## **Supporting Information:**

- 1. Experimental data with stabilized enolates and cyclohexenyl substrates
- 2. Non-linear experiments
- 3. Kinetic data
- 4. Calculated Data
- 5. Crystal data

## 1. Experimental data with stabilized enolates:

## **General Procedure for Preparation of Allyl Enol Carbonates:**



To a solution of potassium *t*-butoxide (5.88 g, 52.5 mmol, 1.05 equiv) in DMF (100 mL) was added 2-methylcyclohexanone (6.13 mL, 50 mmol, 1.0 equiv). After 12 h, the reaction mixture was cooled in an ice bath and allyl chloroformate (6.4 mL, 60 mmol, 1.2 equiv) was added in a dropwise fashion. After an additional 30 min in the ice bath and 15 min at 25 °C, the reaction mixture was quenched into water (250 mL), extracted with DCM/hexanes 2/1 (4 x 125 mL), dried (MgSO<sub>4</sub>), and evaporated. Chromatography (2.5 to 4 % Et<sub>2</sub>O in Hexanes on SiO<sub>2</sub>) afforded the allyl enol carbonate<sup>1</sup> (4.49 g, 46% yield) as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  5.94 (ddt, *J* = 17.4, 10.5, 5.6 Hz, 1H), 5.36 (dq, *J* = 17.1, 1.5 Hz, 1H), 5.26 (dq, *J* = 10.2, 1.2 Hz, 1H), 4.63 (dt, *J* = 5.7, 1.4 Hz, 2H), 2.13 (m, 2H), 2.02 (m, 2H), 1.70 (m, 2H), 1.59 (m, 2H), 1.55 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  153.1, 142.2, 131.5, 120.8, 118.8, 68.5, 30.0, 26.6, 23.1, 22.3, 15.7; IR (Neat Film NaCl) 3936, 1755, 1275, 1239, 1037 cm<sup>-1</sup>; HRMS *m/z* calc'd for C<sub>11</sub>H<sub>16</sub>O<sub>3</sub> [M]<sup>+</sup>: 196.1100, found 196.1092.

### General Procedure for 1.0 mmol Preparative Reactions of Allyl Enol Carbonates:



A 50 mL rb flask equipped with a magnetic stir bar was flame dried under vacuum. After cooling under dry argon, Pd<sub>2</sub>(dba)<sub>3</sub> (22.9 mg, 0.025 mmol, 0.025 equiv) and (*S*)-*t*-Bu-PHOX (24.2 mg, 0.0625 mmol, 0.0625 equiv) were added. After the flask was flushed with argon, THF (30 mL) was added and the contents were stirred at 25 °C for 30 min, at which time the allyl enol carbonate (196.2 mg, 1.0 mmol, 1.0 equiv) was added by syringe in one portion. When the reaction was complete by TLC, the reaction mixture was evaporated under reduced pressure and the residue chromatographed (2 to 3 % Et<sub>2</sub>O in pentane on SiO<sub>2</sub>) to afford (*S*)-2-allyl-2-methylcyclohexanone (129.6 mg, 85.1% yield) as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  5.75-5.61 (m, 1H), 5.05 (s, 1H), 5.01 (m, 1H), 2.40-2.31 (m, 3H), 2.21 (dd, *J* = 13.8, 7.5 Hz, 1H), 1.78 (m, 5H), 1.56 (m, 1H), 1.06 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  215.4, 133.7, 117.9, 48.4, 41.9, 38.8, 38.5,

27.4, 22.6, 21.0; IR (Neat Film NaCl) 2934, 2865, 1707, 1451, 912 cm<sup>-1</sup>; HRMS m/z calc'd for C<sub>10</sub>H<sub>16</sub>O [M]<sup>+</sup>: 152.1201, found 152.1204; [ $\alpha$ ]D<sup>28</sup> -22.90° (c 2.09, hexane, 98% ee).

#### Asymmetric Allylation with Stabilized Enolates

Table SI1 summarizes results obtained with stabilized enolates with low  $pK_a$  values relative to the typical ketone enolates employed in these reactions. Despite the low levels of enantioselectivity, chemical yield is very high. This may imply that an alternate mechanism is accessible with this low  $pK_a$  substrates (e.g., an outer sphere mechanism).

Table SI1. Asymmetric Allylation via Stabilized Allyl Enol Carbonates.



<sup>*a*</sup> Reactions were performed using 1.0 mmol of substrate in THF (0.033 M in substrate) at 25 °C with 2.5 mol%  $Pd_2(dba)_3$  and 6.25 mol% (*S*)-*t*-BuPHOX. <sup>*b*</sup> Absolute stereochemistry of products assigned by analogy. <sup>*c*</sup> Isolated yields. <sup>*d*</sup> Measured by chiral GC or HPLC.

#### Characterization data for compounds in Table SI1:

Products shown in entries 1, 2, and 3 have been reported previously.<sup>2</sup>



**Table SI1, Entry 1:** Prepared by the general procedure in 43% yield as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.35-7.18 (comp. m, 5H), 5.80 (ddt, *J* = 17.4, 10.5, 5.4 Hz, 1H), 5.20 (ddt, *J* = 17.4, 1.8, 1.2 Hz, 1H), 5.18 (ddt, *J* = 10.5, 1.5, 1.2 Hz, 1H), 5.02 (ddd, *J* = 5.7, 1.5, 1.5 Hz, 2H), 2.46-2.38 (m, 2H), 2.37-2.30 (m, 2H), 1.90-1.72 (comp. m, 4H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  152.8, 143.4, 138.8, 131.3, 128.1, 127.6, 126.8, 125.9, 118.4, 68.4, 30.1, 27.1, 22.8, 22.5; IR (Neat Film NaCl) 3081, 3057, 3024, 2938, 2862, 1753, 1687, 1601, 1492, 1444, 1367, 1238, 1178, 1091, 1036, 941, 784, 760, 700 cm<sup>-1</sup>; HRMS (EI+) m/z calc'd for C<sub>16</sub>H<sub>18</sub>O<sub>3</sub> [M]<sup>+</sup>: 258.1256, found 258.1256.



**Table SI1, Entry 2:** Prepared by the general procedure in 59% yield as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.29-7.11 (comp. m, 4H), 6.00 (ddt, *J* = 17.1, 10.2, 6.0 Hz, 1H), 5.43 (ddt, *J* = 17.1, 1.8, 1.2 Hz, 1H), 5.33 (ddt, *J* = 10.2, 1.5, 1.2 Hz, 1H), 4.72 (ddd, *J* = 6.0, 1.5, 1.2 Hz, 2H), 2.97 (t, *J* = 7.8 Hz, 2H), 2.55 (tq, *J* = 8.1, 1.5 Hz, 2H), 2.00 (t, *J* = 1.5 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  152.7, 145.9, 135.0, 134.1, 131.2, 127.1, 126.6, 126.5, 123.4, 119.7, 119.2, 68.9, 28.7, 26.0, 10.9; IR (Neat Film NaCl) 3021, 2993, 2944, 2891, 2836, 1757, 1674, 1488, 1451, 1365, 1304, 1279, 1246, 1217, 1181, 1157, 1031, 1018, 986, 943, 782, 760 cm<sup>-1</sup>; HRMS (EI+) *m/z* calc'd for C<sub>15</sub>H<sub>16</sub>O<sub>3</sub> [M]<sup>+</sup>: 244.1100, found 244.1095.



**Table SI1, Entry 3:** Prepared by the general procedure in 78% yield as a light yellow oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  5.96 (ddt, J = 17.1, 10.5, 5.7 Hz, 1H), 5.39 (ddt, J = 17.1, 1.5, 1.5 Hz, 1H), 5.28 (ddt, J = 10.5, 1.5, 1.2 Hz, 1H), 4.67 (ddd, J = 5.7, 1.2, 1.2 Hz, 2H), 4.15 (q, J = 7.2 Hz, 2H), 2.44-2.34 (m, 2H), 2.32-2.24 (m, 2H), 1.80-1.58 (comp. m, 4H), 1.24 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  165.6, 154.8, 152.2, 131.2, 119.2, 118.3, 69.0, 60.5, 28.6, 25.1, 21.9, 21.5, 14.0; IR (Neat Film NaCl) 3087, 1983, 2942, 2866, 1760, 1715, 1666, 1449, 1368, 1233, 1189, 1081, 1056, 1035, 994, 946, 767 cm<sup>-1</sup>; HRMS (EI+) m/z calc'd for C<sub>13</sub>H<sub>18</sub>O<sub>5</sub> [M]<sup>+</sup>: 254.1154, found 254.1153.

**Table SI1, Entry 4:** Prepared by a modification of the general procedure using TEA as the base and THF as solvent in 79% yield as a colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  5.95 (ddt, J = 17.1, 10.2, 6.0 Hz, 1H), 4.93 (ddt, J = 17.1, 2.7, 1.2 Hz, 1H), 5.37 (ddt, J = 10.2, 2.1, 0.9 Hz, 1H), 5.07 (q, J = 1.8 Hz, 2H), 4.74 (ddd, J = 6.0, 1.2, 0.9 Hz, 2H), 1.81 (t, J = 1.8 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  172.6, 163.4, 150.2, 130.0, 120.8, 109.4, 70.3, 67.5, 6.9; IR (Neat Film NaCl) 3089, 2958, 2931, 1774, 1702, 1446, 1392, 1360, 1330, 1240, 1132, 1079, 1025, 945, 889, 775, 754 cm<sup>-1</sup>; HRMS (EI+) m/z calc'd for C<sub>9</sub>H<sub>11</sub>O<sub>5</sub> [M + H]<sup>+</sup>: 199.0606, found 199.0600.



**Table SI1, Entry 4:** Prepared by the general procedure. Purified by flash chromatography (SiO<sub>2</sub>, 2  $\rightarrow$ 12% EtOAc in hexanes). 87% yield, 2% ee.  $R_f = 0.20$  (10%)

EtOAc in hexanes); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  5.62 (dddd, J = 17.7, 9.6, 7.5, 7.2 Hz, 1H), 5.13 (app. ddd, J = 9.6, 1.8, 0.9 Hz, 1H), 5.12 (app. ddd, J = 17.1, 1.5, 0.9 Hz, 1H), 4.59 (d, J = 17.1 Hz, 1H), 4.44 (d, J = 17.4 Hz, 1H), 2.53-2.37 (m, 2H), 1.28 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  209.9, 176.6, 130.1, 121.1, 72.5, 45.6, 40.2, 19.0; IR (Neat Film NaCl) 3543, 3083, 2983, 2939, 2877, 1803, 1758, 1642, 1454, 1436, 1378, 1341, 1231, 1122, 1065, 1043, 998, 912, 664 cm<sup>-1</sup>; HRMS (EI+) *m/z* calc'd for C<sub>8</sub>H<sub>10</sub>O<sub>3</sub> [M]<sup>+</sup>: 154.0630, found 154.0626.



**Table SI1, Entry 5:** Prepared by a modification of Leplawy's procedure<sup>3</sup> in 96% yield as a colorless oil that solidifies on standing; Mp 37.5-39 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.97-7.90 (m, 2H), 7.45-7.38 (comp. m, 3H), 5.99 (ddt, *J* = 17.4, 10.5, 5.7 Hz, 1H), 5.45 (ddt, *J* = 17.4, 1.5, 1.2 Hz, 1H), 5.36 (ddt, *J* = 10.5, 1.2, 1.2 Hz, 1H), 4.78 (ddd, *J* = 6.0, 1.2, 1.2 Hz, 2H), 2.14 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  155.3, 155.0, 151.6, 146.2, 130.5 (2C), 128.9, 127.3, 126.1, 120.6, 70.7, 10.5; IR (Neat Film NaCl) 3066, 2930, 1786, 1669, 1554, 1490, 1450, 1367, 1213, 1082, 1069, 1026, 992, 939, 774, 711, 692 cm<sup>-1</sup>; HRMS (EI+) *m/z* calc'd for C<sub>14</sub>H<sub>13</sub>O<sub>4</sub>N [M]<sup>+</sup>: 259.0845, found 259.0855.



**Table SI1, Entry 5:** Prepared by the general procedure. Purified by flash chromatography (SiO<sub>2</sub>, 4  $\rightarrow$ 7% Et<sub>2</sub>O in hexanes). 89% yield, 2% ee.  $R_f = 0.39$  (25% Et<sub>2</sub>O in hexanes); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.99 (ddd, J = 7.2, 1.5, 1.2 Hz, 2H), 7.57 (tt, J = 7.8, 1.2 Hz, 1H), 7.48 (ddd, J = 7.8, 6.9, 1.5 Hz, 2H), 5.67 (dddd, J = 17.1, 9.9, 7.5, 6.9 Hz, 1H), 5.18 (dddd, J = 17.1, 1.5, 1.5 Hz, 1H), 5.11 (dddd, J = 10.2, 1.5, 0.9, 0.9 Hz, 1H), 2.64 (dddd, J = 13.8, 6.9, 0.9, 0.9 Hz, 1H), 2.57 (dddd, J = 13.8, 7.5, 1.2, 1.2 Hz, 1H), 1.53 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  180.2, 159.8, 132.7, 130.8, 128.7, 127.9, 125.9, 120.4, 69.7, 42.3, 23.2; IR (Neat Film NaCl) 3078, 2982, 2934, 1819, 1655, 1581, 1493, 1451, 1321, 1293, 1177, 1094, 1071, 1005, 930, 889, 780, 700 cm<sup>-1</sup>; HRMS (EI+) m/z calc'd for C<sub>13</sub>H<sub>13</sub>O<sub>2</sub>N [M]<sup>+</sup>: 215.0946, found 215.0938.

Table SI2. Methods for the Determination of Enantiomeric Excess.

| entry | product   | compound assayed | assay<br>conditions                                               | retention time<br>of major<br>isomer (min) | retention time<br>of minor<br>isomer (min) | % ee |
|-------|-----------|------------------|-------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|------|
| 1     |           |                  | GC, G-TA<br>100 °C<br>isotherm                                    | 11.13                                      | 12.74                                      | 88   |
| 2     |           |                  | HPLC<br>Chiracel OJ<br>2% EtOH in hexane<br>isocratic, 1.0 mL/mi  | 19.81<br>n                                 | 13.82                                      | 85   |
| 3     | •         | 0<br>0<br>0      | GC, G-TA<br>100 °C<br>isotherm                                    | 19.67                                      | 21.64                                      | 2    |
| 4     | N O<br>Ph | N O<br>Ph        | HPLC<br>Chiracel OD-H<br>2% IPA in hexane<br>isocratic, 1.0 mL/mi | 6.61<br>n                                  | 5.40                                       | 2    |

Tsuji Allylation with cyclohexenyl substrates



Sample Procedure

In a flame dried 1-dram vial,  $Pd_2(dba)_3$  (4.6 mg, 0.005 mmol), (*S*)-*t*-BuPHOX (4.7 mg, 0.0625 mmol), and TBAT (18.9 mg, 0.035 mmol) were combined. The vial was evacuated for 10 minutes prior to addition of THF (3 mL). The mixture was allowed to stir at 25 °C for 30 min prior to addition of tridecane (10 µL, 0.4 mmol), silyl enol ether (18.4 mg, 0.1 mmol), and bromocyclohexene (16.1 mg, 0.105 mmol) via syringe. GC yield was determined by a GC assay with tridecane as the internal standard. (Isothermal at 80 °C for 5 min, then ramp from 80 °C to 115 °C at 10 °C/min, then isothermal at 115°C for 75 min. Silyl enol ether: 5.759 min, tridecane: 7.329 min, bromocyclohexene: 8.426 min, minor product diastereomer: 72.223 min, major product diastereomer: 73.434 min). Enantiomeric excess was determined by an Agilent 6850 GC utilizing a G-TA column (30 mm x 0.25 cm) with 1.0 mL/min carrier gas flow. The method utilized for enantiomeric excess determination was isothermal at 110°C for 60 min (major product diastereomer: 48.282 min (major enantiomer) and 55.842 min). Isolation of products as a

mixture of diastereomers was accomplished by flash chromatography (1 cm x 20 cm  $SiO_2$ , 2% ether in pentane).



<sup>1</sup>H NMR (300 MHz) δ 5.74 (complex multiplet, 1H), 5.49 (dddd, 0.7H, J = 11.0, 1.9, 1.9, 1.9 Hz), 5.20 (dddd, 0.3H, J = 10.1, 2.1, 2.1, 2.1 Hz), 2.84-2.29 (complex multiplet, 3H), 2.01-1.22 (complex multiplet, 12H), 0.90 (s, 2.1 H), 0.89 (s, 0.9 H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 216.7, 216.1, 129.6, 129.5, 128.0, 127.3, 52.0, 51.7, 39.5, 39.0, 38.6, 37.0, 36.0, 28.0, 27.7, 25.4, 24.0, 23.1, 23.0, 22.9, 21.1, 21.0, 19.4, 18.6; IR (Neat Film, NaCl) 3023, 2934, 2862, 1705, 1452, 1313, 1121 cm<sup>-1</sup>; HRMS *m*/*z* calc'd for C<sub>13</sub>H<sub>24</sub>O [M<sup>+</sup>]: 192.1514, found 192.1519.

(1) Tsuji, J.; Minami, I.; Shimizu, I. Tetrahedron Lett. 1983, 24, 1793-1796.

(3) Slomczynska, U.; Kaminski, Z. J.; Leplawy, M. T. Bull. Pol. Acad. Sci. Chem. 1991, 39, 85-88.

<sup>(2) (</sup>a) Trost, B. M.; Schroeder, G. M.; Kristensen, J. Angew. Chem., Int. Ed. 2002, 41, 3492-3495. (b) Trost, B. M.; Radinov, R.; Grenzer, E. M. J. Am. Chem. Soc. 1997, 119, 7879-7880.

#### 2. Non-linear experiments:

Material and Methods. Unless otherwise stated, reactions were performed in flamedried glassware under argon atmosphere using dry, deoxygenated solvents. Solvents were dried by passage through an activated alumina column under argon. Tris(dibenzylideneacetone)dipalladium(0) (Pd<sub>2</sub>(dba)<sub>3</sub>) was purchased from Strem and stored in a dessicator under argon atmosphere prior to use. (S)-t-Bu-PHOX, (S)-i-Pr-PHOX, (R)-i-Pr-PHOX, and all substrates were prepared by our previously reported methods.4, Reaction temperatures were controlled by an IKAmag temperature modulator. Thin-layer chromatography (TLC) was performed by using E. Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized by UV fluorescence quenching or ICN silica gel (particle size 0.032-0.063 mm) was used for flash anisaldehyde. chromatography. Analytical chiral HPLC was performed with an Agilent 1100 Series HPLC, utilizing a Chiracel OJ column (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd with visualization at 254 nm. Analytical achiral GC was performed with an Agilent 6850 GC utilizing a DB-WAX column (30 mm x 0.24 mm with 1.0 mL/min carrier gas flow). Temperature controlled <sup>1</sup>H NMR kinetic experiments were performed on a Varian Inova 500 MHz.

#### **General Procedures for Nonlinear Experiments**



THF stock solutions with the desired enantiomeric excess of *i*-Pr-PHOX were freshly prepared prior to each experiment. The enantiomeric excess of the *i*-Pr-PHOX delivered was confirmed by subsequent chiral HPLC with a Chiracel OJ column using 1% ethanol in hexanes (1.0 mL/min) as an eluent on the remaining stock solution ((*S*)-*i*-Pr-PHOX: 13.16 min and (*R*)-*i*-Pr-PHOX: 7.60 min).

A 1-dram vial equipped with a stirbar was flame dried twice under vacuum. After cooling under nitrogen,  $Pd_2(dba)_3$  (4.6 mg, 0.005 mmol) was added. The vial was evacuated for 5 minutes. THF (3 mL total) was added and then *i*-Pr-PHOX (4.8 mg, 0.0125 mmol) in THF was added via syringe. Contents were allowed to stir for 30 minutes at 25 °C prior to addition of benzyl  $\beta$ -ketoester **SI1** (27.2 mg, 0.1 mmol) via syringe. The reaction progress was monitored by TLC. Upon completion, the reaction, was concentrated and purified via column chromatography (1 cm x 11.5 cm SiO<sub>2</sub>, 20% ether in pentane). Subsequently, the enantiomeric excess of product was determined by chiral HPLC with a Chiracel OJ column using 1% ethanol in hexanes (1.0 mL/min) as an eluent (**SI2**: 15.942 min and 24.345 min).

Comparison of the enantiomeric excess of the product versus the enantiomeric excess of the *i*-Pr-PHOX revealed a linear relationship (Figure 1). The absence of a nonlinear effect suggests that the active catalyst in our Tsuji allylation system involves one molecule of *i*-Pr-PHOX, thus one palladium metal center. Furthermore, the absence

<sup>&</sup>lt;sup>4</sup> Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044-15045.

<sup>&</sup>lt;sup>5</sup> Mohr, J. T.; Behenna, D. C.; Harned. A. M.; Stoltz, B. M. *Angew. Chem., Int. Ed.* **2005**, *44*, 6924-6927.

of a nonlinear effect suggests that the rate determining step does not involve a bimetallic system, such as a palladium-enolate and a palladium  $\pi$ -allyl complex.



Figure 1. Plot of Enantiomeric Excess of β-Ketoester SI2 versus Enantiomeric Excess of *i*-Pr-PHOX

#### 3. Kinetic Data:

#### **General Procedures for Kinetic Experiments**

Determination of Substrate Order



Solid Pd<sub>2</sub>(dba)<sub>3</sub> (2.3 mg, 0.0025 mmol) and (*S*)-*t*-Bu-PHOX (2.4 mg, 0.00625 mmol) were placed in a NMR tube equipped with a screw cap and a Teflon septum. The NMR tube was then placed under vacuum and backfilled with argon (3 x 1 min). THF-*d*<sub>8</sub> (0.2 mL, dried over sodium benzophenone ketyl) was added to the NMR tube via syringe under a positive pressure of argon. The mixture was heated at 40 °C for 30 min. The mixture was then cooled to -78 °C using a CO<sub>2</sub>/acetone bath. A THF-*d*<sub>8</sub> solution (0.3 mL, 0.1 M in substrate total) of allyl enol carbonate **SI3** (12.2 mg, 0.05 mmol) and 1,4-dimethoxybenzene (2.4 mg, 0.0175 mmol) were added to the reaction mixture under argon. Before recording the <sup>1</sup>H NMR spectrum, the sample was allowed to warm for 5 - 10 seconds and mixed. Reaction progress was monitored by <sup>1</sup>H NMR spectroscopy at 0 °C, where integral areas of the allylic protons of **SI3** (dt, 2H,  $\delta = 4.677$  ppm, J = 5.5, 1.0 Hz) relative to the phenyl protons of the dimethoxybenzene internal standard (s, 4H,  $\delta = 6.795$  ppm) were obtained at 5 minute intervals. The experiment was concluded upon complete conversion of **SI3**, which was determined by the disappearance of the allylic protons of **SI3**.

Analysis of consumption of **SI3** over time is consistent with a zero-order dependence in allyl enol carbonate (Figure 2).



Figure 2. Plot of Consumption of Allyl Enol Carbonate SI3 versus Time as Observed by <sup>1</sup>H NMR Spectroscopy

Determination of Palladium(PHOX) Order



Asymmetric Tsuji allylation of enol carbonate **SI5** was carried out in an identical manner to those previously reported at different concentrations of the in situ generated Pd(PHOX) complex.<sup>1</sup> Reaction progress was monitored by an achiral GC equipped with a DB-WAX column with tridecane as the internal standard. GC yield was determined by using an acquisition method that ramped the temperature from 70 °C to 175 °C at a rate of 5 °C/min (tridecane: 6.915 min, cycloalkanone **SI6**: 12.185 min, and enol carbonate **SI5**: 17.697 min).

Rate constants ( $k_{obs}$ ) were determined at 25 °C by GC analysis. The dependence of reaction rate on the concentration of the in situ generated Pd(PHOX) was measured at a constant concentration of **SI15** (0.03 M) and a constant concentration of tridecane (0.015M). Figure 3 shows that the reaction is first-order in Pd(PHOX) complex.





Based on these preliminary kinetic experiments, we believe that our asymmetric Tsuji allylation is zero-order in substrate and first-order in *in situ* palladium(PHOX) complex.

4. Calculated Data:

Calculation details: All calculations were run using Jaguar 6.5

Geometry optimization was done with a mixed basis set (MIDI! on all atoms except N, P, Pd, the six atoms from the allyl fragment and enolate component which were treated with LACVP or  $6-31G^*$ ).

"Gas Phase Energy" was calculated as single point energy calculations from the above geometries with the LACV3P\*\*++ basis set with both B3LYP and PBE.

"Solvent Phase Energy" was calculated with B3LYP and the LACV3P\*\* basis set. Diffuse functions were omitted, as they appear to have adverse effects on Jaguar's solvation model. Solvent = THF (probe radius = 2.527Å,  $\varepsilon = 7.52$ )

"Zero Point Energy" was calculated from analytic vibrational frequencies.

All transition states were reported were fully optimized and yielded one imaginary frequency.

Contact John Keith for other calculation details (johnk@wag.caltech.edu)

| ****** |
|--------|
|        |

|     | Complex 1           |                 |               |
|-----|---------------------|-----------------|---------------|
|     | (B3LYP)             |                 |               |
| G   | as Phase Energy     | = -654.64331885 | 491 = Eh      |
| Se  | olvent Phase Energy | = -0.010957458  | 54 = Eh       |
| Ze  | ero Point Energy    | = 159.985       | = kcal/mol    |
|     |                     | (PBE)           |               |
| G   | as Phase Energy     | = -653.82932310 | 282 = Eh      |
|     |                     |                 |               |
|     | Geome               | try Coordinates |               |
| C1  | 0.0113083798        | 0.0124257236    | -0.0061783496 |
| C2  | -0.0013818048       | 0.0086824472    | 1.3267454073  |
| C3  | 1.2339260089        | 0.0153211569    | 2.1717260330  |
| 04  | 1.1429594509        | -1.0908202308   | 3.1072486300  |
| C5  | 2.1186404294        | -1.1171196145   | 4.0385647212  |
| 06  | 3.0180904838        | -0.3191945640   | 4.1324261749  |
| 07  | 2.0035448532        | -2.1647199625   | 4.8809113190  |
| C8  | 0.8991992312        | -3.0435401244   | 4.8363028339  |
| C9  | 1.0771331487        | -4.2973061924   | 4.4017656946  |
| H10 | -0.9133147377       | 0.0566512194    | -0.5891741503 |
| HII | 0.9476871255        | -0.0189251237   | -0.5744052870 |
| H12 | -0.9534029285       | 0.0384538672    | 1.8713083079  |
| HI3 | 2.1474818658        | -0.0980871386   | 1.5652816886  |
| H14 | 1.3285573872        | 0.9488691482    | 2.7535568736  |
| C15 | -1.5746866876       | -3.4044541922   | 5.1922740477  |
| C16 | -0.3551976806       | -2.4877409835   | 5.4538668734  |
| CI7 | -0.0529567564       | -5.3043896563   | 4.4860652339  |
| C18 | -1.1917306988       | -4.8771957822   | 5.4433840026  |
| HI9 | -1.9051008295       | -3.2856823628   | 4.1486577507  |
| H20 | -2.4102397826       | -3.1039696803   | 5.8392585659  |
| H21 | -0.2035478549       | -2.3634255284   | 6.5406674169  |
| H22 | -0.5522573151       | -1.4841068032   | 5.0483581460  |
| H23 | -0.4659570753       | -5.4740200848   | 3.4/481518/2  |
| H24 | 0.3551672995        | -6.2753897821   | 4.8132244080  |
| H25 | -0.8589056652       | -4.9939727985   | 6.4867831713  |
| H26 | -2.0626868838       | -5.532218/705   | 5.302115/953  |
| C27 | 2.3661026241        | -4./9664/9686   | 3.8064196230  |
| H28 | 2.7491463200        | -5.65/5604840   | 4.3802683709  |
| H29 | 2.2066227425        | -5.148241/926   | 2.7722771430  |
| H30 | 3.1442248494        | -4.0244807837   | 5.1952011238  |

|           | - |
|-----------|---|
| Complex 2 |   |

......

|                      | (B3LYP)          |       |        |
|----------------------|------------------|-------|--------|
| Gas Phase Energy     | = -466.037385550 | )19   | = Eh   |
| Solvent Phase Energy | = -0.0076306673  | 33    | = Eh   |
| Zero Point Energy    | = 151.022        | = kca | al/mol |
|                      |                  |       |        |
|                      | (PBE)            |       |        |
| Gas Phase Energy     | = -465.412944018 | 344   | = Eh   |
|                      |                  |       |        |

|     | Geomet        | ry Coordinates   |               |  |
|-----|---------------|------------------|---------------|--|
| C1  | -0.0109108095 | -0.0090913358    | -0.0039725405 |  |
| C2  | -0.0019377287 | 0.0036042017     | 1.3311872844  |  |
| C3  | 1.2380737348  | -0.0031750635    | 2.1857876305  |  |
| C4  | 1.4287766106  | -1.2691160917    | 3.0695595585  |  |
| C5  | 2.7189398847  | -1.0964231308    | 3.9031287517  |  |
| O6  | 3.5264703528  | -0.2162058183    | 3.6688334943  |  |
| C7  | 0.2197252134  | -1.4655974661    | 4.0267158875  |  |
| C8  | 0.4425853342  | -2.5256322103    | 5.1342095225  |  |
| С9  | 1.6991627758  | -2.1908086263    | 5.9645485923  |  |
| C10 | 2.9434642135  | -2.0867930224    | 5.0391924948  |  |
| H11 | -0.0056320434 | -0.5013459258    | 4.5157686164  |  |
| H12 | -0.6675204448 | -1.7358556422    | 3.4339196855  |  |
| H13 | 0.5474941665  | -3.5277876176    | 4.6914167333  |  |
| H14 | -0.4422202193 | -2.5569111685    | 5.7863780637  |  |
| H15 | 1.5517832876  | -1.2318804997    | 6.4865076425  |  |
| H16 | 1.8737722150  | -2.9553599127    | 6.7343017634  |  |
| H17 | 3.8338193270  | -1.7655138907    | 5.5946626836  |  |
| H18 | 3.1533849642  | -3.0833841603    | 4.6143920855  |  |
| C19 | 1.6086725483  | -2.5137696692    | 2.1667783431  |  |
| H20 | 2.4990070331  | -2.4061609466    | 1.5279721473  |  |
| H21 | 1.7168858220  | -3.4408988269    | 2.7458276242  |  |
| H22 | 0.7345201419  | -2.6209798584    | 1.5084046329  |  |
| H23 | 1.2232556197  | 0.8767106710     | 2.8575081124  |  |
| H24 | -0.9639896574 | 0.0470791753     | 1.8593952008  |  |
| H25 | 0.9176493118  | -0.0351836527    | -0.5858169872 |  |
| H26 | -0.9443975068 | 0.0188140773     | -0.5750236071 |  |
| H27 | 2.1318023368  | 0.1153535642     | 1.5506968142  |  |
|     |               | •••••••••••••••• | ••••••••••••• |  |

Complex CO2

| Gas Phase Energy<br>Zero Point Energy | (B3LYP)<br>= -188.64660127352 = Eh<br>= 7.282 = kcal/mol |
|---------------------------------------|----------------------------------------------------------|
| Gas Phase Energy                      | (PBE)<br>= -188.45726211825 = Eh                         |
| Geom                                  | netry Coordinates                                        |

| O3 | -1.7834484094 | -0.0452538213 | 3.7234453188 |
|----|---------------|---------------|--------------|
| O2 | 0.0327656439  | 1.4194127886  | 3.5572223432 |
| C1 | -0.8753363139 | 0.6870813764  | 3.6403431163 |

| Com | plex Pd(PHOX) |  |
|-----|---------------|--|

| (                    | (B3LYP)      |          |        |
|----------------------|--------------|----------|--------|
| Gas Phase Energy     | = -1566.716. | 36231574 | = Eh   |
| Solvent Phase Energy | = -0.01365   | 948285   | = Eh   |
| Zero Point Energy    | = 282.286    | = kca    | al/mol |
|                      |              |          |        |
|                      | (PBE)        |          |        |

Gas Phase Energy = -1565.11360608546 = Eh

|                    | Geomet        | ry Coordinates    |               |
|--------------------|---------------|-------------------|---------------|
| Pd1                | 0.1771925079  | 0.0303972044      | -0.4792913529 |
| N2                 | 0.3026055938  | -0.1410796128     | 2.7832384005  |
| P3                 | 2.2198705967  | 0.1131084513      | 0.4386177259  |
| C4                 | -1.0038182842 | -0.4993172805     | 3.3625614198  |
| C5                 | -1.3695267186 | 0.7361541683      | 4.2307918808  |
| 06                 | -0.3882895714 | 1.7308207778      | 3.8622197991  |
| C7                 | 0 5365601358  | 1 0775218072      | 3 0867538636  |
| C8                 | 1 7119479275  | 1.8758559013      | 2 6970712247  |
| C9                 | 2 5690975521  | 1 5236726441      | 1 6174755080  |
| H10                | -1 2808860521 | 0 5535120633      | 5 3074731832  |
| H11                | -2 3613727745 | 1 1431853758      | 4 0214715692  |
| нн<br>1111<br>1112 | 1 7172300412  | 0.5028340006      | 2 5308864505  |
| C13                | 0.08/1078360  | 1 8701715/35      | 4 0045000747  |
| C13                | -0.3641378303 | 2 1070062027      | 4.0943009747  |
| U15                | -2.3048332201 | -2.1070002927     | 4.7373300320  |
| Ш1<br>Ц16          | 2 16/0/58600  | -1.3712200232     | 2 0897277476  |
| П10<br>Ц17         | -3.1049438090 | 2.0076202088      | 5 2020555245  |
| П1/<br>С19         | -2.4031370939 | -3.0970292088     | 5 1607106212  |
| U10                | 0.11//1343/0  | -1.9123691036     | 5.109/100515  |
| П19<br>1120        | -0.0260202493 | -1.1333903903     | 5 6667759700  |
| H20                | 0.1230704120  | -2.0000419941     | 3.0007738799  |
| П21<br>С22         | 1.1022625775  | -1./330811//1     | 4.7207160910  |
| C22                | -0.7141053043 | -2.9/21399416     | 2.5212475709  |
| П23<br>1124        | -0.0923445310 | -5.9577556702     | 3.3312473700  |
| H24<br>1125        | -1.4991023109 | -2.9905245508     | 2.2804003029  |
| П23<br>С26         | 0.2420939313  | -2.0103202074     | 2.3303066020  |
| $C_{20}$           | 3.0400411160  | -3.7363110336     | 2.3046716042  |
| $C_{28}$           | 4.1074920047  | -2.4955000171     | 2 1012167370  |
| $C_{20}$           | 2 8405525532  | -1.3200440390     | 1 3280108613  |
| C29                | 2.8403323332  | 2 6405304324      | 0.7628757074  |
| C30                | 2.3080003340  | 2.0403304324      | 1 3/01708173  |
| U31<br>U32         | 1 2263028740  | -5.8005787580     | 2 0601381037  |
| П32<br>Ц33         | 4.2203020740  | 2 / 31 / 105 37 / | 2.9001301937  |
| П33<br>Ц34         | 3 8388033638  | -2.4314403374     | 2 0480214760  |
| 1134<br>1125       | 1.0555010704  | -0.3033148073     | 0.1222012057  |
| ПЭЭ<br>Ц26         | 2 9521177860  | -2.09/3239437     | -0.1333013037 |
| П30<br>С27         | 2.0321177000  | -4.7093333780     | 0.0011931033  |
| $C_{28}$           | 3.40011/3313  | 1 2026606001      | -2.03/03/093/ |
| C30                | 4.2002346073  | 1.2030000991      | -3.0062311302 |
| C39                | 3.2307099374  | 1.024/192022      | -2.00/965//5/ |
| C40                | 3.3013402203  | 0.3211378322      | -0.03302/0/32 |
| C41<br>C42         | 4.8525299578  | -0.2141929008     | -0.0939888/28 |
| C42                | 5.8049571905  | -0.0441991918     | -1./000423110 |
| H45                | 0.2283709031  | 0.7952972902      | -3.0409822040 |
| H44                | 3.94/69439/8  | 1.7523924171      | -3.9099742196 |
| H45                | 2.2440352795  | 1.41/54818/5      | -2.1322906313 |
| H46                | 5.1159062955  | -0.7705053528     | 0.1999946198  |
| H4/                | 6.7974292943  | -0.4/053090//     | -1.5/84051954 |
| C48                | 3.6692839902  | 2.3615463383      | 1.368/018/2/  |
| H49                | 4.5411402151  | 2.128/39/114      | 0.5515/94144  |
| C30                | 1.9/63230183  | 3.0296087707      | 5.4539024330  |
| H)1                | 1.3009806790  | 3.2/90098495      | 4.2042189791  |
| C52                | 3.928/604198  | 3.494/888886      | 2.1392257713  |
| H33                | 4.1913122591  | 4.10/3/88890      | 1.912343/951  |
| C54                | 3.0/0/496909  | 3.8370912632      | 3.18016096//  |
| HDD                | 0.2040320738  | 4.7200000803      | 3.7890262267  |

\_\_\_\_\_

#### -----

#### Complex Enolate

|                                                   | Gas Phase Energy<br>Solvent Phase Energy<br>Zero Point Energy | (B3LYP)<br>= -348.71065236<br>= -0.084252591<br>= 102.902 | 365 = Eh<br>24 = Eh<br>= kcal/mol |  |  |
|---------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|--|--|
| (PBE)<br>Gas Phase Energy = -348.25500040654 = Eh |                                                               |                                                           |                                   |  |  |
|                                                   | Geome                                                         | try Coordinates                                           |                                   |  |  |
| 01                                                | -0.0003410345                                                 | 0.0018492883                                              | -0.0018906891                     |  |  |
| C2                                                | -0.0012930859                                                 | -0.0008335598                                             | 1.2724903838                      |  |  |
| C3                                                | 1.1061593054                                                  | -0.0010872893                                             | 2.1166904574                      |  |  |

| $C_{2}$ | -0.0012/5005/ | -0.00003333770 | 1.272+705050 |
|---------|---------------|----------------|--------------|
| C3      | 1.1061593054  | -0.0010872893  | 2.1166904574 |
| C4      | -1.4104526170 | -0.0319872575  | 1.9233471036 |
| C5      | 2.4818715361  | 0.0739164076   | 1.5196859652 |
| C6      | -1.4515514456 | 0.3591684973   | 3.4170181569 |
| C7      | -0.3527287552 | -0.4105932402  | 4.1753994277 |
| C8      | 1.0376837131  | -0.0101397774  | 3.6211509483 |
| H9      | -1.2650581487 | 1.4419209104   | 3.5240176167 |
| H10     | -2.4459585505 | 0.1554018823   | 3.8553292856 |
| H11     | -0.5098798273 | -1.4922663929  | 4.0247324928 |
| H12     | -0.4093491028 | -0.2110971796  | 5.2604028648 |
| H13     | 1.3059029375  | 0.9803472051   | 4.0738041013 |
| H14     | 1.7916277693  | -0.7143291969  | 4.0427607809 |
| H15     | -1.8367868734 | -1.0464439177  | 1.7975540590 |
| H16     | -2.0494777870 | 0.6403990799   | 1.3261341092 |
| H17     | 2.3821126706  | 0.0632008815   | 0.4232794062 |
| H18     | 3.0422779241  | 0.9968736269   | 1.8062482500 |
| H19     | 3.1410928032  | -0.7749511975  | 1.8204725621 |

#### Complex 3

|                      | (B3LYP)     |          |        |
|----------------------|-------------|----------|--------|
| Gas Phase Energy     | = -1683.907 | 95339188 | = Eh   |
| Solvent Phase Energy | = -0.05367  | 430515   | = Eh   |
| Zero Point Energy    | = 330.264   | = kc     | al/mol |

#### (PBE)

| Ga  | s Phase Energy | = -1682.15272185 | 5669 | = Eh      |
|-----|----------------|------------------|------|-----------|
|     | Geome          | try Coordinates  |      |           |
| Pd1 | 0.0179829299   | -0.0676708739    | -0.0 | 340612533 |
| C2  | 0.5050195355   | -1.1692203769    | 1.84 | 489587378 |
| C3  | -0.8985553714  | -1.0206510966    | 1.6  | 545794544 |
| C4  | 1.3163391626   | -0.0389784858    | 1.89 | 956242167 |
| H5  | -1.5090774567  | -1.9019537550    | 1.43 | 854221069 |

1.8535746508

2.1262357489

2.2504672281

2.3957602772 -0.1371207332

-1.4192523527 -0.1889278914

0.9276249187 0.9130875980

H6

H7

H8

| H9                      | 0.9636611927                  | -2.1435452811       | 1.6917623608  |
|-------------------------|-------------------------------|---------------------|---------------|
| N10                     | 1.1511428117                  | 1.0692029511        | -1.4617307199 |
| P11                     | -1.7174002497                 | -0.1717162380       | -1.5812161704 |
| C12                     | 2.6446626690                  | 1.1016133800        | -1.4946703082 |
| C13                     | 2.9128829823                  | 2.4582786137        | -2.1982793762 |
| 014                     | 1 6458038779                  | 2 7356867692        | -2 8905046568 |
| C15                     | 0 7042142647                  | 1 9499153489        | -2 3012413409 |
| H16                     | 3 6070106065                  | 2 4401837701        | 2 9562777418  |
| C17                     | 1 0801338212                  | 2.4401037791        | 4 6701348073  |
| C18                     | 0.0015160272                  | 3 7020162060        | 3 31/201/301  |
| C10                     | 1 0864813043                  | 2 7504205402        | 2 3080023311  |
| C19<br>C20              | -1.0804813043                 | -2.7394303492       | 2.3980923311  |
| C20                     | -1.4020904090                 | -1.4/06033070       | -2.8390104300 |
| C21<br>C22              | -1.0300193694                 | -1.24/9210333       | -4.2131439/44 |
| C22                     | -1.4431481568                 | -2.2800855522       | -5.12531849/1 |
| H23                     | -0.9335313877                 | -4.36343/6384       | -5.3934074944 |
| H24                     | -0.6224696672                 | -4.7828988999       | -2.9639494457 |
| H25                     | -0.9402425784                 | -2.9505439510       | -1.336/592315 |
| H26                     | -1.9276546004                 | -0.2655093506       | -4.5751408796 |
| H27                     | -1.5807296881                 | -2.1020685290       | -6.1880005070 |
| C28                     | -6.0108222495                 | -0.6827395226       | 0.0847630174  |
| C29                     | -5.5822308034                 | -1.5014328706       | -0.9587416830 |
| C30                     | -4.2929564870                 | -1.3649872842       | -1.4782699849 |
| C31                     | -3.4198230169                 | -0.4035262947       | -0.9472616242 |
| C32                     | -3.8571442232                 | 0.4141129064        | 0.1112558776  |
| C33                     | -5.1470706008                 | 0.2775924727        | 0.6174870591  |
| H34                     | -7.0156694884                 | -0.7918028681       | 0.4852892341  |
| H35                     | -6.2527440211                 | -2.2501124139       | -1.3737276006 |
| H36                     | -3.9715041448                 | -2.0086007331       | -2.2926869648 |
| H37                     | -3.1922296286                 | 1.1650736918        | 0.5348615338  |
| H38                     | -5.4801222065                 | 0.9178646759        | 1.4308987877  |
| C39                     | -2.0917909438                 | 3.8288111183        | -3.9397626248 |
| C40                     | -3.1955760773                 | 3.0087813541        | -3.7309847663 |
| C41                     | -3 0479854883                 | 1 8169764747        | -3 0216946696 |
| C42                     | -1 8029857361                 | 1 4161325566        | -2 5147376653 |
| C43                     | -0 6774653169                 | 2 2487612543        | -2 7363715505 |
| C44                     | -0.8484695501                 | 3 4481733444        | -3 4474833487 |
| U44<br>U45              | 2 10/33503/6                  | <i>A</i> 7645713061 | A A827813227  |
| П <del>4</del> 5<br>Ц46 | -2.1945550540<br>4 1734051120 | 3 2020850556        | 4 1118200136  |
| 1140<br>1147            | 3 0204600432                  | 1 1032225546        | -4.1118290130 |
| 1147                    | -3.9204099432                 | 1.1932223340        | 2 6005204852  |
| H40                     | 0.01499/1010                  | 4.0650106902        | -3.0093204833 |
| П49<br>С50              | 2 2672106692                  | 0.1222000060        | -1.4921003989 |
| C50                     | 3.20/3190063                  | -0.1522099009       | -2.2290481400 |
| (51                     | 4.8097960218                  | 0.0355752320        | -2.2321092500 |
| H52                     | 5.1372215469                  | 0.8949872402        | -2.8338522574 |
| H53                     | 5.19865///41                  | 0.15/4569696        | -1.2094740686 |
| H54                     | 5.2753864147                  | -0.8611778049       | -2.6646233451 |
| C55                     | 2.7466860750                  | -0.2452939683       | -3.6/969400/4 |
| H56                     | 2.9375390805                  | 0.6699273619        | -4.2584065984 |
| H57                     | 3.2584862794                  | -1.0737003009       | -4.1902023908 |
| H58                     | 1.6679877242                  | -0.4548105081       | -3.7011281686 |
| C59                     | 2.9295243491                  | -1.4292044742       | -1.4578823501 |
| H60                     | 3.3997035260                  | -2.2895861753       | -1.9559421718 |
| H61                     | 3.3142422646                  | -1.3859212143       | -0.4274744391 |
| H62                     | 1.8451801419                  | -1.6056103459       | -1.4248356794 |
| H63                     | 3.0184804616                  | 1.1146049470        | -0.4645288410 |
| *****                   | *****                         | ****                | ******        |

|               | Complex 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |               |  |  |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|--|--|--|--|
|               | (B3LYP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |               |  |  |  |  |
|               | Gas Phase Energy $= -2032.73911500101 = Eh$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |               |  |  |  |  |
|               | Solvent Phase Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = -0.017845631   | 76 = Eh       |  |  |  |  |
|               | Zero Point Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 434.031        | = kcal/mol    |  |  |  |  |
|               | (PBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |               |  |  |  |  |
|               | Gas Phase Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = -2030.53944632 | 2755 = Eh     |  |  |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |               |  |  |  |  |
| _             | Geome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | try Coordinates  |               |  |  |  |  |
| Pd            | 0.1522421755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.1116392671    | -0.0014489177 |  |  |  |  |
| C2            | 0.3201673009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.1796904055    | 2.2760129712  |  |  |  |  |
| 03            | 2.7683828369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.1292058406    | -0.0509452580 |  |  |  |  |
| C4            | -0.3089759399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0020591816     | 1.8725967702  |  |  |  |  |
| C5            | 0.3572462693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.8198794116     | 0.9189059555  |  |  |  |  |
| C6            | 3.6231836400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.0320514691    | -0.4454565077 |  |  |  |  |
| C/            | 4.5645342779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.6017/01382    | -1.5790101993 |  |  |  |  |
| C8            | 3./319944213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.2986969229    | 0.0963151434  |  |  |  |  |
| C9            | 2.9319355116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.6638/38931    | 1.31/6139803  |  |  |  |  |
|               | 4.7627721980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3.3113686164    | -0.3585935803 |  |  |  |  |
| HI            | -0.1635/96499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.6681043577     | 0.4843450687  |  |  |  |  |
| HI.           | 2 -0.2222383097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.9166488314    | 2.8606049645  |  |  |  |  |
| HI.           | 3 1.4435092171<br>1.4025140507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.8/9345599/     | 0.9323271725  |  |  |  |  |
| H14           | + 1.4033149307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.2011482144    | 2.2437892374  |  |  |  |  |
| HI.           | -1.3002392380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1559400514     | 2.0790270703  |  |  |  |  |
| D1'           | 0.0904120280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.1721915229    | -0.02480/1/39 |  |  |  |  |
| ГI.<br>U19    | 7 0.1740600923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4320736241     | -2.2431717911 |  |  |  |  |
| ц10<br>Ц10    | $3 \qquad 5.5555450025$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.3790031703    | 1 3704720165  |  |  |  |  |
| 111<br>ЦЭ     | 7 - 4.0020042027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 75668/1867     | 1 4007000411  |  |  |  |  |
| 112)<br>Ц2    | 1 3 3736753121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 1850001038     | 2 2/327/6779  |  |  |  |  |
| H2            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.1050771050    | 1 2329248766  |  |  |  |  |
| $H2^{\prime}$ | $\frac{1}{3}$ $\frac{1}$ | -4 3222079238    | -0.4201911164 |  |  |  |  |
| H2            | 4 5 5694359641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3 4207278375    | 0.4055290059  |  |  |  |  |
| $C2^{i}$      | 5 -0.7350831020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3 2196094825    | 0.2145874496  |  |  |  |  |
| C2            | 5 0.0253384366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -4 4963013059    | -0 2322589823 |  |  |  |  |
| 02'           | 7 0.5646050655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -4.1275435673    | -1.5433923246 |  |  |  |  |
| C28           | 3 0.5490572057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.7557291926    | -1.5872860900 |  |  |  |  |
| H29           | -0.5979310895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -5.3814233610    | -0.3767989277 |  |  |  |  |
| C30           | ) 1.0751352456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.8356551795    | -3.2059721504 |  |  |  |  |
| C3            | 1.1800742899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2.1879310773    | -2.7905657485 |  |  |  |  |
| H3            | 2 0.8671385414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -4.7299403361    | 0.4300132078  |  |  |  |  |
| C33           | 3 -2.2861720057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.2868486983    | 0.0078957052  |  |  |  |  |
| C34           | 4 -2.8503553237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.4322244334    | 0.8875736219  |  |  |  |  |
| H3:           | 5 -2.4968156257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5.4213090582    | 0.5626847308  |  |  |  |  |
| H3(           | -2.5704486745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.2925639033    | 1.9434975890  |  |  |  |  |
| H3′           | -3.9486254196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.4383230060    | 0.8269120766  |  |  |  |  |
| C38           | -2.6429574335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.5374779809    | -1.4747726814 |  |  |  |  |
| H39           | -2.1569173063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.4433254395    | -1.8650556956 |  |  |  |  |
| H4(           | -3.7310120313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.6646211075    | -1.5783460509 |  |  |  |  |
| H4            | -2.3418826533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.6849977453    | -2.0990721550 |  |  |  |  |
| C42           | 2 -2.9326790960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.9607299977    | 0.4721737948  |  |  |  |  |
| H4.           | -4.0245459550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.0136723051    | 0.3421425130  |  |  |  |  |
| H44           | 4 -2.7256056999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.7760957874    | 1.5377230994  |  |  |  |  |

| H45 | -2.5505778966 | -1.1091203781 | -0.1060660246 |
|-----|---------------|---------------|---------------|
| H46 | -0.5403211568 | -2.9996832719 | 1.2703192523  |
| C47 | 2.3860184274  | 4.3928572056  | -3.2837949551 |
| C48 | 1.1849262514  | 4.1040696560  | -3.9307794581 |
| C49 | 0.4990063076  | 2.9223334720  | -3.6431855483 |
| C50 | 1.0156992509  | 2.0222375547  | -2.6982728271 |
| C51 | 2.2242796977  | 2.3187630128  | -2.0406796476 |
| C52 | 2.9016472517  | 3.4996854342  | -2.3422000820 |
| H53 | 2.9179077889  | 5.3148280951  | -3.5105141300 |
| H54 | 0.7783647615  | 4.7996636351  | -4.6623478042 |
| H55 | -0.4393082329 | 2.7098002870  | -4.1494234414 |
| H56 | 2.6195443006  | 1.6088146650  | -1.3055510017 |
| H57 | 3.8379878854  | 3.7243131230  | -1.8353142604 |
| C58 | -4.0140849884 | 0.8486431113  | -4.2294907723 |
| C59 | -3.0426757843 | 0.0654841238  | -4.8504161246 |
| C60 | -1.7758545288 | -0.0722575192 | -4.2781553383 |
| C61 | -1.4704573260 | 0.5697076485  | -3.0683288784 |
| C62 | -2.4649169194 | 1.3419170502  | -2.4406972350 |
| C63 | -3.7217207787 | 1.4881266566  | -3.0229061547 |
| H64 | -4.9979071726 | 0.9582920145  | -4.6804358217 |
| H65 | -3.2670363641 | -0.4380494793 | -5.7884578786 |
| H66 | -1.0232965470 | -0.6749349737 | -4.7796770291 |
| H67 | -2.2502441947 | 1.8272918150  | -1.4903614712 |
| H68 | -4.4779273956 | 2.0969750059  | -2.5318640115 |
| C69 | 1.6776467046  | -0.4539878202 | -4.4182651942 |
| H70 | 1.6202426167  | 0.5839995041  | -4.7339037256 |
| C71 | 1.8801960366  | -3.0948204178 | -3.6107465389 |
| H72 | 1.9634346085  | -4.1239615571 | -3.2816818655 |
| C73 | 2.3570314890  | -1.3677921209 | -5.2172415639 |
| H74 | 2.8120335257  | -1.0408065248 | -6.1494141375 |
| C75 | 2.4586284413  | -2.6978214199 | -4.8070394514 |
| H76 | 2.9941504587  | -3.4227225064 | -5.4152182616 |
| C77 | 5.8108451629  | -1.4802030793 | -1.7353239197 |
| H78 | 6.5162215574  | -1.2846717852 | -0.9091958086 |
| H79 | 6.3415542060  | -1.2405257562 | -2.6715555184 |
| C80 | 5.4125045433  | -2.9724497525 | -1.7051510232 |
| H81 | 6.2936522790  | -3.6113461306 | -1.8783039381 |
| H82 | 4.7016915621  | -3.1642056614 | -2.5260393040 |

# Complex 5

|                      | , ompren e       |            |
|----------------------|------------------|------------|
|                      | (B3LYP)          |            |
| Gas Phase Energy     | = -2032.73488137 | 7273 = Eh  |
| Solvent Phase Energy | = -0.018730375   | 75 = Eh    |
| Zero Point Energy    | = 434.098        | = kcal/mol |
| Frequency            | = -34.91         |            |

#### (PBE)

## Gas Phase Energy = -2030.53248097952 = Eh

| Pd1 | 0.0000000000  | 0.00000000000 | 0.0000000000  |
|-----|---------------|---------------|---------------|
| O2  | 0.0000000000  | 0.0000000000  | 2.4803720451  |
| C3  | 2.3476054165  | 0.0000000000  | 0.7367316679  |
| P4  | -1.8800020861 | -0.5618249390 | -1.1806220877 |

| N5           | -0.7195656370 | 2.0597627224  | 0.0137173621  |  |
|--------------|---------------|---------------|---------------|--|
| C6           | 0.9064332782  | -1.8840233523 | 0.2142974169  |  |
| C7           | 2.0445691690  | -1.0617588596 | -0.0915735806 |  |
| C8           | -0.7922314100 | 0.6676829591  | 3.2821701313  |  |
| C9           | -2.2509241518 | 0 1857639555  | 3 2879022041  |  |
| C10          | -0.4063556970 | 1 7062882460  | 4 1018820247  |  |
| C10          | 1 0/2556070/  | 2 0837572704  | 4.1010020247  |  |
| C12          | 1 2702764862  | 2.0037372704  | 4.0842006402  |  |
| C12          | -1.3/93/04003 | 2.4034673294  | 4.9845000402  |  |
|              | -3.1383402101 | 0.7770323138  | 4.3901100130  |  |
| U14          | -2.839//18/13 | 2.284/2/4280  | 4.3370714443  |  |
| HIS          | -2.9358046298 | 0.2743380753  | 5.3511223962  |  |
| HI6          | -4.2047722555 | 0.6135394931  | 4.1628775917  |  |
| HI7          | -3.521/14/132 | 2.7350407823  | 5.2969811729  |  |
| H18          | -3.0092349046 | 2.7942325503  | 3.5925930708  |  |
| H19          | -2.7000559021 | 0.3900064897  | 2.2954888901  |  |
| H20          | -2.2191406357 | -0.9177934332 | 3.3776356079  |  |
| H21          | 1.2619118657  | 3.1338681065  | 3.9709727183  |  |
| H22          | 1.3566809869  | 2.0156057803  | 5.3358840075  |  |
| H23          | 1.6974826371  | 1.4175034753  | 3.6882268715  |  |
| H24          | -1.1277811425 | 3.5473387431  | 4.9780721229  |  |
| H25          | -1.2778659160 | 2.1626772194  | 6.0543878341  |  |
| H26          | 0.6299523797  | -2.6735728266 | -0.4795275726 |  |
| H27          | 3.0728822401  | 0.7458542597  | 0.4238115325  |  |
| H28          | 0.6660856868  | -2.0624677761 | 1.2615306105  |  |
| H29          | 1.9397681570  | 0.0474465421  | 1.7466374505  |  |
| H30          | 2.5138443074  | -1.1399840470 | -1.0713262590 |  |
| C31          | 0.1812309612  | 3.1604316961  | 0.4629063979  |  |
| C32          | -0.7452405288 | 3.9527408768  | 1.4154757460  |  |
| 033          | -2.0914874689 | 3.6008132210  | 0.9327958474  |  |
| C34          | -1 9379362622 | 2,4149678241  | 0 2662991991  |  |
| H35          | -0.6577173350 | 5 0398267895  | 1 3699702015  |  |
| C36          | -3 3331200492 | 0 4700475481  | -0 6838786444 |  |
| C37          | -3 2113039348 | 1 7446025095  | -0.0738916922 |  |
| H38          | -0.6625795277 | 3 5742926563  | 2 4425828016  |  |
| C39          | 0 7450457047  | 3 9829183995  | -0 7415342329 |  |
| C40          | 1 6788928218  | 5.0867728182  | -0.1831908470 |  |
| U40          | 1 1333003055  | 5.8178336242  | 0.4308846595  |  |
| 11+1<br>1142 | 0 1010220100  | 1 6407621426  | 0.4200802510  |  |
| П42<br>Ц42   | 2.4010330420  | 4.0497021420  | 1.0152001057  |  |
| П43<br>С44   | 2.1433961093  | 1.6002404156  | -1.0132001937 |  |
| C44          | -0.3900383902 | 4.0292424130  | -1.30/0040334 |  |
| П4Ј<br>Ц46   | -1.0344233910 | 5.2700320102  | -0.9488040423 |  |
| H40          | 0.0403812048  | 3.2309039384  | -2.3003418098 |  |
| H4/          | -1.01/0/44416 | 3.8597922931  | -2.0401356505 |  |
| C48          | 1.5760122526  | 3.05/95038/5  | -1.6615697933 |  |
| H49          | 1.9939656734  | 3.6413559812  | -2.4962698698 |  |
| H50          | 2.4117096252  | 2.6038245279  | -1.1088845448 |  |
| H51          | 0.9573327549  | 2.2498820850  | -2.0736224508 |  |
| H52          | 1.0163878771  | 2.7227230956  | 1.0184537406  |  |
| C53          | -3.4086102107 | -4.9030843740 | -0.5674705694 |  |
| C54          | -3.3279831636 | -4.3939449216 | -1.8624661290 |  |
| C55          | -2.8845741818 | -3.0871164255 | -2.0789992967 |  |
| C56          | -2.5132856862 | -2.2791085131 | -0.9942049296 |  |
| C57          | -2.5818701933 | -2.8056336904 | 0.3091561554  |  |
| C58          | -3.0355866321 | -4.1061042413 | 0.5169557627  |  |
| H59          | -3.7541665409 | -5.9212640420 | -0.4019386526 |  |
| H60          | -3.6090571493 | -5.0145894062 | -2.7102397005 |  |

| H61    | -2.8244554032 | -2.7014474119 | -3.0935496837 |
|--------|---------------|---------------|---------------|
| H62    | -2.2712339676 | -2.1974572829 | 1.1576893747  |
| H63    | -3.0889145554 | -4.5027041241 | 1.5287555954  |
| C64    | -1.4395461626 | 0.0044342230  | -5.7793216043 |
| C65    | -2.6908340590 | 0.1962592220  | -5.1932725625 |
| C66    | -2.8553650403 | 0.0399216749  | -3.8163992255 |
| C67    | -1.7630296496 | -0.3100851497 | -3.0062840665 |
| C68    | -0.5044470040 | -0.4853757023 | -3.6055647271 |
| C69    | -0.3463340711 | -0.3368857458 | -4.9827212123 |
| H70    | -1.3153088822 | 0.1284774518  | -6.8528320453 |
| H71    | -3.5436197597 | 0.4722026535  | -5.8099053953 |
| H72    | -3.8341496035 | 0.2030161266  | -3.3744114483 |
| H73    | 0.3526202106  | -0.7246791946 | -2.9792211061 |
| H74    | 0.6334966583  | -0.4780263819 | -5.4328751065 |
| C75    | -4.6206080175 | -0.0498147446 | -0.9005027928 |
| H76    | -4.7270762954 | -1.0440822164 | -1.3251947583 |
| C77    | -4.3817107142 | 2.4461824658  | 0.2675069522  |
| H78    | -4.2784088137 | 3.4157065455  | 0.7403735308  |
| C79    | -5.7665363634 | 0.6634457911  | -0.5578048907 |
| H80    | -6.7482084736 | 0.2304573169  | -0.7366032364 |
| C81    | -5.6440672192 | 1.9221918765  | 0.0236956770  |
| H82    | -6.5282403983 | 2.4903939387  | 0.3019617665  |
| ****** | *****         | ***********   | *****         |

Complex 6

|                      | (B3LYP)       |        |        |  |
|----------------------|---------------|--------|--------|--|
| Gas Phase Energy     | = -2032.72926 | 163396 | = Eh   |  |
| Solvent Phase Energy | = -0.0218296  | 9499   | = Eh   |  |
| Zero Point Energy    | = 434.068     | = kc   | al/mol |  |
| Frequency $= -30.63$ |               |        |        |  |

| Gas Phase Energy | = -2030.52840672257 | = Eh |
|------------------|---------------------|------|

|     |               | - )           |              |
|-----|---------------|---------------|--------------|
| Pd1 | 0.0000000000  | 0.0000000000  | 0.0000000000 |
| C2  | 0.0000000000  | 0.0000000000  | 2.4380822781 |
| C3  | 0.6432168078  | 0.0000000000  | 5.2288898795 |
| C4  | -0.9577996270 | 0.8242757005  | 1.8292527455 |
| C5  | -1.9333911447 | 0.3010441896  | 0.9393466568 |
| C6  | 1.3920387959  | -1.0411775719 | 4.6521739538 |
| 07  | 2.4038882128  | -0.8626009024 | 3.8926831343 |
| C8  | 0.9582318422  | -2.4964169892 | 4.8908529369 |
| C9  | 1.1490531325  | 1.4175118987  | 5.1694290282 |
| C10 | -0.5291132928 | -0.2378446570 | 6.1606933875 |
| H11 | -2.6383125028 | 0.9742306191  | 0.4606679979 |
| H12 | -2.2888799627 | -0.7201752021 | 1.0704217078 |
| H13 | -0.8301103775 | 1.9037677609  | 1.8923316849 |
| H14 | 0.9290103527  | 0.3785585874  | 2.8291907710 |
| H15 | -0.1499539666 | -1.0723479593 | 2.4991565056 |
| H16 | 1.0755042597  | -3.0454280781 | 3.9377318532 |
| H17 | 1.6900573488  | -2.9549284256 | 5.5873659314 |
| H18 | 0.3709363831  | 2.1387011460  | 4.8407575547 |
| H19 | 1.4785716180  | 1.7684365765  | 6.1722558610 |
| H20 | 2.0158725557  | 1.4938857868  | 4.4933295049 |
|     |               |               |              |

| H21                      | -0 4306748395 | 0.4183825616  | 7 0521528150                  |
|--------------------------|---------------|---------------|-------------------------------|
| 1121<br>ЦЭЭ              | 1 4820600508  | 0.930087822   | 5 6810176663                  |
| 1122<br>NO2              | -1.4620090306 | 0.0039907022  | 0.0701657119                  |
| N23                      | 2.2012/55411  | -0.1770214513 | -0.2/0165/118                 |
| P24                      | -0.0/4683002/ | -0.1/06195/45 | -2.349/321554                 |
| C25                      | 3.1417415294  | -0.7281884090 | 0.7519737679                  |
| C26                      | 4.3768076860  | 0.1876453930  | 0.5678148220                  |
| O27                      | 4.1972964798  | 0.7472717266  | -0.7857698346                 |
| C28                      | 2.8740324098  | 0.5651857183  | -1.0812655715                 |
| C29                      | 2.4219869655  | 1.2718017843  | -2.3027869054                 |
| C30                      | 1,1917621682  | 1.0385633280  | -2.9727103546                 |
| H31                      | 5 3405861920  | -0 3246122924 | 0 5811828515                  |
| Ц32                      | 1 3875007254  | 1.02/0633226  | 1 2786452064                  |
| H32<br>H22               | 7.3073777234  | 0.6102644112  | 1.2700452004                  |
| П33<br>С24               | 2.7140343000  | -0.0192044112 | 1.7303104000                  |
| C34                      | 3.43/5695046  | -2.2484693420 | 0.5347891135                  |
| C35                      | 4.3907486126  | -2.6996420717 | 1.6/3/633360                  |
| H36                      | 5.3864747323  | -2.2393179696 | 1.5824731914                  |
| H37                      | 3.9597180661  | -2.4271499633 | 2.6491859319                  |
| H38                      | 4.5280525539  | -3.7907324593 | 1.6299833012                  |
| C39                      | 4.0695216000  | -2.5273875995 | -0.8464098140                 |
| H40                      | 4.9965819577  | -1.9542667694 | -0.9971420737                 |
| H41                      | 4.3206008154  | -3.5959200446 | -0.9286627601                 |
| H42                      | 3.3723668218  | -2.2834327564 | -1.6610162573                 |
| C43                      | 2 1196406902  | -3 0445101136 | 0 6744536143                  |
| H44                      | 2 3253943365  | -4 1224262846 | 0.5863410312                  |
| H45                      | 1 6726112849  | -2 8563674501 | 1 6605266346                  |
| H46                      | 1 4006668427  | -2.0505074501 | -0 1079690935                 |
| C47                      | 3 016/307725  | 1 0237571877  | 4 683/0501/6                  |
| C47                      | 3 1101506713  | 0.0008040066  | 5 1816108066                  |
| C40                      | -3.1101300713 | 0.0008040000  | -5.1810198000                 |
| C49                      | -1.9460347004 | -0.3737047013 | -4.3042330337                 |
| C50                      | -1.3839113122 | 0.2/12/30800  | -3.31100/8/13                 |
| C51                      | -2.4103528689 | 1.2928404124  | -2.81183/6405                 |
| C52                      | -3.5634403651 | 1.6698/1351/  | -3.49/3505416                 |
| H53                      | -4.8211297859 | 1.31268888881 | -5.2138114521                 |
| H54                      | -3.3846515179 | -0.5092779083 | -6.1026847695                 |
| H55                      | -1.3291652504 | -1.1724067821 | -4.9036477189                 |
| H56                      | -2.1491921337 | 1.7870732624  | -1.8782323947                 |
| H57                      | -4.1931451028 | 2.4637717511  | -3.1015363532                 |
| C58                      | 1.0991936356  | -4.2519871459 | -4.2399010222                 |
| C59                      | 1.7062582256  | -3.0882490547 | -4.7107716932                 |
| C60                      | 1.3797715802  | -1.8494949096 | -4.1550951219                 |
| C61                      | 0 4425787059  | -1 7645983729 | -3 1129760199                 |
| C62                      | -0 1530088040 | -2 9457673083 | -2 6361437772                 |
| C63                      | 0.1677128116  | -4 1780335204 | -3 2029527657                 |
| С05<br>Н64               | 1 35/2028781  | 5 2150802/30  | -5.2027527057<br>A 6763301844 |
| 110 <del>4</del><br>1165 | 2 4254528428  | 2 1416000041  | 5 5165006608                  |
|                          | 2.4334330420  | -3.1410090041 | -5.5105090000                 |
|                          | 1.6337370034  | -0.9493703263 | -4.3363949304                 |
| H6/                      | -0.8/12/56638 | -2.8985923454 | -1.81966/086/                 |
| H68                      | -0.3040158359 | -5.083/941180 | -2.8285858033                 |
| C69                      | 3.0096058630  | 2.9563150416  | -3.9655288892                 |
| C70                      | 3.3081916232  | 2.2303795607  | -2.8181216893                 |
| C71                      | 0.9155798386  | 1.7771799082  | -4.1331398154                 |
| C72                      | 1.8088181324  | 2.7271029623  | -4.6278451081                 |
| H73                      | 3.7131767993  | 3.6979080775  | -4.3358575125                 |
| H74                      | 4.2418481011  | 2.3973850102  | -2.2929354265                 |
| H75                      | -0.0206353150 | 1.6132140828  | -4.6575701994                 |
| H76                      | 1.5595325253  | 3.2848774661  | -5.5278170572                 |

| C77   | -0.6739835636 | -1.6916908541 | 6.6302127243 |
|-------|---------------|---------------|--------------|
| H78   | -1.6635797548 | -1.8512185521 | 7.0878784722 |
| H79   | 0.0799410992  | -1.9102276847 | 7.4059672475 |
| C80   | -0.4583710845 | -2.6651725868 | 5.4495242864 |
| H81   | -1.2066190791 | -2.4485879632 | 4.6667337224 |
| H82   | -0.6270041583 | -3.7050178951 | 5.7739204697 |
| ***** | *****         | *****         | *****        |

\_\_\_\_\_

| Compl | lex | 7 |
|-------|-----|---|
|-------|-----|---|

| Eh  |
|-----|
| Ξh  |
| ıol |
|     |
| ]   |

(PBE) Gas Phase Energy = -2030.52549546915 = Eh

|     | Geomet        | ry Coordinates |               |
|-----|---------------|----------------|---------------|
| Pd1 | 0.0000000000  | 0.0000000000   | 0.0000000000  |
| C2  | 0.0000000000  | 0.0000000000   | 2.3211968669  |
| C3  | 0.8424999870  | 0.0000000000   | 5.2512512366  |
| C4  | -0.6604120923 | -1.9348412135  | 0.9595233626  |
| C5  | 2.0348324454  | -0.2310662807  | 4.5376139376  |
| 06  | 2.6348456752  | 0.6466958488   | 3.8354158531  |
| C7  | 2.6662417406  | -1.6330421228  | 4.5701704904  |
| C8  | 0.2961210408  | 1.3961934591   | 5.3680717406  |
| C9  | 0.1728499396  | -1.0508920472  | 6.1098325762  |
| H10 | 0.7948244678  | 0.5765149642   | 2.7720940497  |
| H11 | -1.0279369486 | 0.3229104883   | 2.4686154440  |
| H12 | 1.2858408351  | -1.6542438342  | 1.8480005605  |
| H13 | -0.3944955452 | -2.8749897192  | 0.4852676950  |
| H14 | -1.7244022252 | -1.7326377282  | 1.0634760359  |
| H15 | 3.5597004710  | -1.5853182383  | 5.2270714149  |
| H16 | 3.0593542203  | -1.8489673429  | 3.5582365913  |
| H17 | -0.7921611092 | 1.4502644686   | 5.1542871484  |
| H18 | 0.4156091570  | 1.7923032950   | 6.4009815514  |
| H19 | 0.8276757331  | 2.0791754177   | 4.6873643011  |
| H20 | -0.1086039186 | -0.6061760141  | 7.0889316396  |
| H21 | -0.7975838993 | -1.3648843601  | 5.6603378580  |
| N22 | -0.2745441670 | -0.2905545527  | -2.1920555215 |
| P23 | 0.8648308863  | 2.1113477013   | -0.6693151461 |
| C24 | -1.2509872732 | -1.2571523956  | -2.7626386475 |
| C25 | -0.4420654562 | -1.9002773930  | -3.9231160958 |
| O26 | 0.6345547654  | -0.9384740923  | -4.1632467737 |
| C27 | 0.6946263401  | -0.1464163899  | -3.0415768310 |
| C28 | 1.8728726616  | 0.7334422716   | -2.9853464257 |
| C29 | 2.0761494729  | 1.7610679965   | -2.0218505857 |
| H30 | -0.9906321073 | -2.0177097100  | -4.8602362182 |
| H31 | 0.0126772887  | -2.8586026226  | -3.6381708761 |
| H32 | -1.4950380278 | -2.0010319604  | -1.9954775416 |
| C33 | 2.4241038645  | 2.7233170959   | 1.5561167438  |
| C34 | 1.7400677103  | 3.2648340468   | 0.4560900697  |
| C35 | 1.7305566879  | 4.6604610113   | 0.2713410300  |
| H36 | 2.4342950681  | 1.6572310425   | 1.7657888990  |

| C37         | -0.1744459942 | 3.8005104158  | -2.7353763444         |
|-------------|---------------|---------------|-----------------------|
| C38         | -0.3842402897 | 3.1941069380  | -1.4871547730         |
| C39         | -1.5873254814 | 3.4462197271  | -0.8046222505         |
| H40         | 0.7497590375  | 3.6229391528  | -3.2795306915         |
| C41         | -2.5829048012 | -0.5723812117 | -3.2115703309         |
| C42         | -3.5226457050 | -1.6611799856 | -3.7906283054         |
| H43         | -3.1206050633 | -2.1126142666 | -4.7095296194         |
| H44         | -3.6984259948 | -2.4631779990 | -3.0568533627         |
| H45         | -4.4954173395 | -1.2140115013 | -4.0424949399         |
| C46         | -2.3236751391 | 0.5166456810  | -4.2766675801         |
| H47         | -1.7994590868 | 0.1136099881  | -5.1557923258         |
| H48         | -3.2821669514 | 0.9339498639  | -4.6198067842         |
| H49         | -1.7273284056 | 1.3400238101  | -3.8615835900         |
| C50         | -3.2711894530 | 0.0620790727  | -1.9813446505         |
| H51         | -4.2359934795 | 0.5002592874  | -2.2786198113         |
| H52         | -3.4654380926 | -0.6960811123 | -1.2072950761         |
| H53         | -2.6515770794 | 0.8562591986  | -1.5472490587         |
| C54         | 3.0863060738  | 3.5602725378  | 2.4558857286          |
| C55         | 2.4027650897  | 5.4884113118  | 1.1684566451          |
| H56         | -1.7673404030 | 2.9824138821  | 0.1636368688          |
| C57         | 3.0798840591  | 4.9403968382  | 2.2615620909          |
| H58         | 3.5686606868  | 3.1019120375  | 3.3147293051          |
| H59         | 3.5894325554  | 5.5940185150  | 2.9665952082          |
| H60         | 2.3898130592  | 6.5665337320  | 1.0198503902          |
| H61         | 1.1923191041  | 5.0998890573  | -0.5650727955         |
| C62         | 3.2639293977  | 2.5054802833  | -2.0831420359         |
| H63         | 3.4376797169  | 3.2834967942  | -1.3462185188         |
| C64         | 2.8582121102  | 0.5133783170  | -3.9652365103         |
| H65         | 2.6930188108  | -0.2734663361 | -4.6926562066         |
| C66         | 4.2268004642  | 2.2702537433  | -3.0626286700         |
| H67         | 5.1353855670  | 2.8677815670  | -3.0804999502         |
| C68         | 4.0213668206  | 1.2695081458  | -4.0094654907         |
| H69         | 4.7664559798  | 1.0728666145  | -4.7766134510         |
| C70         | -1.1435577183 | 4.6448497973  | -3.2830470551         |
| H71         | -0.9667010913 | 5.1117833019  | -4.2499459543         |
| C72         | -2.5469733724 | 4.2973968449  | -1.3506503759         |
| H73         | -3.4690537648 | 4.4911595023  | -0.8068178154         |
| C74         | -2.3280888886 | 4.8971398964  | -2.5920592894         |
| H75         | -3.0784118973 | 5.5595794610  | -3.0183503598         |
| C76         | 1.7313693390  | -2.7447299319 | 5.0553938736          |
| H77         | 2.2909677741  | -3.6804210814 | 5.2200821173          |
| H78         | 0.9637938530  | -2.9596843707 | 4.2909866494          |
| C79         | 1.0289212136  | -2.3009106400 | 6.3589482287          |
| H80         | 0.4080627879  | -3.1172395038 | 6.7609951908          |
| H81         | 1.8016646973  | -2.0804973041 | 7.1152871298          |
| C82         | 0.2694098235  | -1.2734770317 | 1.7771592089          |
| *********** | *******       | ************  | ********************* |

\_\_\_\_\_

#### Complex 8

| (B3LYP)              |                  |       |        |  |  |
|----------------------|------------------|-------|--------|--|--|
| Gas Phase Energy     | = -2032.75792237 | 478   | = Eh   |  |  |
| Solvent Phase Energy | = -0.0132273134  | 14    | = Eh   |  |  |
| Zero Point Energy    | = 434.122        | = kca | al/mol |  |  |

| Gas Phase Energy  | = -203055097086362 | = Eh    |
|-------------------|--------------------|---------|
| Oas r hase Energy | 2030.33097080302   | $-L\Pi$ |

|     | Geomet        | ry Coordinates |               |  |
|-----|---------------|----------------|---------------|--|
| Pd1 | 0.1915648604  | -0.0578528428  | -0.0045695048 |  |
| C2  | 0.7380779138  | 0.2487995492   | 1.9995464524  |  |
| C3  | 0.9177841207  | -1.0073451258  | 2.7347292550  |  |
| C4  | 2.1009685961  | -1.5430077692  | 3.0837744176  |  |
| C5  | 2.4878983867  | -3.6194572433  | 0.6346249865  |  |
| 06  | 1.0583871202  | -1.9540125174  | -0.2257736421 |  |
| C7  | 2.2726742622  | -2.3890021033  | 0.0776056574  |  |
| C8  | 3.4297966073  | -1.4751329042  | -0.3067694587 |  |
| C9  | 1.3453136245  | -4.5030156999  | 1.0554435136  |  |
| C10 | 3.8735081920  | -4.2179363732  | 0.7748355573  |  |
| H11 | 1.6597711792  | 0.8380857605   | 1.9368195007  |  |
| H12 | -0.0661278683 | 0.8647676841   | 2.4088914371  |  |
| H13 | 0.0075837368  | -1.5471634442  | 2.9999230666  |  |
| H14 | 2.1666842094  | -2.4793286188  | 3.6288899558  |  |
| H15 | 3.0398243445  | -1.0476341725  | 2.8491588813  |  |
| N16 | -0.3151411952 | -0.2210320715  | -2.2673198189 |  |
| P17 | -1.0099909164 | 1.8893277359   | -0.2353169597 |  |
| H18 | 1.2026386203  | -5.3564874568  | 0.3580888722  |  |
| H19 | 1.5340795723  | -4.9528330440  | 2.0514005731  |  |
| H20 | 0.4021506133  | -3.9378683602  | 1.0961707804  |  |
| H21 | 3.4558833885  | -1.3843806675  | -1.4135071228 |  |
| H22 | 3.2005713018  | -0.4583710791  | 0.0668447451  |  |
| H23 | 4.1612766875  | -4.2676650211  | 1.8487845849  |  |
| H24 | 3.8539533942  | -5.2762285658  | 0.4391254461  |  |
| C25 | -0.1707710001 | -1.5388970127  | -2.9376804206 |  |
| C26 | 0.5848833580  | -1.1678773667  | -4.2428486570 |  |
| O27 | 0.3965718734  | 0.2867028847   | -4.3570544158 |  |
| C28 | -0.0234016542 | 0.6990763044   | -3.1184031584 |  |
| C29 | -0.0901801771 | 2.1649562186   | -2.9507016808 |  |
| C30 | -0.5336065898 | 2.8158246961   | -1.7713310450 |  |
| H31 | 0.1849787453  | -1.6192735173  | -5.1539130856 |  |
| H32 | 1.6635538895  | -1.3603616856  | -4.1744656024 |  |
| H33 | 0.4335428166  | -2.1672215716  | -2.2734206758 |  |
| C34 | -1.5507008039 | -2.2342628594  | -3.1622908909 |  |
| C35 | -1.3000056189 | -3.5938690621  | -3.8631928080 |  |
| H36 | -0.8746059321 | -3.4698997206  | -4.8704068576 |  |
| H37 | -0.6150941371 | -4.2177932248  | -3.2693802954 |  |
| H38 | -2.2505255673 | -4.1371046791  | -3.9707983782 |  |
| C39 | -2.4955577412 | -1.3642139207  | -4.0210720513 |  |
| H40 | -2.0550758561 | -1.1204001307  | -4.9998245432 |  |
| H41 | -3.4376912446 | -1.9035547547  | -4.2023374903 |  |
| H42 | -2.7378972057 | -0.4251752261  | -3.5037520189 |  |
| C43 | -2.2033919921 | -2.5068433753  | -1.7866159330 |  |
| H44 | -3.1236858616 | -3.0968506834  | -1.9199341474 |  |
| H45 | -1.5148537869 | -3.0636939639  | -1.1349875996 |  |
| H46 | -2.4641750329 | -1.5673286597  | -1.2833208377 |  |
| C47 | -0.7351988819 | 5.1428542117   | 3.0777342034  |  |
| C48 | -1.9902940587 | 4.7276393083   | 2.6361133318  |  |
| C49 | -2.1006118621 | 3.7627045552   | 1.6327710106  |  |
| C50 | -0.9499837117 | 3.1987892116   | 1.0607850552  |  |
| C51 | 0.3118483935  | 3.6159099203   | 1.5230068995  |  |
| C52 | 0.4159497924  | 4.5860115161   | 2.5170725798  |  |
| H53 | -0.6524707600 | 5.8936163832   | 3.8605807615  |  |

| H54 | -2.8904676073 | 5.1553437529  | 3.0726229093  |
|-----|---------------|---------------|---------------|
| H55 | -3.0854016586 | 3.4503657429  | 1.2964933333  |
| H56 | 1.2147396958  | 3.1780202374  | 1.1024854807  |
| H57 | 1.3977544977  | 4.9010793435  | 2.8635438565  |
| C58 | -5.5721822676 | 1.0976674868  | -0.6537203254 |
| C59 | -4.9793523413 | 2.0817837082  | -1.4447955083 |
| C60 | -3.6099851672 | 2.3339098202  | -1.3456845603 |
| C61 | -2.8160674451 | 1.5952320583  | -0.4544319317 |
| C62 | -3.4200745858 | 0.5953567211  | 0.3276738616  |
| C63 | -4.7910605004 | 0.3570153269  | 0.2342728769  |
| H64 | -6.6399550725 | 0.9052587831  | -0.7322854924 |
| H65 | -5.5846466717 | 2.6582142658  | -2.1414020266 |
| H66 | -3.1622611951 | 3.1085298952  | -1.9630976861 |
| H67 | -2.8092648528 | 0.0016576511  | 1.0050616425  |
| H68 | -5.2473410856 | -0.4162861624 | 0.8481598024  |
| C69 | -0.5766164268 | 4.2191986417  | -1.7623943464 |
| H70 | -0.9095791948 | 4.7354282688  | -0.8675032058 |
| C71 | 0.3066134829  | 2.9389340228  | -4.0524075135 |
| H72 | 0.6546991590  | 2.4236847708  | -4.9406427424 |
| C73 | -0.1888534396 | 4.9709030312  | -2.8705946740 |
| H74 | -0.2348239360 | 6.0568682123  | -2.8287902764 |
| C75 | 0.2606249955  | 4.3274412581  | -4.0192348967 |
| H76 | 0.5763238190  | 4.9016115004  | -4.8869892838 |
| C77 | 4.9562887125  | -3.4610120967 | -0.0033264612 |
| H78 | 4.8661386095  | -3.6803287843 | -1.0812050486 |
| H79 | 5.9587135159  | -3.7919330880 | 0.3110557758  |
| C80 | 4.7963226149  | -1.9385504327 | 0.2112779548  |
| H81 | 5.6071565314  | -1.3895053766 | -0.2934912805 |
| H82 | 4.8835268496  | -1.7225425270 | 1.2893223041  |
|     |               |               |               |

Complex 9

|                      | (B3LYP)        |       |        |
|----------------------|----------------|-------|--------|
| Gas Phase Energy     | = -2032.746151 | 86694 | = Eh   |
| Solvent Phase Energy | = -0.01150958  | 455   | = Eh   |
| Zero Point Energy    | = 434.278      | = kc  | al/mol |
| Frequency            | = -310.        | 74    |        |

(PBE)

Gas Phase Energy = -2030.54481985386 = Eh

|     |               | 2 -           |               |
|-----|---------------|---------------|---------------|
| Pd1 | -0.0043666097 | 0.0634387862  | 0.0584997996  |
| C2  | 0.0070301491  | 0.1093603823  | 2.2104800572  |
| C3  | 1.3809836889  | 0.0923046314  | 2.5751574707  |
| C4  | 2.1337719483  | 1.2231012929  | 2.9104985345  |
| C5  | 3.2615043957  | 2.1293264681  | 1.3058756248  |
| O6  | 1.6508404679  | 1.4960421691  | -0.2819578274 |
| C7  | 2.1093206112  | 2.3759665974  | 0.5197675089  |
| C8  | 1.2867406393  | 3.6483812887  | 0.7117120749  |
| C9  | 4.1528897960  | 0.9682068027  | 0.9203252161  |
| C10 | 3.9828945429  | 3.2963699640  | 1.9819053361  |
| H11 | -0.5402218720 | 1.0258575014  | 2.4494500813  |
| H12 | -0.5664594077 | -0.7887870614 | 2.4359080111  |
| H13 | 1.8911886327  | -0.8702890690 | 2.5576346448  |

| H14                       | 3.0695012544       | 1.0739744176          | 3.4420746077    |
|---------------------------|--------------------|-----------------------|-----------------|
| H15                       | 1.5994052343       | 2.1238049488          | 3.2026376188    |
| N16                       | 0.0598027013       | -0.1507606747         | -2.3652811753   |
| P17                       | -1 8988267118      | -1 1875206227         | -0 3477454845   |
| H18                       | 4 8116316350       | 1 2485030675          | 0.0735001053    |
| н10<br>H10                | 1.0110510550       | 0.6703548080          | 1 7587025662    |
| LI19                      | 3 563/780877       | 0.0793348089          | 0.6127374514    |
| 1120                      | 1 200 4 22 7 6 1 1 | 1 1 2 6 4 6 4 4 1 5 6 | 0.012/3/4314    |
| П21<br>1122               | 1.2064257011       | 4.1304044130          | -0.2/9098004/   |
| H22                       | 0.2541/49651       | 3.3496393037          | 0.9756055892    |
| H23                       | 3.98/3328/09       | 3.1615/144/5          | 3.0835539236    |
| H24                       | 5.0493474817       | 3.2771056818          | 1.6831225435    |
| C25                       | 1.3309108023       | 0.1810614157          | -3.0550807095   |
| C26                       | 0.8910225442       | 1.2580287268          | -4.0897827309   |
| O27                       | -0.5680682715      | 1.1190895635          | -4.1437226055   |
| C28                       | -0.9058379715      | 0.3663336690          | -3.0417826594   |
| C29                       | -2.3556196621      | 0.2503022358          | -2.8003711737   |
| C30                       | -2.9294723790      | -0.4275592628         | -1.6914924094   |
| H31                       | 1.2716436199       | 1.1104281738          | -5.1038867802   |
| H32                       | 1.1212299331       | 2.2758671052          | -3.7497625271   |
| H33                       | 2.0131888195       | 0.6092412024          | -2.3126094410   |
| C34                       | 1.9944710527       | -1.0877589318         | -3.6779034594   |
| C35                       | 3.2954968468       | -0.6618860827         | -4.4036098376   |
| H36                       | 3.0945550658       | -0.0098999411         | -5.2665946508   |
| H37                       | 3 9712282665       | -0 1305765168         | -3 7158460289   |
| H38                       | 3 8216624034       | -1 5526772970         | -4 7781852931   |
| C39                       | 1 0427151133       | -1.7914018068         | -4 6709814172   |
| U37<br>Н40                | 0.7070600166       | 1 1106221/18          | 5 /682127000    |
| 11 <del>4</del> 0<br>1141 | 1 5575815220       | -1.1100221418         | 5 1462602127999 |
| 1141<br>1142              | 0.1565272175       | 2.0401033097          | -3.1402092117   |
| П42<br>С42                | 0.1303372173       | -2.1/90052194         | -4.149/964029   |
| C45                       | 2.3003733904       | -2.0030/30/41         | -2.3393839493   |
| H44                       | 2.8776872764       | -2.94/8889243         | -2.9550/2/816   |
| H45                       | 3.0424607685       | -1.5817340672         | -1.8185428345   |
| H46                       | 1.4711677153       | -2.4015219368         | -2.0023770477   |
| C47                       | -4.9857758571      | -1.8215422525         | 3.0822534802    |
| C48                       | -4.6702699354      | -2.8969135612         | 2.2525319378    |
| C49                       | -3.7572341243      | -2.7377091227         | 1.2083770539    |
| C50                       | -3.1437451996      | -1.4952556675         | 0.9828513043    |
| C51                       | -3.4608629400      | -0.4212893720         | 1.8344622973    |
| C52                       | -4.3797126106      | -0.5822574108         | 2.8696882541    |
| H53                       | -5.6966301602      | -1.9495905712         | 3.8958736944    |
| H54                       | -5.1374082326      | -3.8659337610         | 2.4167936563    |
| H55                       | -3.5227954964      | -3.5838104971         | 0.5681301190    |
| H56                       | -2.9803705094      | 0.5434447887          | 1.6830382378    |
| H57                       | -4.6170652447      | 0.2585608854          | 3.5180215106    |
| C58                       | -1 0423446840      | -5 5146784482         | -1 8369275927   |
| C59                       | -2.0652162923      | -4 7811237959         | -2 4378130859   |
| C60                       | -2.3378093279      | -3 4776209438         | -2.4570150055   |
| C61                       | 1 5817506032       | 2 8888154214          | 0.001670/820    |
| C61                       | -1.3017390932      | 2 6217485021          | -0.9910794029   |
| C62                       | -0.3433110004      | -3.031/403021         | -0.4041133909   |
|                           | -0.20309/1403      | -4.7302010273         | -0.01/1342313   |
| H04                       | -0.8343014004      | -0.3311394994         | -2.1040302183   |
| HOD                       | -2.05/25109/1      | -5.2253558197         | -5.2355813982   |
| H66                       | -3.1436/69655      | -2.92040/6/42         | -2.4882240108   |
| H67                       | 0.0643119259       | -3.17/0472487         | 0.3757621197    |
| H68                       | 0.5194360829       | -5.5035453497         | -0.3491395012   |
| C69                       | -4.3309567383      | -0.4629720977         | -1.5913714220   |

| H70      | -4.7900339729      | -0.9696964429 | -0.7484630146 |
|----------|--------------------|---------------|---------------|
| C71      | -3.1991766733      | 0.8608780164  | -3.7429400764 |
| H72      | -2.7407847681      | 1.3829060717  | -4.5756876027 |
| C73      | -5.1507369355      | 0.1403645374  | -2.5425295950 |
| H74      | -6.2320589425      | 0.0880192955  | -2.4339354764 |
| C75      | -4.5818586235      | 0.8083042804  | -3.6235973487 |
| H76      | -5.2103802919      | 1.2895048275  | -4.3693208260 |
| C77      | 3.3935843916       | 4.6746888398  | 1.6482914839  |
| H78      | 3.6828770373       | 4.9697891388  | 0.6253733622  |
| H79      | 3.8019437690       | 5.4363281057  | 2.3301100420  |
| C80      | 1.8507165035       | 4.6395234511  | 1.7395643891  |
| H81      | 1.4323039335       | 5.6436565142  | 1.5706238144  |
| H82      | 1.5613964410       | 4.3467043411  | 2.7621993770  |
| ******** | ****************** | ******        | *****         |

#### \_\_\_\_\_ Complex 10

#### \_\_\_\_\_ (B3LYP)

| Gas Phase Energy     | = -2032.79265164 | 845 = Eh   |
|----------------------|------------------|------------|
| Solvent Phase Energy | = -0.0132024782  | = Eh       |
| Zero Point Energy    | = 436.003        | = kcal/mol |

| (PBE) |
|-------|
|-------|

Gas Phase Energy = -2030.58452882899 = Eh

| Geometry | Coordinates |
|----------|-------------|
|----------|-------------|

|            | Geoinet       | ry Coordinates |               |
|------------|---------------|----------------|---------------|
| Pd1        | 0.0720538868  | 0.0428463229   | 0.0099922639  |
| C2         | 0.1823952393  | 0.0807276368   | 3.1441744177  |
| C3         | 0.9868244414  | -0.0413482100  | 4.4706878791  |
| C4         | 1.0117446381  | 0.4512350308   | 1.9246127186  |
| C5         | 0.8479732080  | 1.6552857713   | 1.2186102544  |
| C6         | 1.9459401444  | -1.2505665304  | 4.3933555328  |
| <b>O</b> 7 | 1.7797394260  | -2.1590009219  | 3.5946976409  |
| C8         | 3.0834756682  | -1.3205780504  | 5.4113248468  |
| C9         | -0.0108204601 | -0.3537065252  | 5.6196570138  |
| C10        | 1.7656846439  | 1.2674364822   | 4.7784009153  |
| H11        | 1.6760690159  | 2.0855625627   | 0.6590397637  |
| H12        | 0.0702612855  | 2.3606437920   | 1.5081520885  |
| H13        | 1.9744286139  | -0.0554575430  | 1.8517660042  |
| H14        | -0.3256968273 | -0.8772717915  | 2.9927053433  |
| H15        | -0.6035676672 | 0.8337681560   | 3.2886683122  |
| N16        | 0.0484820169  | -2.2853000136  | -0.3976119107 |
| P17        | -0.7102341132 | 0.0214395134   | -2.2148560190 |
| H18        | 3.7706645397  | -2.1220425249  | 5.0937819529  |
| H19        | 2.6427740306  | -1.6388325815  | 6.3782108942  |
| H20        | 0.4849699728  | -0.4715208688  | 6.5985465661  |
| H21        | -0.7381239401 | 0.4726328396   | 5.7119503953  |
| H22        | -0.5731314347 | -1.2806682257  | 5.4109840625  |
| H23        | 2.2926459144  | 1.5902870483   | 3.8618999508  |
| H24        | 1.0323602254  | 2.0635735350   | 5.0074200204  |
| C25        | 0.0609439448  | -3.2580504675  | 0.7255767213  |
| C26        | 1.2631248171  | -4.1793755031  | 0.3705211187  |
| O27        | 1.5050457660  | -3.9039475631  | -1.0474204185 |
| C28        | 0.8256728704  | -2.7365105650  | -1.3214621184 |
| C29        | 1.1008358857  | -2.1782701010  | -2.6615948386 |
| C30        | 0.4890408738  | -1.0109593988  | -3.1967527048 |

| H31                     | 1.0716161971  | -5.2510148996 | 0.4680682596  |
|-------------------------|---------------|---------------|---------------|
| H32                     | 2.1650133576  | -3.9099959040 | 0.9350579742  |
| H33                     | 0.2646088251  | -2.7222304050 | 1.6595664200  |
| C34                     | -1.3072661327 | -3.9997669336 | 0.8635278086  |
| C35                     | -1.2098812150 | -4.9996551446 | 2.0435941864  |
| H36                     | -0 4866097167 | -5 8042555496 | 1 8447936330  |
| H37                     | -0.9092094092 | -4 4848574196 | 2 9689330704  |
| H38                     | -2 1899178524 | -5 4701321508 | 2 2140042606  |
| C39                     | -1 6726280358 | -4 7520967625 | -0 4362427854 |
| H40                     | -0.8854136775 | -5 4613605143 | -0 7329157546 |
| H41                     | -2 6021536753 | -5 3227565150 | -0 2879394314 |
| H42                     | -1 8358339521 | -4 0468267949 | -1 2624684923 |
| C43                     | -2.4121125123 | -2.9666683809 | 1 1845480490  |
| С <del>4</del> 5<br>Н44 | 3 37//282653  | 3 /81/8731/5  | 1 331/55808/  |
| 1144<br>1145            | 2 1726515138  | 2 4156700105  | 2 1068300847  |
| 114J<br>114J            | 2 5240247405  | -2.4130799193 | 0.3673154852  |
| C47                     | 4 8363112080  | 2.2441552582  | 2 0723084437  |
| C47                     | -4.0303112900 | -2.0144393340 | -2.9123904431 |
| C48                     | -5.7515922214 | -2.5705750274 | -5.7720246755 |
| C49                     | -2.3013840374 | -1.7803920203 | -3.3080041311 |
| C50                     | -2.5200197965 | -0.8280844018 | -2.3322219347 |
| C51<br>C52              | -3.4183013847 | -0.48/3280143 | -1./44232/129 |
| C52                     | -4.66/424000/ | -1.0694183139 | -1.9590789706 |
| H53                     | -5.8093280350 | -2.4/311/33/4 | -3.1356856461 |
| H54                     | -3.8/6561992/ | -3.10//399192 | -4.5635379229 |
| H55                     | -1.6666922446 | -2.0622871319 | -4.204/590342 |
| H56                     | -3.288/940948 | 0.23/626/5/2  | -0.9428108291 |
| H5/                     | -5.5094217762 | -0./901086644 | -1.3290662510 |
| C58                     | -1.0241618164 | 3.935/099438  | -4.7255940687 |
| C59                     | -0.1324344483 | 3.823/060081  | -3.6579522014 |
| C60                     | -0.0645545666 | 2.6401959335  | -2.923/900966 |
| C61                     | -0.8/53930000 | 1.5430660785  | -3.258/2006/5 |
| C62                     | -1.//45918263 | 1.0092103034  | -4.3300014785 |
| C63                     | -1.84/922/101 | 2.8591134108  | -5.0561857332 |
| H64                     | -1.0842297636 | 4.8625131638  | -5.2926029702 |
| H65                     | 0.5033051520  | 4.6649184764  | -3.3890527821 |
| H66                     | 0.60/8/59339  | 2.5615382272  | -2.0710561244 |
| H67                     | -2.4238350807 | 0.8383667700  | -4.5961507454 |
| H68                     | -2.5518526350 | 2.9460398511  | -5.8818049236 |
| C69                     | 0.8634098162  | -0.6036993693 | -4.48/4960931 |
| H70                     | 0.4144613913  | 0.2885664182  | -4.9115175531 |
| C/1                     | 2.0446382301  | -2.8727927175 | -3.43/06466/6 |
| H72                     | 2.5050639468  | -3.7562853405 | -3.0096107953 |
| C/3                     | 1.8006810884  | -1.30/92/9906 | -5.2410127888 |
| H74                     | 2.0638814782  | -0.9595474772 | -6.2377039883 |
| C/5                     | 2.3948084026  | -2.449/335188 | -4.7128787974 |
| H76                     | 3.1313153560  | -3.0074737718 | -5.2868418177 |
| C//                     | 3.8063600601  | 0.0213914446  | 5.6105285093  |
| H7/8                    | 4.5404854526  | -0.0664440798 | 6.4252479976  |
| H79                     | 4.3696318528  | 0.2801472431  | 4.6984207991  |
| C80                     | 2.7902258113  | 1.1494348280  | 5.913950/169  |
| H81                     | 2.2935087270  | 0.9442125103  | 6.8766427542  |
| Hð2                     | 3.3219/81402  | 2.1039402224  | 0.0322300343  |
|                         |               |               |               |

## CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Date 20 July 2004

#### **Crystal Structure Analysis of:**

### DCB24

(shown below)

| For | Investigator: Doug Behe | nna                            | ext. 2116                 |
|-----|-------------------------|--------------------------------|---------------------------|
|     | Advisor: B. M. Stoltz   |                                | ext. 6064                 |
|     | Account Number:         | BMS.JandJ-2.11-GR              | ANT.000006                |
| By  | Michael W. Day          | 116 Beckman<br>e-mail: mikeday | ext. 2734<br>@caltech.edu |

### Contents

- Table 1. Crystal data
- Figures Figures
- Table 2. Atomic Coordinates
- Table 3. Selected bond distances and angles
- Table 4. Full bond distances and angles
- Table 5. Anisotropic displacement parameters
- Table 6. Hydrogen bond distance and angle
- Table 7. Observed and calculated structure factors (available upon request)



#### DCB24

**Note:** The crystallographic data have been deposited in the Cambridge Database (CCDC) and has been placed on hold pending further instructions from me. The deposition number is 245187. Ideally the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 245187."

| Empirical formula                                                  | $[C_{28}H_{31}NOPPd]^+ PF_6^- \cdot \frac{1}{2}C_2H_5OH$        |
|--------------------------------------------------------------------|-----------------------------------------------------------------|
| Formula weight                                                     | 702.91                                                          |
| Crystallization Solvent                                            | Ethanol                                                         |
| Crystal Habit                                                      | Fragment                                                        |
| Crystal size                                                       | 0.35 x 0.34 x 0.23 mm <sup>3</sup>                              |
| Crystal color                                                      | Colorless                                                       |
| Data Colle                                                         | ection                                                          |
| Type of diffractometer                                             | Bruker SMART 1000                                               |
| Wavelength                                                         | 0.71073 Å MoKα                                                  |
| Data Collection Temperature                                        | 100(2) K                                                        |
| $\theta$ range for 15322 reflections used in lattice determination | 2.31 to 41.00°                                                  |
| Unit cell dimensions                                               |                                                                 |
| Volume                                                             | 3004.98(18) Å <sup>3</sup>                                      |
| Z                                                                  | 4                                                               |
| Crystal system                                                     | Monoclinic                                                      |
| Space group                                                        | C2                                                              |
| Density (calculated)                                               | 1.554 Mg/m <sup>3</sup>                                         |
| F(000)                                                             | 1428                                                            |
| $\theta$ range for data collection                                 | 1.77 to 42.31°                                                  |
| Completeness to $\theta = 42.31^{\circ}$                           | 85.0 %                                                          |
| Index ranges                                                       | $-32 \leq h \leq 32,-28 \leq k \leq 29,-20 \leq l \leq 15$      |
| Data collection scan type                                          | $\omega$ scans at 3 $\phi$ settings of 20=-28° and 2 at 20=-59° |
| Reflections collected                                              | 28501                                                           |
| Independent reflections                                            | 15572 [R <sub>int</sub> = 0.0351]                               |
| Absorption coefficient                                             | 0.787 mm <sup>-1</sup>                                          |
| Absorption correction                                              | SADABS                                                          |
| Max. and min. transmission                                         | 0.8397 and 0.7702                                               |

# Table 1. Crystal data and structure refinement for DCB24 (CCDC 245187).

#### Table 1 (cont.)

## **Structure solution and Refinement**

| Structure solution program                            | SHELXS-97 (Sheldrick, 1990)                 |
|-------------------------------------------------------|---------------------------------------------|
| Primary solution method                               | Direct methods                              |
| Secondary solution method                             | Difference Fourier map                      |
| Hydrogen placement                                    | Geometric positions                         |
| Structure refinement program                          | SHELXL-97 (Sheldrick, 1997)                 |
| Refinement method                                     | Full matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters                        | 15572 / 1 / 408                             |
| Treatment of hydrogen atoms                           | Riding                                      |
| Goodness-of-fit on F <sup>2</sup>                     | 1.343                                       |
| Final R indices [I>2 $\sigma$ (I), 13582 reflections] | R1 = 0.0373, wR2 = 0.0725                   |
| R indices (all data)                                  | R1 = 0.0459, wR2 = 0.0748                   |
| Type of weighting scheme used                         | Sigma                                       |
| Weighting scheme used                                 | $w=1/\sigma^2(\text{Fo}^2)$                 |
| Max shift/error                                       | 0.004                                       |
| Average shift/error                                   | 0.000                                       |
| Absolute structure parameter                          | -0.019(13)                                  |
| Largest diff. peak and hole                           | 1.422 and -0.710 e.Å <sup>-3</sup>          |

## **Special Refinement Details**

The propyl ligand, C26-C27-C28, is disordered in two alternate orientations, differing by "up-down" positions for C27. Additional disorder is observed in one  $PF_6$  counterion and an included solvent molecule, modeled as ethanol hydrogen bonded to a fluorine of one counterion.

Refinement of  $F^2$  against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on  $F^2$ , conventional R-factors (R) are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma$ ( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.







![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

![](_page_35_Figure_1.jpeg)

Table 2. Atomic coordinates (x 10<sup>4</sup>) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for DCB24 (CCDC 245187). U(eq) is defined as the trace of the orthogonalized U<sup>ij</sup> tensor.

|        | X       | У        | Z        | U <sub>eq</sub> | Occ                    |
|--------|---------|----------|----------|-----------------|------------------------|
| Pd(1)  | 2838(1) | 4922(1)  | 2994(1)  | 18(1)           | 1                      |
| P(1)   | 2327(1) | 5673(1)  | 4282(1)  | 19(1)           | 1                      |
| O(1)   | 3784(1) | 7349(1)  | 2545(1)  | 22(1)           | 1                      |
| N(1)   | 3187(1) | 6087(1)  | 2419(2)  | 17(1)           | 1                      |
| C(1)   | 3099(1) | 6431(1)  | 5056(2)  | 18(1)           | 1                      |
| C(2)   | 3275(1) | 6569(1)  | 6320(2)  | 23(1)           | 1                      |
| C(3)   | 3845(1) | 7170(1)  | 6920(2)  | 24(1)           | 1                      |
| C(4)   | 4208(1) | 7669(1)  | 6242(2)  | 25(1)           | 1                      |
| C(5)   | 4040(1) | 7544(1)  | 4982(2)  | 21(1)           | 1                      |
| C(6)   | 3512(1) | 6903(1)  | 4381(2)  | 17(1)           | 1                      |
| C(7)   | 3458(1) | 6748(1)  | 3074(2)  | 17(1)           | 1                      |
| C(8)   | 3836(1) | 6994(1)  | 1381(2)  | 25(1)           | 1                      |
| C(9)   | 3264(1) | 6242(1)  | 1155(2)  | 20(1)           | 1                      |
| C(10)  | 2441(1) | 6383(1)  | 190(2)   | 23(1)           | 1                      |
| C(11)  | 2594(2) | 6514(2)  | -1064(2) | 33(1)           | 1                      |
| C(12)  | 1931(1) | 5586(2)  | 100(2)   | 29(1)           | 1                      |
| C(13)  | 2015(1) | 7156(1)  | 510(2)   | 28(1)           | 1                      |
| C(14)  | 2024(1) | 5153(1)  | 5500(2)  | 26(1)           | 1                      |
| C(15)  | 2543(2) | 4578(2)  | 6254(2)  | 33(1)           | 1                      |
| C(16)  | 2337(2) | 4162(2)  | 7193(2)  | 41(1)           | 1                      |
| C(17)  | 1591(2) | 4315(2)  | 7372(3)  | 45(1)           | 1                      |
| C(18)  | 1070(2) | 4884(2)  | 6615(2)  | 43(1)           | 1                      |
| C(19)  | 1277(2) | 5303(2)  | 5676(2)  | 35(1)           | 1                      |
| C(20)  | 1492(1) | 6337(1)  | 3474(2)  | 22(1)           | 1                      |
| C(21)  | 888(1)  | 5982(1)  | 2497(2)  | 24(1)           | 1                      |
| C(22)  | 256(1)  | 6481(2)  | 1823(2)  | 33(1)           | 1                      |
| C(23)  | 218(2)  | 7332(2)  | 2102(3)  | 50(1)           | 1                      |
| C(24)  | 812(2)  | 7686(2)  | 3061(4)  | 63(1)           | 1                      |
| C(25)  | 1439(1) | 7192(2)  | 3747(3)  | 44(1)           | 1                      |
| C(26)  | 3314(2) | 3965(2)  | 1935(3)  | 41(1)           | 1                      |
| C(27A) | 3201(3) | 3620(2)  | 2979(5)  | 30(1)           | 0 563(11)              |
| C(27B) | 2776(4) | 3655(3)  | 2334(7)  | 32(2)           | 0.333(11)<br>0.437(11) |
| C(28)  | 2576(3) | 3683(2)  | 3388(3)  | 56(1)           | 1                      |
| P(2)   | 0       | 3840(1)  | 0        | 18(1)           | 1                      |
| F(1)   | 0       | 2828(1)  | 0        | 36(1)           | 1                      |
| F(2)   | 0       | 4853(2)  | 0        | 32(1)           | 1                      |
| F(3)   | 955(3)  | 3812(3)  | 530(5)   | 49(1)           | 0.77(3)                |
| F(4)   | -75(4)  | 3827(4)  | 1359(6)  | 51(1)           | 0.77(3)                |
| F(3B)  | 900(13) | 3927(11) | 140(50)  | 100(9)          | 0.23(3)                |
| F(4B)  | 170(30) | 3897(16) | 1430(20) | 94(10)          | 0.23(3)                |
| P(3)   | 5000    | 4813(1)  | 0        | 36(1)           | 1                      |
| F(5)   | 5000    | 3850(3)  | 0        | 210(4)          | 1                      |
| F(6)   | 5000    | 5758(3)  | 0        | 223(5)          | 1                      |
| F(7)   | 4919(1) | 4802(3)  | 1329(2)  | 120(2)          | 1                      |
| F(8)   | 4076(1) | 4798(4)  | -481(2)  | 120(1)          | 1                      |

| C(30) | 4962(4) | 5145(5) | 5617(6) | 55(4)  | 0.50 |
|-------|---------|---------|---------|--------|------|
| C(31) | 5035(8) | 5160(5) | 4359(7) | 106(8) | 0.50 |
| O(30) | 5453(3) | 4644(3) | 3892(5) | 68(2)  | 0.50 |

| 171.47(9)  |
|------------|
| 37.19(19)  |
| 134.59(17) |
| 36.07(16)  |
| 135.98(13) |
| 23.7(2)    |
| 67.92(10)  |
| 103.55(9)  |
| 33.40(17)  |
| 36.35(15)  |
| 101.37(8)  |
| 87.15(5)   |
| 136.98(16) |
| 132.75(14) |
| 168.99(7)  |
|            |

Table 3. Selected bond lengths [Å] and angles [°] for DCB24 (CCDC 245187).

| Pd(1)-C(28)  | 2.087(2)   | P(3)-F(6)           | 1.492(5)   |
|--------------|------------|---------------------|------------|
| Pd(1)-N(1)   | 2.1020(15) | P(3)-F(5)           | 1.520(5)   |
| Pd(1)-C(27B) | 2.127(4)   | P(3)-F(8)           | 1.549(2)   |
| Pd(1)-C(27A) | 2.153(4)   | P(3)-F(8)#2         | 1.549(2)   |
| Pd(1)-C(26)  | 2.239(2)   | P(3)-F(7)#2         | 1.5592(19) |
| Pd(1)-P(1)   | 2.2639(5)  | P(3)-F(7)           | 1.5592(19) |
| P(1)-C(20)   | 1.814(2)   | C(30)-C(31)         | 1.4740     |
| P(1)-C(14)   | 1.8179(19) | C(31)-O(30)         | 1.3080     |
| P(1)-C(1)    | 1.8262(18) |                     |            |
| O(1)-C(7)    | 1.337(2)   | C(28)-Pd(1)-N(1)    | 171.47(9)  |
| O(1)-C(8)    | 1.465(2)   | C(28)-Pd(1)-C(27B)  | 37.19(19)  |
| N(1)-C(7)    | 1.287(2)   | N(1)-Pd(1)-C(27B)   | 134.59(17) |
| N(1)-C(9)    | 1.502(2)   | C(28)-Pd(1)-C(27A)  | 36.07(16)  |
| C(1)-C(2)    | 1.397(3)   | N(1)-Pd(1)-C(27A)   | 135.98(13) |
| C(1)-C(6)    | 1.412(2)   | C(27B)-Pd(1)-C(27A) | 23.7(2)    |
| C(2)-C(3)    | 1.399(3)   | C(28)-Pd(1)-C(26)   | 67.92(10)  |
| C(3)-C(4)    | 1.382(3)   | N(1)-Pd(1)-C(26)    | 103.55(9)  |
| C(4)-C(5)    | 1.390(3)   | C(27B)-Pd(1)-C(26)  | 33.40(17)  |
| C(5)-C(6)    | 1.406(2)   | C(27A)-Pd(1)-C(26)  | 36.35(15)  |
| C(6)-C(7)    | 1.482(3)   | C(28)-Pd(1)-P(1)    | 101.37(8)  |
| C(8)-C(9)    | 1.526(3)   | N(1)-Pd(1)-P(1)     | 87.15(5)   |
| C(9)-C(10)   | 1.549(3)   | C(27B)-Pd(1)-P(1)   | 136.98(16) |
| C(10)-C(13)  | 1.529(3)   | C(27A)-Pd(1)-P(1)   | 132.75(14) |
| C(10)-C(12)  | 1.529(3)   | C(26)-Pd(1)-P(1)    | 168.99(7)  |
| C(10)-C(11)  | 1.541(3)   | C(20)-P(1)-C(14)    | 105.92(10) |
| C(14)-C(15)  | 1.388(3)   | C(20)-P(1)-C(1)     | 103.80(8)  |
| C(14)-C(19)  | 1.401(3)   | C(14)-P(1)-C(1)     | 105.63(9)  |
| C(15)-C(16)  | 1.388(3)   | C(20)-P(1)-Pd(1)    | 112.83(6)  |
| C(16)-C(17)  | 1.401(4)   | C(14)-P(1)-Pd(1)    | 121.10(7)  |
| C(17)-C(18)  | 1.386(5)   | C(1)-P(1)-Pd(1)     | 106.03(6)  |
| C(18)-C(19)  | 1.391(3)   | C(7)-O(1)-C(8)      | 106.45(14) |
| C(20)-C(25)  | 1.394(3)   | C(7)-N(1)-C(9)      | 107.51(15) |
| C(20)-C(21)  | 1.407(3)   | C(7)-N(1)-Pd(1)     | 128.28(14) |
| C(21)-C(22)  | 1.391(3)   | C(9)-N(1)-Pd(1)     | 123.75(12) |
| C(22)-C(23)  | 1.386(4)   | C(2)-C(1)-C(6)      | 118.94(16) |
| C(23)-C(24)  | 1.385(4)   | C(2)-C(1)-P(1)      | 120.43(14) |
| C(24)-C(25)  | 1.385(4)   | C(6)-C(1)-P(1)      | 120.61(14) |
| C(26)-C(27B) | 1.259(6)   | C(1)-C(2)-C(3)      | 121.19(18) |
| C(26)-C(27A) | 1.372(6)   | C(4)-C(3)-C(2)      | 119.57(19) |
| C(27A)-C(28) | 1.314(6)   | C(3)-C(4)-C(5)      | 120.13(18) |
| C(27B)-C(28) | 1.345(7)   | C(4)-C(5)-C(6)      | 120.84(18) |
| P(2)-F(3B)   | 1.543(18)  | C(5)-C(6)-C(1)      | 119.03(17) |
| P(2)-F(3B)#1 | 1.543(18)  | C(5)-C(6)-C(7)      | 116.43(15) |
| P(2)-F(4B)   | 1.57(2)    | C(1)-C(6)-C(7)      | 124.49(15) |
| P(2)-F(4B)#1 | 1.57(2)    | N(1)-C(7)-O(1)      | 116.61(16) |
| P(2)-F(4)    | 1.590(5)   | N(1)-C(7)-C(6)      | 128.16(16) |
| P(2)-F(4)#1  | 1.590(5)   | O(1)-C(7)-C(6)      | 115.06(14) |
| P(2)-F(2)    | 1.598(2)   | O(1)-C(8)-C(9)      | 103.71(14) |
| P(2)-F(1)    | 1.5982(18) | N(1)-C(9)-C(8)      | 101.78(15) |
| P(2)-F(3)    | 1.603(4)   | N(1)-C(9)-C(10)     | 112.07(15) |
| P(2)-F(3)#1  | 1.603(4)   | C(8)-C(9)-C(10)     | 115.76(17) |

Table 4. Bond lengths [Å] and angles  $[\circ]$  for DCB24 (CCDC 245187).

| C(13)-C(10)-C(12)    | 110.76(17) | F(4)-P(2)-F(2)      | 90.8(3)    |
|----------------------|------------|---------------------|------------|
| C(13)-C(10)-C(11)    | 110.13(18) | F(4)#1-P(2)-F(2)    | 90.8(3)    |
| C(12)-C(10)-C(11)    | 107.80(17) | F(3B)-P(2)-F(1)     | 95.1(7)    |
| C(13)-C(10)-C(9)     | 111.34(16) | F(3B)#1-P(2)-F(1)   | 95.1(7)    |
| C(12)-C(10)-C(9)     | 109.42(17) | F(4B)-P(2)-F(1)     | 93.2(9)    |
| C(11)-C(10)-C(9)     | 107.27(17) | F(4B)#1-P(2)-F(1)   | 93.2(9)    |
| C(15)-C(14)-C(19)    | 119.5(2)   | F(4)-P(2)-F(1)      | 89.2(3)    |
| C(15)-C(14)-P(1)     | 118.74(16) | F(4)#1-P(2)-F(1)    | 89.2(3)    |
| C(19)-C(14)-P(1)     | 121.78(19) | F(2)-P(2)-F(1)      | 180.0      |
| C(14)-C(15)-C(16)    | 120.8(2)   | F(3B)#1-P(2)-F(3)   | 164.4(18)  |
| C(15)-C(16)-C(17)    | 119.7(3)   | F(4B)-P(2)-F(3)     | 75.9(19)   |
| C(18)-C(17)-C(16)    | 119.5(2)   | F(4B)#1-P(2)-F(3)   | 104.3(19)  |
| C(17)-C(18)-C(19)    | 120.8(2)   | F(4)-P(2)-F(3)      | 90.6(3)    |
| C(18)-C(19)-C(14)    | 119.7(3)   | F(4)#1-P(2)-F(3)    | 89.4(3)    |
| C(25)-C(20)-C(21)    | 118.5(2)   | F(2)-P(2)-F(3)      | 91.6(2)    |
| C(25)-C(20)-P(1)     | 122.91(16) | F(1)-P(2)-F(3)      | 88.4(2)    |
| C(21)-C(20)-P(1)     | 118.53(15) | F(3B)-P(2)-F(3)#1   | 164.4(18)  |
| C(22)-C(21)-C(20)    | 120.12(19) | F(4B)-P(2)-F(3)#1   | 104.3(19)  |
| C(23)-C(22)-C(21)    | 120.4(2)   | F(4B)#1-P(2)-F(3)#1 | 75.9(19)   |
| C(24)-C(23)-C(22)    | 119.8(2)   | F(4)-P(2)-F(3)#1    | 89.4(4)    |
| C(25)-C(24)-C(23)    | 120.2(3)   | F(4)#1-P(2)-F(3)#1  | 90.6(3)    |
| C(24)-C(25)-C(20)    | 120.9(2)   | F(2)-P(2)-F(3)#1    | 91.6(2)    |
| C(28)-C(27A)-C(26)   | 128.5(5)   | F(1)-P(2)-F(3)#1    | 88.4(2)    |
| C(26)-C(27B)-C(28)   | 136.7(6)   | F(3)-P(2)-F(3)#1    | 176.8(4)   |
| F(3B)-P(2)-F(3B)#1   | 169.8(13)  | F(6)-P(3)-F(5)      | 180.000(1) |
| F(3B)-P(2)-F(4B)     | 90.7(14)   | F(6)-P(3)-F(8)      | 90.9(2)    |
| F(3B)#1-P(2)-F(4B)   | 88.7(14)   | F(5)-P(3)-F(8)      | 89.1(2)    |
| F(3B)-P(2)-F(4B)#1   | 88.7(14)   | F(6)-P(3)-F(8)#2    | 90.9(2)    |
| F(3B)#1-P(2)-F(4B)#1 | 90.7(14)   | F(5)-P(3)-F(8)#2    | 89.1(2)    |
| F(4B)-P(2)-F(4B)#1   | 173.5(18)  | F(8)-P(3)-F(8)#2    | 178.3(4)   |
| F(3B)-P(2)-F(4)      | 105.8(18)  | F(6)-P(3)-F(7)#2    | 90.64(19)  |
| F(3B)#1-P(2)-F(4)    | 74.3(18)   | F(5)-P(3)-F(7)#2    | 89.36(19)  |
| F(4B)#1-P(2)-F(4)    | 165(2)     | F(8)-P(3)-F(7)#2    | 92.36(12)  |
| F(3B)-P(2)-F(4)#1    | 74.3(18)   | F(8)#2-P(3)-F(7)#2  | 87.63(12)  |
| F(3B)#1-P(2)-F(4)#1  | 105.8(18)  | F(6)-P(3)-F(7)      | 90.64(19)  |
| F(4)-P(2)-F(4)#1     | 178.4(5)   | F(5)-P(3)-F(7)      | 89.36(19)  |
| F(3B)-P(2)-F(2)      | 84.9(7)    | F(8)-P(3)-F(7)      | 87.63(12)  |
| F(3B)#1-P(2)-F(2)    | 84.9(7)    | F(8)#2-P(3)-F(7)    | 92.36(12)  |
| F(4B)-P(2)-F(2)      | 86.8(9)    | F(7)#2-P(3)-F(7)    | 178.7(4)   |
| F(4B)#1-P(2)-F(2)    | 86.8(9)    | O(30)-C(31)-C(30)   | 127.1      |
|                      |            |                     |            |

Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z #2 -x+1,y,-z

Table 5. Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>4</sup>) for DCB24 (CCDC 245187). The anisotropic displacement factor exponent takes the form:  $-2\pi^2$  [ h<sup>2</sup> a<sup>\*2</sup>U <sup>11</sup> + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U<sup>12</sup> ]

|                              | U <sup>11</sup>    | U <sup>22</sup> | U <sup>33</sup>    | U <sup>23</sup>       | U <sup>13</sup>    | U <sup>12</sup> |
|------------------------------|--------------------|-----------------|--------------------|-----------------------|--------------------|-----------------|
| $\underline{\mathbf{Pd}(1)}$ | 249(1)             | 152(1)          | 169(1)             | -17(1)                | 102(1)             | -31(1)          |
| P(1)                         | 249(1)<br>209(2)   | 217(2)          | 157(2)             | -38(2)                | 86(2)              | -57(2)          |
| O(1)                         | 270(6)             | 206(6)          | 201(7)             | -11(5)                | 116(5)             | -71(5)          |
| N(1)                         | 270(0)<br>204(7)   | 184(6)          | 156(8)             | -27(5)                | 87(6)              | -26(5)          |
| C(1)                         | 165(7)             | 215(7)          | 168(9)             | -20(6)                | 54(6)              | -17(5)          |
| C(2)                         | 219(8)             | 303(9)          | 177(9)             | -41(7)                | 90(6)              | -23(6)          |
| C(2)                         | 205(8)             | 354(10)         | 166(9)             | -79(7)                | 51(7)              | -6(7)           |
| C(4)                         | 184(8)             | 309(9)          | 235(10)            | -102(7)               | 43(6)              | -28(6)          |
| C(5)                         | 187(0)<br>183(7)   | 219(7)          | 217(9)             | -44(6)                | 61(6)              | -25(5)          |
| C(6)                         | 152(6)             | 186(6)          | 157(8)             | -25(5)                | 45(5)              | -7(5)           |
| C(0)                         | 152(0)             | 171(6)          | 187(8)             | 0(5)                  | 69(5)              | -16(5)          |
| C(8)                         | 339(10)            | 257(9)          | 205(10)            | -22(7)                | 156(8)             | -94(7)          |
| C(0)                         | 261(8)             | 209(7)          | 169(9)             | -16(6)                | 122(6)             | -43(6)          |
| C(10)                        | 297(9)             | 265(8)          | 146(9)             | -36(6)                | 90(7)              | -33(7)          |
| C(10)                        | 459(13)            | 381(12)         | 140(9)<br>182(11)  | 8(8)                  | 141(9)             | -24(9)          |
| C(12)                        | 310(10)            | 332(10)         | 208(10)            | -58(8)                | 62(7)              | -86(8)          |
| C(12)                        | 301(10)            | 319(10)         | 200(10)<br>203(10) | 15(8)                 | 62(7)              | 20(7)           |
| C(14)                        | 351(10)            | 292(9)          | 196(10)            | -70(6)                | 156(8)             | -132(7)         |
| C(15)                        | 479(13)            | 311(10)         | 261(12)            | -10(8)                | 201(10)            | -86(9)          |
| C(16)                        | 698(18)            | 313(11)         | 271(12)            | -1(9)                 | 233(12)            | -136(11)        |
| C(10)                        | 830(20)            | 342(12)         | 308(13)            | -148(10)              | 375(12)            | -305(13)        |
| C(18)                        | 540(13)            | 487(13)         | 403(12)            | -178(16)              | 373(14)<br>351(11) | -278(15)        |
| C(10)                        | 403(12)            | 419(12)         | 300(12)            | -104(9)               | 225(10)            | -149(9)         |
| C(20)                        | 172(7)             | 261(8)          | 228(10)            | -94(7)                | 67(6)              | -52(6)          |
| C(20)                        | 232(8)             | 267(8)          | 226(10)            | -87(7)                | 70(7)              | -72(6)          |
| C(21)                        | 232(0)<br>221(9)   | 419(12)         | 325(13)            | -131(9)               | 26(8)              | -40(8)          |
| C(22)                        | 221(5)<br>261(11)  | 445(14)         | 680(20)            | -170(14)              | -48(11)            | 86(10)          |
| C(24)                        | 311(13)            | 421(15)         | 980(30)            | -389(17)              | -102(15)           | 122(11)         |
| C(24)                        | 221(10)            | 410(13)         | 591(18)            | -309(17)              | -44(10)            | 35(8)           |
| C(26)                        | 668(17)            | 230(10)         | 422(16)            | -52(9)                | 325(14)            | 39(10)          |
| C(27A)                       | 400(30)            | 150(14)         | 370(30)            | $\frac{32(9)}{4(14)}$ | 120(20)            | -16(13)         |
| C(27R)                       | 400(30)<br>440(40) | 154(18)         | 410(40)            | -103(18)              | 190(30)            | -37(18)         |
| C(28)                        | 1130(30)           | 165(9)          | 595(19)            | 100(10)               | 600(20)            | -74(12)         |
| 0(20)                        | 1150(50)           | 105())          | 555(15)            | 10(10)                | 000(20)            | / 1(12)         |
| P(2)                         | 208(3)             | 164(2)          | 159(3)             | 0                     | 52(2)              | 0               |
| F(1)                         | 453(11)            | 158(7)          | 586(14)            | 0                     | 334(10)            | 0               |
| F(2)                         | 458(9)             | 159(8)          | 316(9)             | 0                     | 61(7)              | Ő               |
| F(3)                         | 201(11)            | 356(18)         | 770(30)            | 35(16)                | -63(14)            | -7(11)          |
| F(4)                         | 890(30)            | 440(20)         | 310(20)            | 47(14)                | 357(19)            | 125(16)         |
| F(3B)                        | 390(70)            | 340(50)         | 2400(300)          | 500(110)              | 640(110)           | 170(50)         |
| F(4B)                        | 2200(300)          | 320(60)         | 120(60)            | 130(40)               | 150(120)           | 130(130)        |
| P(3)                         | 413(4)             | 349(6)          | 402(5)             | 0                     | 235(3)             | 0               |
| F(5)                         | 2790(100)          | 370(20)         | 3230(110)          | 0                     | 1010(80)           | 0               |
| F(6)                         | 4250(130)          | 290(20)         | 3080(100)          | 0                     | 2540(100)          | 0               |
| F(7)                         | 772(14)            | 2450(40)        | 439(11)            | 130(20)               | 293(10)            | -630(20)        |
| F(8)                         | 562(12)            | 2360(50)        | 671(14)            | -350(30)              | 185(11)            | -300(20)        |

| C(30) | 250(30)  | 870(110) | 530(50)   | 330(50)  | 120(30)  | 250(40) |
|-------|----------|----------|-----------|----------|----------|---------|
| C(31) | 890(100) | 540(90)  | 1800(200) | -350(90) | 380(130) | -80(80) |
| O(30) | 770(30)  | 560(30)  | 640(30)   | -10(20)  | 130(30)  | 380(20) |

| D-HA            | d(D-H) | d(HA) | d(DA)    | <(DHA) |
|-----------------|--------|-------|----------|--------|
| O(30)-H(30)F(7) | 0.85   | 1.99  | 2.799(6) | 157.8  |

Table 6. Hydrogen bonds for DCB24 (CCDC 245187) [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z #2 -x+1,y,-z