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Abstract We explore the effect of Mg/Fe substitution on the sound velocities of iron-rich (Mg1−x Fex)O,
where x = 0.84, 0.94, and 1.0. Sound velocities were determined using nuclear resonance inelastic X-ray
scattering as a function of pressure, approaching those of the lowermost mantle. The systematics of cation
substitution in the Fe-rich limit has the potential to play an important role in the interpretation of seismic
observations of the core-mantle boundary. By determining a relationship between sound velocity, density,
and composition of (Mg,Fe)O, this study explores the potential constraints on ultralow-velocity zones at the
core-mantle boundary.

1. Introduction

Ultralow-velocity zones (ULVZs) are typically small (10–100 km high) structures at the base of Earth’s mantle
that are characterized by unusually low seismic velocities:∼5–20% drop in compressional sound velocities VP

and ∼5–30% drop in shear sound velocities VS. Such significantly reduced sound velocities have been shown
to be attributable to either the existence of partial melt [Williams and Garnero, 1996] or local iron enrichment
[Knittle and Jeanloz, 1991; Wicks et al., 2010; Rost et al., 2013].

Recent seismic observations of the core-mantle boundary have expanded both the number and variability of
ULVZ observations, including a very large ULVZ [Cottaar and Romanowicz, 2012] to areas on the core-mantle
boundary with moderate velocity drops, so called “rolling hills” [Sun et al., 2013]. Combined with previous
work, details such as interior fine-scale structure [Rost et al., 2006], aspect ratio [Wen and Helmberger, 1998a],
and interface concavity [Helmberger et al., 2000] paint an increasingly diverse and complicated picture of the
lowermost mantle. The wide variety in ULVZ character and further complexity at the core-mantle boundary
permit an equally diverse set of mineralogical conditions and could reflect large amounts of heterogeneity in
chemistry (such as Fe enrichment, Si depletion), mineralogy (presence of postperovskite, hydrated minerals),
and phase (solid, partial melt).

A partial melting hypothesis for ULVZs takes advantage of the ease of reducing bulk and shear moduli by mix-
ing with liquid [Berryman, 2000]. It also implies a special circumstance: an intersection of the mantle geotherm
with the mantle solidus at a location just a few kilometers above the core-mantle boundary, which may be
true for very iron rich [Pradhan et al., 2015; Kato et al., 2016] and hydrated alkalic [Nomura et al., 2014] sys-
tems. Dynamic models have found that the amount of liquid required to reduce sound velocities to such
an extent would interconnect and drain to the lowermost 1 km of mantle [Hernlund and Tackley, 2007], but
could remain several kilometers above the core-mantle boundary if vigorously stirred [Hernlund and Jellinek,
2010]. Alternatively, 3-D models suggest that sufficient liquid pinning on grain boundaries is plausible [Wimert
and Hier-Majumder, 2012], and subsequent melt compaction could explain the observed inverted velocity
structure [Hier-Majumder, 2014].

More accurate mineral physics measurements allow us to extend the interpretations of ULVZs one step fur-
ther. For example, Thomas and Asimow [2013] measured the equation of state of silicate liquids to describe
the evolution of a crystallizing magma ocean and found that partial melt residues of ambient mantle com-
position would not be gravitationally stable unless combined with another denser solid. If such ULVZs exist,
then inferences could be drawn about isolated chemical reservoirs in the mantle.
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Sound velocity measurements of iron-enriched mantle minerals have found that partial melting is not
required to produce the characteristic low sound velocities of ULVZs [Mao et al., 2006; Wicks et al., 2010]. As a
result, this heterogeneity observed at the core-mantle boundary could represent a chemical signature rather
than a phase change. Follow-up dynamic models explored the constraints given by sound velocities and den-
sity anomalies of a solid ULVZ [Bower et al., 2011]. It was found that an iron-rich assemblage of (Mg,Fe)O and
bridgmanite or of iron-rich (Mg,Fe)O with a surrounding mantle of average composition could easily repro-
duce the range of both sound velocities and topography of ULVZs detected by seismic studies with reasonable
volume fractions of (Mg,Fe)O.

Here we expand on previous work and present sound velocity systematics of iron-rich (Mg,Fe)O from exper-
iments using Nuclear Resonant Inelastic X-ray Scattering (NRIXS) of (Mg0.06Fe0.94)O and FeO. In addition to
providing insight into the compositional dependence of sound velocities, this paper also highlights improve-
ments in the methodology since the publication of the previous work [Wicks et al., 2010]. Most notably,
availability of in situ X-ray diffraction permits direct measurements of the sample’s unit cell volume and thus
provides in situ density (𝜌) of our sample for the NRIXS measurements. Together with a reliable equation
of state for this material [Wicks et al., 2015], we report the Debye sound velocities as a function of density
and pressure.

2. Experimental Methods

(Mg0.058(1)Fe0.942(1))O (Mw94) and Fe0.941(2)O (FeO, wüstite) samples were synthesized at ambient pressure
using 95% enriched 57Fe (previously described in Chen et al. [2012] and Wicks et al. [2015]). The chemical
composition of wüstite was computed based upon its lattice parameter (a = 4.306(1) Å) and the relation-
ship reported in McCammon and Liu [1984]: a=3.856 + 0.478x for FexO. High pressure was achieved using
400 μm-culet anvils and 300 μm-culet/370 μm-beveled anvils in panoramic diamond anvil cells (DACs). These
panoramic DACs have three radial openings that provide access to inelastically scattered photons using
avalanche photodiode detectors and a 90∘ downstream opening angle for in situ X-ray diffraction. The cells
prepared with Mw94 had a c-BN seat on the downstream side that permitted in situ X-ray diffraction
measurements with NRIXS measurements.

A low-pressure data point (11.1 GPa) was taken of Mw94 in a DAC with a KCl pressure-transmitting medium
and a beryllium gasket. At higher pressures, samples were supported by a boron epoxy insert and pressure-
transmitting medium in a beryllium sample gasket with rubies on either side, one on each culet. Ambient
pressure measurements were conducted in air.

Nuclear resonance scattering experiments were conducted at Sector 3-ID-B of the Advanced Photon Source
(APS) at Argonne National Laboratory. The storage ring was operated in low-emittance top-up mode with
24 bunches separated by 153 ns. In these experiments, X-rays are monochromatized to 1 meV bandwidth
[Toellner, 2000], scanned around the nuclear resonance energy of 14.4125 keV, and focused to 10 × 11μm2

[Zhang et al., 2016] on an 57Fe-containing sample. The delayed emission of nuclear resonant fluorescence
radiation into a large solid angle is observed using avalanche photodiode detectors [Sturhahn and Jackson,
2007]. Energy scans were collected over a minimum energy range of −60 → +70 meV, although most scans
were collected up to 80 meV. At the highest compression point of Mw94 (∼85 GPa) and FeO (∼96 GPa), an
extended energy range scan was conducted to capture the weak contributions to the vibrational spectrum
at around 80 meV.

During the Mw94 measurements, a MAR345 image plate inserted downstream from the sample was used to
record the X-ray diffraction pattern of the sample in situ. The angle-dispersive X-ray pattern was integrated
radially using the Fit2D software [Hammersley et al., 1996] to determine unit cell volumes and pressures via
the equation of state of Mw94 [Wicks et al., 2015]. A CeO2 standard was used to calibrate both the X-ray beam
center and the distance between the X-ray focus spot and the detector. The unit cell volumes of FeO were
measured at Sector 12.2.2 of the Advanced Light Source (ALS) (ambient pressure) and at Sector 13-ID-D of the
APS (high density).

3. Sound Velocities

Nuclear resonant inelastic X-ray scattering (NRIXS) spectra were collected for Mw94 over the pressure range
0 to 85 GPa (0, 92, 96 GPa for FeO) and processed using the PHOENIX software with appropriate uncertainties
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Figure 1. (a) Partial projected phonon density of states of (Mg0.06Fe0.94)O at 300 K extracted from raw NRIXS data using
PHOENIX [Sturhahn, 2000]. Spectra are offset in the y direction for clarity. (b) Debye velocity determination using the psvl
subroutine in PHOENIX at 58 GPa. Green and black lines are VD (km/s) at E = 0 (equation 1). A quadratic fit to V(E) best
describes data up to 12 meV (black line). More of the PDOS can be included if an empirical function is instead used
(green line), where corresponding 𝜒2 values (open red circles) calculated in psvl for differing energy ranges are plotted
at the Emax of each calculation (Table 1).

[Sturhahn, 2000] using methods described in Sturhahn [2004] and W. Sturhahn (NRIXS Software, 2015,
www.nrixs.com). In this open-source software, the partial projected phonon density of states (PDOS) pertain-
ing to the 57Fe site is extracted [Sturhahn and Jackson, 2007] (Figure 1a).

The Debye sound velocity, VD, is related to the low-energy region of the PDOS in the following manner:

V(E) =
{

m E2

2𝜋2ℏ3𝜌D(E)

} 1
3

and VD = V(0) , (1)

where m is the mass of the resonant nucleus, 𝜌 is the mass density of the sample, and D(E) is the PDOS.
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Figure 2. (a) Debye velocity (VD) of (Mg0.06Fe0.94)O compared to FeO as a function of measured density. (Mg0.06Fe0.94)O
volumes were measured in situ at Sector 3-ID-B of the Advanced Photon Source (APS). (inset) VD as a function of molar
mass in iron-rich (Mg,Fe)O (Mw78 and FeO, using cij ’s reported in Jacobsen et al. [2002] and appropriate NRIXS averaging:
Mw8457 [Wicks et al., 2010], Mw9457 and FeO57, this study). (b) VD evolution as a function of pressure. Pressure
(for Mw94 and FeO, this study) and density (for Mw84 [Wicks et al., 2010] and FeO (S2001) [Struzhkin et al., 2001]) were
calculated using the equation of state of Mw94 [Wicks et al., 2015].

Figure 1b shows, in detail, two different phonon dispersion models applied to the low-energy region of the
PDOS to derive the Debye velocity using the psvl subroutine in PHOENIX (W. Sturhahn, online report, 2015). In
this procedure, the PDOS is scaled according to equation (1). A strict “Debye-like” region varies quadratically
with energy corresponding to acoustic phonons with a small wave number (long wavelength), which would
be independent of energy in the scaling shown in Figure 1b (black line).

More data can be included if the strict energy-dependent scaling is not imposed, fitting instead an empirical
function f (E) ≈ VD {1 − (E∕E0)2} that maintains a Debye-like behavior approaching zero energy (green line,
Figure 1b), where E0 and VD are optimized in a standard least squares fit procedure in psvl [Jackson et al.,
2009]. The empirical relation for the dispersion of acoustic phonons often assumes that the phonon energies
reach a maximum value at the Brillouin zone boundary. However, this assumption is not necessary, rather the
quadratic energy term can be understood as a lowest-order correction [Sturhahn and Jackson, 2007].

In either case, the zero-energy limit of the scaled PDOS is the Debye velocity (VD). The lower energy limit of the
fitting region to obtain this intercept depends on the incident X-ray bandwidth and the successful subtraction
of the elastic peak, while the upper limit of the fitting region is determined both by the 𝜒2 of fitting and
reasonable energy ranges where the acoustic phonons behave like sound waves [Sturhahn and Jackson, 2007].
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Table 1. Magnesiowüstite Dataa

Volume Density Pressure VD VP VS G KT KS Energy Range
Sample (Å3/atom) (g/cc) (GPa) (km/s) (km/s) (km/s) (GPa) (GPa) (GPa) (meV)

FeOb 9.979(4)c 6.05(3) 0 2.88(1) 6.47(9) 2.538(1) 38.9(3) 197(7) 201(7) 3.2–17.1

7.3(1)d 8.3(1) 92(7) 3.70(3) 7.8(1) 3.27(3) 88.8(1.7) 390(11) 393(11) 4.5–18.8

7.2(1)d 8.4(1) 96(4) 3.88(3) 7.95(8) 3.43(3) 99.1(1.5) 397(8) 400(8) 4.2–19.8

Mw94e 9.904(1) 5.94(2) 0 3.08(1) 6.61(9) 2.72(1) 43.8(4) 197(7) 201(7) 5.0–14.1

9.446(1)f 6.23(2) 11.10(2) 2.97(2) 6.80(7) 2.62(2) 42.7(7) 227(6) 230(6) 5.7–19.9

8.30(2) 7.08(3) 45.6(7) 3.27(2) 7.41(3) 2.88(2) 58.8(8) 307(3) 310(3) 5.7–19.6

7.99(2) 7.36(4) 57.8(8) 3.40(2) 7.58(3) 3.00(2) 66.4(9) 332(2) 335(2) 5.2–19.1

7.76(2) 7.58(4) 67.7(8) 3.61(2) 7.75(3) 3.19(2) 76.9(9) 350(2) 353(2) 3.7–20.8

7.41(2) 7.94(6) 85(1) 3.73(2) 7.92(4) 3.30(2) 86.5(9) 380(4) 382(4) 5.2–17.9

7.40(1) 7.95(3) 85.2(6) 3.78(2) 7.94(4) 3.34(2) 89(1) 380(4) 383(4) 4.9–21.0

Mw84g 9.79(4) 5.7(1) 0 3.24(1) 6.83(8) 2.86(1) 46.8(3) 197(7) 201(7) 3.8–13.8

9.59(9) 5.8(6) 4.0(3) 3.09(2) 6.83(9) 2.72(2) 42.8(7) 208(6) 212(6) 3.7–17.2

9.26(9) 6.0(6) 11.4(3) 3.00(3) 6.93(8) 2.65(2) 41.9(7) 228(6) 231(6) 3.5–16.0

9.1(2) 6.1(1) 15(3) 3.02(3) 7.01(10) 2.67(3) 43(1) 237(5) 240(5) 5.7–16.0

8.90(8) 6.2(6) 21.0(4) 3.06(3) 7.13(7) 2.70(2) 45.2(8) 252(5) 255(5) 3.8–14.8

8.7(1) 6.4(9) 28(2) 2.97(3) 7.19(8) 2.62(3) 43.7(8) 268(4) 271(4) 4.7–18.2

8.3(1) 6.7(8) 41(1) 3.24(3) 7.48(6) 2.86(3) 55(1) 298(3) 301(3) 3.7–17.2

8.2(2) 6.8(2) 46(4) 3.30(4) 7.55(10) 2.91(4) 57(1) 307(3) 310(3) 3.7–19.7

7.9(1) 7.0(1) 55(3) 3.21(4) 7.60(8) 2.83(3) 56(1) 326(2) 329(2) 3.7–19.7

7.7(2) 7.2(2) 65(5) 3.47(4) 7.80(9) 3.06(4) 67(2) 345(2) 348(2) 4.7–20.7

7.4(1) 7.5(2) 80(5) 3.67(6) 7.99(9) 3.24(5) 79(3) 371(3) 374(3) 4.2–15.2

7.3(1) 7.7(1) 88(4) 3.72(4) 8.06(9) 3.29(3) 83(2) 384(5) 387(5) 3.7–18.7

7.1(1) 7.8(2) 97(5) 3.79(4) 8.12(10) 3.35(4) 88(2) 397(6) 400(6) 3.7–16.2

7.0(1) 7.9(2) 102(5) 3.86(5) 8.18(10) 3.41(4) 93(2) 406(7) 409(7) 3.7–18.7

6.9(1) 8.1(1) 110(4) 3.99(4) 8.26(10) 3.53(4) 101(2) 416(9) 419(9) 3.7–16.2

6.8(1) 8.3(2) 121(7) 4.11(6) 8.34(13) 3.64(5) 110(3) 429(11) 432(11) 3.7–16.2
aUnless noted otherwise, unit cell volume was measured in situ at Sector 3. Corresponding pressure and the isothermal (KT ) and adiabatic (KS) bulk moduli were

determined using the thermal equation of state of Mw94 (K0T = 197.4 ± 6.5 GPa, K′
0T = 2.79(9), ΘD = 426 K, 𝛾0 = 1.72(8), q = 0.5) [Wicks et al., 2015]. VP and VS

were calculated using KS . The energy range used to determine the Debye velocities is provided. Number in parenthesis is the error on the last digit.
bComposition Fe0.941O. Pressure errors at high pressure reflect more information from ex situ measurements: a pressure gradient across the sample probe area

and the effect of sample strain on rhombohedral distortion.
cVolume was measured at Sector 12.2.2, ALS.
dVolume was measured at Sector 13, GSECARS.
eComposition 57Fe-enriched (Mg0.058(1)Fe0.942(1))O.
fPressure-transmitting medium of KCl rather than B epoxy.
gComposition 57Fe-enriched (Mg0.18Fe0.78Ti0.04)O.

In the inset of Figure 2a, VD is shown as a function of molar mass in iron-rich (Mg,Fe)O at room pressure.
For comparison, the VD of (Mg0.22Fe0.78)O (Mw78) and FeO were numerically determined using an open-source
sound velocities from elastic constants (svec) routine within the MINeral physics UTility software package,
MINUTI (W. Sturhahn, online report, 2015). From Cij elastic moduli reported by Jacobsen et al. [2002]
using the directionally averaged Christoffel equation [Sturhahn and Jackson, 2007], we calculated that VD

(Mw78) = 3.7379 km/s and VD (FeO) = 3.2225 km/s. These values, combined with measurements in this study
of Mw8457 [Wicks et al., 2010] and Mw9457 and FeO57, show a linear decrease in velocity with increasing molar
mass, a trend reminiscent of Birch’s Law.

Figure 2a shows Debye velocities determined using the density calculated from in situ X-ray diffraction for
(Mg0.06Fe0.94)O (measured at 3-ID-B). Also shown are sound velocities calculated for FeO using densities
determined from ex situ X-ray diffraction.
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Figure 3. Compressional (VP , blue) and shear (VS , red) wave velocities of (Mg0.16
57Fe0.84)O (Mw84, empty circles),

(Mg0.06
57Fe0.94)O (Mw94, gray-filled circles), and 57FeO, black-filled circles, all measured at 300 K (Table 1). Errors

calculated on velocity are smaller than the symbol size. For comparison, the VP and VS of the Preliminary Reference
Earth Model, PREM, are shown for lower mantle pressures [Dziewonski and Anderson, 1981] and velocity decrements
reported for ULVZs (see text for references).

In order to compare with previous NRIXS work where in situ density was not measured and pressure was
determined by ruby fluorescence alone [Struzhkin et al., 2001; Wicks et al., 2010], Figure 2b shows mea-
sured VD as a function of pressure. For the sake of comparison, the same equation of state (EOS) parameters
was used for all iron-rich compositions, scaled to their ambient pressure initial density. The third-order
Birch-Murnaghan/Mie-Grüneisen EOS was measured for Mw94 (K0T 197.4±6.5 GPa, K ′

0T = 2.79(9),ΘD =426 K,
and 𝛾0 = 1.72(8), q = 0.5) [Wicks et al., 2015]. The effect of using the equation of state (and therefore 𝜌) of FeO
[Fischer et al., 2011a] on VD is negligible compared to the precision of this measurement. For Mw84, on the
other hand, using the EOS described above rather than that of (Mg0.22Fe0.78)O [Zhuravlev et al., 2010] removed
the need for extrapolations of tens of GPa in pressure [Zhuravlev et al., 2010; Wicks et al., 2010].

At low pressures, all studies exhibit the initial sound velocity softening with increasing pressure characteristic
of iron-rich (Mg,Fe)O associated with the magnetic ordering transition at ∼15–30 GPa, dependent on com-
position [Struzhkin et al., 2001; Jacobsen et al., 2002; Wicks et al., 2010]. Interestingly, at pressures above this
transition, the Debye velocities as a function of composition are almost indistinguishable.

For an isotropic solid, VD is related to the seismically relevant aggregate compressional (VP) and shear (VS)
velocities by

3
V3

D

= 1
V3

P

+ 2
V3

S

(2)

KS

𝜌
= V2

P − 4
3

V2
S = V2

𝜙
(3)

where KS is the adiabatic bulk modulus, 𝜌 is the density, and V𝜙 is the bulk sound velocity. KS is related to the
isothermal bulk modulus, KT , by KS = KT (1 + 𝛼𝛾T) with temperature T , thermal volume expansion coefficient
𝛼, and Grüneisen parameter 𝛾 .

The seismically relevant VP and VS were calculated from VD and values of KS,𝛼, 𝛾 , and 𝜌mentioned above [Wicks
et al., 2015]. The results are summarized in Table 1. In Figure 3a, we plot VP and VS as a function of pressure.
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4. Discussion

As discussed previously [Sturhahn and Jackson, 2007], the choice of equation of state significantly affects the
value of compressional wave velocity. Using in situ X-ray diffraction, the Debye sound velocity is determined
independent of an equation of state, but calculation of the seismically relevant VP and VS requires an inde-
pendent determination of the adiabatic bulk modulus. To explore the effect of equation of state choice on
the calculated VP , which can be shown from equations 2 and 3 to be most sensitive to V𝜙, we calculate the
VP of FeO using the equation of state of FeO from Fischer et al. [2011a] and compare it to that calculated from
the equation of state of Mw94 [Wicks et al., 2015]. We find that the compressional velocities at the highest
pressure would be higher by 0.5 km/s, rendering it indistinguishable from the other compositions.

Determination of adiabatic bulk modulus is given by the thermal equation of state of Mw94 [Wicks et al., 2015].
At the highest pressure point of 85.2 GPa, for example, sound velocity determinations using KS rather than KT

resulted in a VP increase of 0.3% and a VS decrease of 0.03%. As such, we used KS for all calculations of VP and
VS published here.

The cubic to rhombohedral transition of iron-rich (Mg,Fe)O has been shown through this and previous work to
be preceded by shear modulus “softening” as a function of pressure, while it has been showed experimentally
that the bulk modulus remains unaffected [Zhuravlev et al., 2010; Wicks et al., 2015]. The effect of temperature
on the compressional and shear velocities of magnesiowüstite at high pressure is not yet known; therefore,
the consequences of the high temperature rhombohedral to cubic phase boundary and coupling with Fe
magnetic transitions are not known and thus the effect on the sound velocities is not clear.

The rhombohedral distortion transition has been shown to be sensitive to deviatoric stress [Shu et al.,
1998]. Comparison of both in situ and ex situ X-ray diffraction patterns of Mw94 at high pressure with the
temperature-annealed equation of state of the same material in a Ne pressure-transmitting medium confirms
the lesser degree of distortion in a strained environment. The in situ X-ray diffraction measurement of the
200 (cubic) = 012 (rhombohedral) peak was used to calculate unit cell volume, with an estimate of error due
to strain bracketed by no distortion (i.e., cubic) and ideal distortion (c∕a = 2.457 + .003P) [Wicks et al., 2015].
As pressure was determined only by one reflection, limited by the X-ray energy and bandwidth, we conclude
that the error bar calculated by considering rhombohedral distortion is a lower bound. In contrast, the ex situ
measurements of FeO, which reflect both sample strain and pressure/stress gradient across the NRIXS-probed
sample, likely represent an upper bound on pressure uncertainty, allowing us to conclude that a reasonable
pressure error on Mw94 is 4–5 GPa. We note that within scatter, the measurement utilizing a KCl pressure
medium is consistent with trends of the other measured velocities.

5. Geophysical Implications

When comparing the sound velocities determined in this study at 300 K to the Preliminary Reference Earth
Model (PREM) [Dziewonski and Anderson, 1981], a 1-D model for Earth properties, it is clear that the values for
iron-rich (Mg,Fe)O are much lower than those of ambient mantle and lower than those of ultralow-velocity
zones (Figure 3a). It is very reasonable, then, to hypothesize that ultralow velocities can be explained by either
a physical mixture of iron-rich oxide with ambient mantle or by an equilibrium assemblage of iron-rich mantle
materials.

In Bower et al. [2011], the stability of solid ULVZs was explored using geodynamic simulations, which gave
insight into the relationship between relative density anomaly and ULVZ shape. This work places an external
constraint on ULVZ density for seismic observations that model the full waveform using 2-D or 3-D topography
[Wen and Helmberger, 1998b; Helmberger et al., 1998; Sun et al., 2013]. When combined with the relation-
ship between density (e.g., via iron enrichment) and sound velocity of materials, ULVZ interpretations can
be taken one step further—individual observations can be modeled as simplified assemblages of phases
(e.g., (Mg,Fe)O + (Mg,Fe)SiO3) and compared to other ULVZs to estimate lateral chemical heterogeneity.

With our measurements, we can begin to explore the relationship between sound velocity and iron con-
tent of an assemblage. To model the sound velocities of iron-rich (Mg,Fe)O at the core-mantle boundary, the
Debye sound velocities in Figure 2b were extrapolated to 135 GPa (VD=4.27(21) km/s), VP and VS were calcu-
lated for Mw84 and Mw94, after adjusting density for the natural iron enrichment. There are no reports of the
cross P − T derivatives for VP and VS of iron-rich (Mg,Fe)O. Therefore, we use the derivatives reported for MgO
under these PT conditions. We applied a temperature dependence of 𝛿VP∕𝛿T = −8.86 × 10−5(km/s)K−1 and
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Figure 4. Compressional (VP , blue) and shear (VS , red) wave velocities of a mixture of iron-rich magnesiowüstite (Mw)
with bridgmanite (Bdg) at 135 GPa and 3800 K. Density anomalies of the Mw84+Bdg model (solid curves) and
Mw94+Bdg (dashed curves) are shown on the top axis. Modeled ULVZs with modest or greater velocity drops (lower left
corner: B = 2 and 6, respectively, for a ULVZ height of 17 km) provide a link between velocity decrement and ULVZ
topography.

𝛿VS∕𝛿T = −8.57 × 10−5(km/s)K−1, calculated by Wentzcovitch et al. [2010] for MgO at 135.8 GPa and 3800 K.
Density at high temperature was determined using our thermal equation of state [Wicks et al., 2015].

As described by Bower et al. [2011], one way to estimate the properties of an iron-rich assemblage at the
base of the mantle is to mix iron-rich oxide with bridgmanite, with iron enrichment of the latter determined
by partitioning studies. Experimental studies of Fe partitioning between (Mg,Fe)O and bridgmanite find that
the distribution coefficient KPv∕Mw

D =(XPv
Fe ∕XPv

Mg)∕(X
Mw
Fe ∕XMw

Mg ) decreases as a function of both pressure and iron
content—Auzende et al. [2008] and Sakai et al. [2009] measured from 70 to 100 GPa a drop in KD from ∼0.2
to ∼0.07 in iron-poor systems. A phase stability study of the MgO-FeO-SiO2 ternary measured KPv∕Mw

D ∼ 0.03
where XMw

Fe = 0.92 at 47 GPa [Tange et al., 2009], in addition to observing the same decreasing trend with
pressure and composition. While similar studies are needed at core-mantle boundary conditions to clarify
trends, we use KPv∕Mw

D = 0.03 here. As a result, XFe of bridgmanite in equilibrium with Mw84 and Mw94 is 0.14
and 0.32, respectively.

We model the properties of bridgmanite using the finite strain model reported by Li and Zhang [2005],
replacing initial bulk modulus and its pressure derivative with a more recent study on a suite of iron-bearing
bridgmanite samples: K0T = 264 GPa, K ′

0T = 4 [Dorfman et al., 2013]. Bulk modulus dependence on Fe content
is not resolvable at relatively high iron concentrations [Dorfman and Duffy, 2014] and therefore not included,
as is shear modulus due to lack of experimental data.

In Figure 4, the Voigt-Reuss mixing envelopes are shown as a function of proportion of oxide with respect to
silicate, corrected for natural isotopic abundance of iron. The arithmetic average, called the Voigt-Reuss-Hill
average (or simply the Hill average), is often used to approximate the actual state [Watt et al., 1976]. The end-
points for this calculation for Mw84 are VP = (14.071, 8.1439 km/s) and VS = (7.4715, 3.4661 km/s), and for
Mw94 are VP = (13.744, 8.0049 km/s) and VS = (7.2977, 3.4691 km/s). Density of a Mw84+Bdg mixture is
given by 𝜌(g/cm3) = 2.3784x + 5.5929, where x = relative fraction of Mw84. Density of a Mw94+Bdg mix-
ture is given by 𝜌(g/cm3) = 2.4122x + 5.9536, where x = relative fraction of Mw94. The resolution is limited
by the uncertainty in the aggregate’s state, bounded by uniform strain (Voigt) and stress (Reuss) conditions,
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but some general conclusions can be drawn. Addition of modest amounts of iron-rich oxide to iron-enriched
bridgmanite can reproduce the range of P and S wave velocities measured by seismology.

Considering uncertainties, ULVZs with moderate velocity drops are consistent with 10–15% Mw84 mixed
with Bdg14 (bridgmanite with 14% Fe per stoichiometric unit) and are consistent with smaller structures with
high aspect ratio [Bower et al., 2011]. ULVZs with larger velocity drops are consistent with the presence of
25–30% Mw84 mixed with Bdg14 and are characterized by wider, flatter structures. In these examples, for the
same height (17 km), such models would correspond to buoyancy numbers of 2 and 6, respectively [Bower
et al., 2011]. Note that a smaller permittable fraction (between 10 and 15%) of Mw94 coexisting with Bdg32
(bridgmanite with 32% Fe per stoichiometric unit) could simultaneously match a range of ULVZ velocity decre-
ments that are associated with similar buoyancy numbers. Adding more Mw94 would yield structures with
buoyancy numbers >6 and thus would essentially be flat. One can see how constraining the wave velocities
and density permits more constraints on the interpretations and may help rule certain scenarios out.

Using the results presented in this study, a 1-D seismic study now has a way to predict ULVZ shape/lateral
extent. Thus, with the assumption that iron-rich (Mg,Fe)O provides a meaningful explanation of many ULVZs,
seismic studies that model observations ranging from 1-D to 3-D structures can now constrain the relationship
between detailed topography, density, and plausible compositions in these regions.

6. Conclusions

Using data measured in this study, a mineralogical model of ultralow-velocity zones was developed to explore
the tradeoff between composition, sound velocity, and ULVZ shape. Not only can dynamically stable ULVZs of
reasonable dimensions (width versus height) be created with this model, the density excess required for such
long-lived structures are smaller than typically expected (less than 10%). Narrowing the plausible composi-
tions down further would require improved knowledge on the elastic properties of composites (e.g., Voigt and
Reuss bounds) and tighter constraints on the temperature-dependent wave velocities. Nevertheless, it can
be concluded that simple mixing of magnesiowüstite and iron-enriched bridgmanite can explain the ULVZ
velocity decrements and morphology with only modest changes in density.

The nature of the ULVZs potentially holds the key to core-mantle boundary coupling, thus providing insight
into the early history of mantle differentiation. If solid and dominated by magnesiowüstite, the increased
conductivity [Fischer et al., 2011b; Ohta et al., 2014] would help constrain heat flow across this boundary [Stix
and Roberts, 1984].

Looking ahead, better knowledge of temperature at the core-mantle boundary is important, as estimates of
the CMB temperature fall right around the melting point of very FeO rich assemblages [Zhang et al., 2016].
Iron enrichment has the potential to explain large velocity drops at the base of the mantle, and the con-
sequences of the physical state of this boundary layer on mantle evolution, core-mantle interaction, and
magnetic coupling have yet to be fully explored.
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