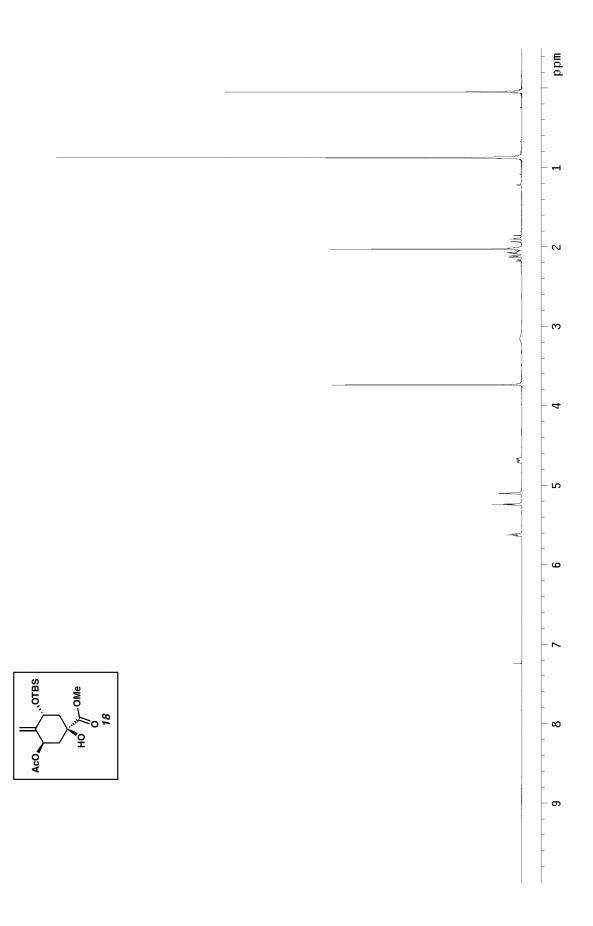
Entry 1. Purified by preparative thin-layer chromatography (19:1:1 EtOAc:MeOH:AcOH eluent). R_f 0.53 (19:1:1 EtOAc:MeOH:AcOH); 1 H NMR (300 MHz, CDCl₃): δ 7.31 (br s, 1H), 5.66-5.60 (m, 1H), 5.39-5.32 (m, 1H), 2.68-2.54 (m, 1H), 2.39-2.23 (comp. m, 2H), 2.14-2.00 (m, 1H), 2.06 (s, 3H), 1.74-1.69 (m, 3H); 13 C NMR (125 MHz, CDCl₃): δ 178.9, 170.7, 130.8, 123.7, 72.5, 68.9, 36.6, 35.7, 21.4, 20.6; IR (film) 3440 (br), 2938, 1728, 1242 cm⁻¹; HRMS-FAB (m/z): [M + Na]⁺ calc'd for $C_{10}H_{14}O_{5}Na$, 237.0739; found, 237.0744; [α]²⁵_D +83.74° (c 1.0, CHCl₃).

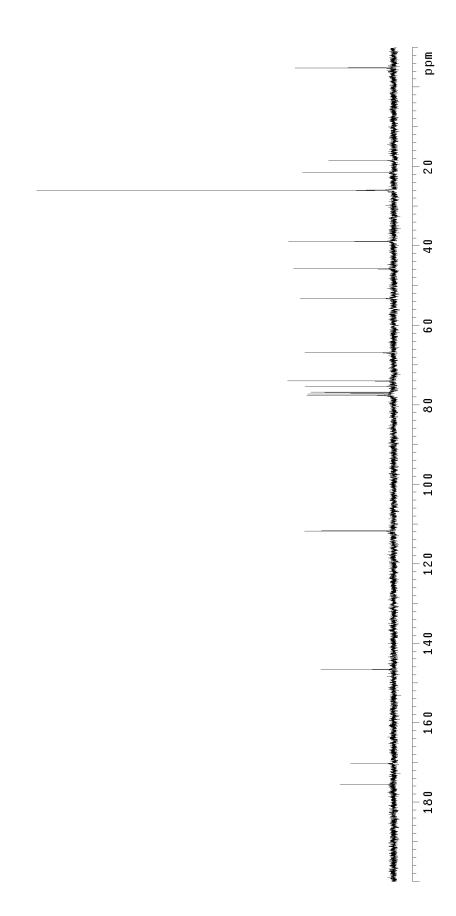
Entries 3 and 5. Purified by flash chromatography (7:3 hexanes:EtOAc eluent). R_f 0.62 (1:1 hexanes:EtOAc); ¹H NMR (300 MHz, CDCl₃): δ 5.38-5.31 (m, 1H), 4.44-4.34 (m, 1H), 3.78 (s, 3H), 3.10 (br s, 1H), 2.65-2.53 (m, 1H), 2.08-1.89 (comp. m, 3H), 1.74-1.70 (m, 3H), 0.88 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 176.9, 137.2, 119.0, 74.5, 68.2, 53.2, 40.8, 35.8, 26.1 (3C), 20.1, 18.3, -4.1, -4.6; IR (film) 3492 (br), 2954, 2857, 1730, 1249, 1095 cm⁻¹; HRMS-FAB (m/z): $[M + H]^+$ calc'd for $C_{15}H_{29}O_4Si$, 301.1835; found, 301.1841; $[\alpha]^{24}_D + 29.49^\circ$ (c 1.0, C_6H_6).


Entry 9. Purified by preparative thin-layer chromatography (4:1 hexanes:EtOAc eluent). R_f 0.82 (1:1 hexanes:EtOAc); ¹H NMR (300 MHz, CDCl₃): δ 4.30-4.19 (comp. m, 2H), 3.73 (s, 3H), 2.64 (ddd, J = 14.5, 4.0, 3.1 Hz, 1H), 2.29 (ddd, J = 13.4, 5.9, 2.9 Hz, 1H), 1.88-1.72 (comp. m, 2H), 1.53-1.43 (m, 1H), 1.15 (d, J = 6.6 Hz, 3H), 1.09 (s, 9H), 1.06 (s, 9H), 0.86 (s, 9H), 0.02 (s, 3H), 0.02 (s, 3H); ¹H NMR (300 MHz, C_6D_6): δ 4.47 (app. dt, J = 9.9, 5.6 Hz, 1H), 3.97-3.92 (m, 1H), 3.32 (s, 3H), 2.71-2.58 (comp. m, 2H), 1.99 (dd, J = 13.3, 10.3 Hz, 1H), 1.63 (dd, J = 14.4, 1.7 Hz, 1H), 1.44-1.31 (m, 1H), 1.28 (d, J = 6.4 Hz, 3H), 1.20 (s, 9H), 1.19 (s, 9H), 1.00 (s, 9H), 0.14 (s, 3H), 0.10 (s, 3H); ¹³C NMR (75 MHz, C_6D_6): δ 173.7, 77.6, 74.1, 70.1, 52.1, 45.9, 44.8, 38.6, 29.8 (3C), 29.4 (3C), 26.4 (3C), 22.2, 22.1, 18.5, 15.9, -3.2, -3.8; IR (film) 2954, 2936, 2895, 2860, 1757, 1739, 1258, 1146, 1100, 1081 cm⁻¹; HRMS-EI (m/z): [M]⁺ calc'd for $C_{23}H_{46}O_5Si_2$, 458.2884; found, 458.2886; [α]²⁵_D -52.92° (c 1.0, CHCl₃).


Entry 10. Purified by preparative thin-layer chromatography (13:4:3 hexanes:EtOAc:CH₂Cl₂ eluent). R_f 0.64 (13:7 hexanes:EtOAc); ¹H NMR (300 MHz, C_6D_6): δ 7.16 (dd, J = 4.0, 1.5 Hz, 1H), 6.72 (dd, J = 2.7, 1.6 Hz, 1H), 6.02 (dd, J = 4.0, 2.7 Hz, 1H), 5.56 (s, 2H), 5.35-5.28 (m, 1H), 3.98 (s, 1H), 3.43 (t, J = 7.8 Hz, 2H), 2.98-2.85 (m, 1H), 2.51-2.33 (m, 1H), 2.24-2.10 (comp. m, 2H), 1.88-1.73 (comp. m, 2H), 1.67-1.63 (m, 3H), 0.82 (t, J = 7.8 Hz, 2H), -0.08 (s, 9H); ¹³C NMR (75 MHz, C_6D_6): δ 195.5, 134.0, 130.6, 127.3, 123.1, 118.5, 109.3, 78.7, 76.8, 66.5, 38.4, 34.2, 27.2, 24.1, 18.3, -1.0 (3C); IR (film) 3441 (br), 2957, 1727, 1632, 1413, 1084 cm⁻¹; HRMS-FAB (m/z): $[M + H]^+$ calc'd for $C_{18}H_{30}NO_3Si$, 336.1995; found, 336.1993; $[\alpha]^{24}_D$ - 0.02° (c 1.0, C_6H_6); 7.2% ee as measured by chiral HPLC (2% EtOH:hexanes eluent). Retention times: 13.9 min, 15.6 min.


A racemic sample was prepared as follows:


To carbonate **30** (9.9 mg, 0.03 mmol) and $Pd_2(dba)_3$ (2.7 mg, 0.003 mmol) was added THF (800 μ L) followed by $P(n\text{-Bu})_3$ (2.8 μ L, 0.011 mmol), Et_3N (5.2 μ L, 0.04 mmol) and formic acid (1.6 μ L, 0.04 mmol). The solution was stirred at 23 °C for 3 h, and was then heated to 70 °C for 70 min. The reaction was cooled to 23 °C, and purified directly by preparative thin-layer chromatography (4:1 hexanes:EtOAc eluent). The crude product was then re-purified by preparative thin-layer chromatography (13:4:3 hexanes:EtOAc:CH₂Cl₂ eluent) to provide an a racemic, analytical sample of **31** (5.4 mg, 61% yield).


² Tsuji, J; Minami, I; Shimizu, I. Synthesis **1986**, 623-627.

