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Abstract

In both general equilibrium theory and game theory, the
dominant mathematical models rest on a fully rational
solution concept in which every player’s action is a
best-response to the actions of the other players. In
both theories there is less agreement on suitable out-
of-equilibrium modeling, but one attractive approach is
the level k model in which a level 0 player adopts a
very simple response to current conditions, a level 1
player best-responds to a model in which others take
level 0 actions, and so forth. (This is analogous to k-ply
exploration of game trees in AI, and to receding-horizon
control in control theory.) If players have deterministic
mental models with this kind of finite-level response,
there is obviously no way their mental models can all be
consistent. Nevertheless, there is experimental evidence
that people act this way in many situations, motivating
the question of what the dynamics of such interactions
lead to.

We address the problem of out-of-equilibrium price
dynamics in the setting of Fisher markets. We develop
a general framework in which sellers have (a) a set of
atomic price update rules which are simple responses
to a price vector; (b) a belief-formation procedure that
simulates actions of other sellers (themselves using the
atomic price updates) to some finite horizon in the fu-
ture. In this framework, sellers use an atomic price up-
date rule to respond to a price vector they generate
with the belief formation procedure. The framework is
general and allows sellers to have inconsistent and time-
varying beliefs about each other. Under certain assump-
tions on the atomic update rules, we show that despite
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the inconsistent and time-varying nature of beliefs, the
market converges to a unique equilibrium. (If the price
updates are driven by weak-gross substitutes demands,
this is the same equilibrium point predicted by those
demands.) This result holds for both synchronous and
asynchronous discrete-time updates. Moreover, the re-
sult is computationally feasible in the sense that the con-
vergence rate is linear, i.e., the distance to equilibrium
decays exponentially fast. To the best of our knowledge,
this is the first result that demonstrates, in Fisher mar-
kets, convergence at any rate for dynamics driven by a
plausible model of seller incentives.

We then specialize our results to Fisher markets
with elastic demands (a further special case corresponds
to demand generated by buyers with constant elasticity
of substitution (CES) utilities, in the weak gross substi-
tutes (WGS) regime) and show that the atomic update
rule in which a seller uses the best-response (=profit-
maximizing) update given the prices of all other sellers,
satisfies the assumptions required on atomic price up-
date rules in our framework. We can even characterize
the convergence rate (as a function of elasticity param-
eters of the demand function).

Our results apply also to settings where, to the best
of our knowledge, there exists no previous demonstra-
tion of efficient convergence of any discrete dynamic of
price updates. Even for the simple case of (level 0) best-
response dynamics, our result is the first to demonstrate
a linear rate of convergence.

1 Introduction

Motivation This paper deals with the question
of why, and whether, a model of interacting strategic
agents converges to equilibrium. We study this question
in Fisher markets.

Over the years and in particular recently, several
game and market dynamics have been studied, but they
fall short of answering our question:

First, in game theory, dynamics are studied in the
context of repeated games. Extensive form solution con-
cepts such as subgame perfect or sequential equilibria
assume that the agents unravel the entire evolution of
the game and choose in advance their entire play op-
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timally. This is likely to be computationally infeasible
(e.g. [BCI+10], but see in contrast [HPS14]). The strate-
gies are unrealistically prescient of the distant future,
hindering on-the-fly adaptation to unexpected changes,
and contradicting experience. Just as importantly, since
the entire play is determined a-priori and an equilibrium
is played throughout, such concepts do not capture out-
of-equilibrium behavior (that may lead to equilibrium
over time), so they are in fact a static notion.

Second, an alternative approach is Walrasian
tâtonnement and more generally game theoretic no-
regret dynamics. This is a truly dynamic, out-of-
equilibrium framework, that can be shown in many
cases to converge to an attractive solution concept.
However, the reactions of the agents have to be damped
carefully for a desirable outcome to materialize; such
reactions lack strategic justification. (See [BM07] and
the references therein, e.g., [HMC00].)

We will endeavour to get past the limitations of
these approaches with a bounded-rationality-based ap-
proach. Various formulations of bounded rationality
have provided a rich basis for progress in game the-
ory and, over the last two decades, in its algorithmic
aspects. The most basic approach in this vein is best-
response dynamics. Agents play myopically an optimal
move at each round, assuming that the other agents
will not deviate from their existing strategy. 1 A strat-
egy which is somewhat more sophisticated than best-
response is limited-depth exploration of an extensive
form game tree. This is an approach to complex games
that was developed in the early days of AI (the explo-
ration depth is sometimes called the ply of a search).
Essentially the same concept is known in control theory
as receding-horizon control. This is in contrast with the
full-rationality approach underlying solution concepts
such as the aforementioned subgame perfect or sequen-
tial equilibria.

In game theory, the idea that people compete by
pursuing limited-lookahead situational analysis goes un-
der the rubric of the level k model, initiated by [SW94,
SW95] and [Nag95]; related ideas are also known
as cognitive hierarchy, higher-order rationality, and
bounded depth of reasoning. The idea has been
subjected to many experimental tests—see [HCW98,
CGCB01, Cra03, CHC04, CGC06, CI07b, CI07a]—and
has emerged with considerable support. For recent the-
oretical work on the model see [Str14, Kne15, dCSS14,
Gor15]; for a survey see [CCGI13].

1The situations where best-response is known to lead to an
attractive outcome are tightly connected to the concept of poten-
tial games. See [MS96, AAE+08, CS11]. For a damped version,

logit dynamics, see [AFP+15]. For a general discussion of best-
response and the related fictitious play dynamics, see [SLB09].

In view of the above, it is important to study
the dynamics and stability of markets composed of
agents each of whom performs some limited lookahead
and plays optimally against that forecast. Limited
lookahead means that each agent j has a mental model
of each other agent k, where k looks ahead some
constant number of steps, and based on that chooses an
optimal action (according to j’s perception). Based on
this model, j chooses a move that is optimal conditional
on those other imagined actions. The paradox of endless
self-reference is obvious here, and is precisely the point
of the exercise: such a model does not make sense for
infinitely-intelligent agents who possess perfect common
knowledge of the properties of the market. But such
agents do not exist. Instead, the model is consistent
with experience that markets are composed of many
agents who, despite having limited ability to predict the
actions of others, do their best to make such a prediction
and then respond optimally to their own prediction.
This is a very different approach to agent choice than the
“solution concept” notion on which game theory rests:
Nash equilibria, correlated equilibria, the core, and so
forth. In particular, one difference is that in contrast
with full rationality, in the limited lookahead case the
beliefs of the agents are not necessarily consistent with
each other and with reality. In fact, they may even
be self-inconsistent across time steps. From a purely
mathematical perspective these inconsistencies might
appear to be a fatal flaw. We hold differently, that this
is part of the challenge of modeling out-of-equilibrium
strategic play. The market is out of equilibrium because
players do not have perfect models of each other, or
because they are uncertain about exogenous factors a
few steps into the future. We further hold that the
predictive power in experiments of the level k model and
its variations, is ample reason to study their dynamics.
That is what we do here.

Our results This paper is devoted to studying the
dynamics and stability of markets where the agents
model their peers as using limited lookahead. We
focus on one of the best-understood cases of general
equilibrium theory, namely Fisher markets that consist
of sellers of goods and buyers endowed with budgets.
Only the sellers are assumed to be strategic, and every
seller controls the price of a single good.

In section 2, we develop a general framework using
which rational sellers update their prices. The frame-
work assumes a set of “atomic” price updates (APU)—
this is a collection of price update rules which repre-
sent possible strategies that the sellers use to update
prices assuming prices of other goods in the market re-
main fixed (a specific example includes best-response).
Given the APU, we describe a general belief formation
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procedure, ie, a procedure using which sellers simulate
the state of the market. The simulation proceeds for a
certain number of steps, and the players update their
prices using a rule from the APU given the final prices
resulting from the simulation. The simulation also in-
cludes sellers’ mental models of the strategies and beliefs
of other sellers—the overall belief formation procedure
is described in terms of a recursion tree. Sellers’ beliefs
about each other can be time-varying and inconsistent
(i.e seller A’s belief about seller B may not be the same
as seller C’s belief about seller B). This includes as a spe-
cial case, but is considerably more general than, level k
choices. See Figure 1 on page 4. We refer to dynam-
ics of this sort as belief-based price update (abbreviated
BBPU) dynamics.

BBPU dynamics, and even the special case of best-
response (with no lookahead), can be quite volatile, as
compared with usual tâtonnement processes, because
of the absence of any damping factor. Despite the
volatility and the potential inconsistency of beliefs,
we show that regardless of the specifics of the beliefs
formed by the agents, the dynamic converges rapidly to
market equilibrium provided the APU satisfies certain
properties. More precisely, we analyze two versions
of our process. In the synchronous case, all sellers
update prices simultaneously. In this case, the distance
to equilibrium decays exponentially in the number of
steps (a.k.a. linear convergence), that is, the distance
to equilibrium decreases as θt where t is the number
of discrete time-steps (instants at which sellers update
prices) and θ ∈ (0, 1) is a constant that depends on
the APU but is independent of the belief formation
process. In the asynchronous case, at each time step
only a subset of one or more sellers update prices. In this
case, the distance to equilibrium decays exponentially in
the number of epochs, where an epoch consists of time
intervals in which all the sellers update at least once.

To the best of our knowledge, convergence, and def-
initely linear convergence, was not previously demon-
strated even for the simplest version of our process,
namely best-response. Our proof of convergence goes
through showing that in a judiciously chosen metric,
the Thompson metric, the BBPU dynamics form a con-
traction map.

In section 3, we consider the concrete case when the
APU is given by the best-response update for a given
demand function. We shown that under certain assump-
tions on the demand elasticities, the best-response up-
date satisfies the axioms required for the convergence of
the BBPU dynamics. We bound the convergence rate in
terms of the elasticity parameters of the demand func-
tion.

For the case of CES utilities (constant elasticity

of substitution) in the weak gross substitutes (WGS)
regime, our analysis of best-response updates appears to
obtain a faster convergence rate than obtained in pre-
vious work analyzing tâtonnement [CFR10] (for more
detail see end of paper). In particular, our results show
that a price vector at a certain distance from equilib-
rium can be obtained in a number of updates that is
logarithmic in the initial distance to equilibrium (as op-
posed to the linear bound from Theorem 2 in [CFR10]).
We believe that this is because best-response updates
are undamped, unlike tâtonnement. However, best-
response updates are computationally slightly harder to
implement (we need to solve a 1-d nonlinear equation
to compute the update, as opposed to the closed-form
tâtonnement update).

Related work General equilibrium theory is the
principal framework through which economists under-
stand the operation of markets (see [McK02, Muk02]).
It is one of the great achievements of economic the-
ory. The theory is largely responsible for the gov-
erning paradigm that a state of equilibrium which the
participants in economic exchange do not wish to de-
viate from individually is, under mild conditions, at-
tainable, and that this is normally roughly the state of
the economy [AD54, McK54] (see also [Hil98]). This
is a paradigm that can be observed “in the field” and
also reproduced in controlled experiments, and it lends
credence and concreteness to the famed invisible hand
metaphor.

In contrast, there is less agreement on an effective
explanation as to why markets tend to reach a state of
equilibrium. This is a question about the stability or
out-of-equilibrium behavior of markets. It is important
because in reality economic conditions are not static.
They vary continually and suffer serious shocks occa-
sionally. So justifying an equilibrium outcome requires a
dynamic that moves an economy at disequilibrium back
to a new equilibrium, and does so sufficiently quickly
that the periods of disequilibrium due to fluctuations are
relatively negligible (see [Dix90]). The classical mech-
anism proposed to explain general equilibrium is Wal-
rasian tâtonnement [Wal74], a process that reacts to ex-
cess demand by raising the price and to excess supply by
reducing the price. Variants of tâtonnement are known
to converge to equilibrium, at least in some classes of
markets including those we consider here (Sec. 3.1),
see [Sam41, ABH59, CCD13]. However, the classical
view of tâtonnement posits the existence of an imagi-
nary “auctioneer” who controls the process by announc-
ing prices. Recent work on the convergence of discrete-
time tâtonnement in Fisher markets attempts to present
it as an in-market process in the context of the so-called
ongoing markets [CF08, CCR12]. However, even this
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Figure 1: Various collective mental models for one round of play in a 3-seller market. A leaf (level 0) denotes
responses to existing prices. In level 2 dynamics everyone responds to everyone’s response to current prices.
Players’ beliefs can be far more complex, as depicted in the last row of figures.
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attempt requires a somewhat careful choice of the mag-
nitude of the price adjustment which is not motivated
by any agent considerations (aside from a common inex-
plicable passion to equilibrate the economy). Thus, the
difficulty is in formulating a theory of out-of-equilibrium
behavior that makes sense in terms of the incentives of
the participants.

A well-studied special case of our framework is that
of Fisher markets where utilities of the buyers have con-
stant elasticities of substitution (CES). It is well-known
that market equilibria in Fisher markets with CES util-
ities can be expressed as solutions to a convex program
first proposed by Eisenberg and Gale (see [JV10]). We
observe that best-response dynamics (i.e., the simplest
example of our setting) can, in fact, be explained as
a specific implementation of coordinate descent (in the
dual E-G program). The convergence of coordinate de-
scent in E-G was established in [Tse01], without bounds
on the rate. Recently, [ST13] established a sublinear
convergence rate (the distance to the optimum decays
linearly with the number of iterations), if the objective
function satisfies some conditions. We note that the
objective function of the dual Eisenberg-Gale program
satisfies these conditions. Our general result shows a
linear convergence rate (the distance to equilibrium de-
cays exponentially in the number of iterations), and this
holds in particular in the case of best-response. To the
best of our knowledge, this is not implied by previous
results.

One of the works ours is close to is Milgrom and
Roberts [MR91]. Their context is repeated play of
a non-cooperative stage game. The paper defines a
sequence of strategy sets parametrised by the lookahead
depth k. They define a class of sophisticated learning
dynamics where players adapt to past behavior of the
other players, while also taking into account the union
over all finite k of the depth k strategy sets of the other
players. In general, and also in the specific applications
that they consider, their methods provide only a proof
of convergence in the limit, with no bounds on the rate
of convergence. One of the three applications that they
analyze is continuous time proportional tâtonnement
using lagged price signals in a somewhat more general
market model than ours. Each seller has a fixed
distribution over the lag time and the tâtonnement
update uses past demand information according to this
distribution. Thus, seller behavior and price updates
are noticeably different than the ones we consider here,
and the convergence guarantees are noticeably weaker.

Two recent papers consider market dynamics under
strategic behavior. Both bound the fraction of optimal
welfare that is guaranteed. In [BLNPL14], strategic
buyers play a Nash (or Bayesian) equilibrium in a

market in which the sellers’ prices are determined by
Walrasian tâtonnement; note that here the tâtonnement
is part of the mechanism defining the game, rather than
the agents’ strategies. In [BPLS15], sellers engage in
best-response dynamics. In this setting the market does
not actually have an equilibrium, but a fraction of the
optimal welfare can be extracted by the dynamic. In
both papers the market model is quite different from
ours.

In the game theory setting (as opposed to markets),
best-response dynamics have been studied extensively in
recent years, mostly concerning bounds on the quality
of the play and conditions that imply or prevent con-
vergence to a Nash equilibrium [MV04, Rou15, FFM12,
EFSW13]. The paper [NSVZ11] investigates conditions
under which best-response is a fully rational strategy.

2 Belief-Based Price Update Dynamics
(BBPU)

The market model We consider a Fisher market
with n perfectly divisible goods and m buyers. Each
good is initially owned by a unique seller that controls
its price, and its quantity is scaled to 1. The utility of
that seller is the his/her revenue, which is equal to the
quantity of the good sold (which is at most the available
supply of 1 unit) times the price of the good. The
collection of prices of all goods is denoted by a price
vector p = {pi}ni=1 ∈ Rn. For a price vector p, we write
p > 0 to indicate that all the prices are strictly positive.
Similarly for price vectors p, q, we write p > q (resp.
p ≥ q) if pj > qj (resp. pj ≥ qj) for all j. We use [n] to
denote the set {1, . . . , n}.

The buyers respond instantly and myopically to
price changes. The response is specified as a demand
function

xik (p) =Demand of buyer i for good k

given the price vector p

The demand functions are in one-one correspon-
dence with utilities of the buyers: Suppose that buyer i
has a strictly concave utility function Ui (xi) for a bun-
dle of goods xi = {xik}k∈[n] and a budget b. Then, the
demand function xi (p) is given by

xi (p) = argmaxxi:
∑
k xikpk≤b Ui (xi)

where the argmax is unique due to the assumption of
strict concavity. The demand for good k at prices p
is
∑m
i=1 xik(p). We write the overall demand function

as x (p) = {xik (p)}i∈[m],k∈[n] ∈ Rm×n (note that this
is a matrix-valued function of the vector p indexed by
i = 1, . . . ,m, k = 1, . . . , n).
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Throughout the paper, we will use 1 to denote
a vector with each coordinate equal to 1 (with the
dimension is clear from context).

Price updates In general, a market dynamic is
based on an update rule for each seller that deter-
mines its new price. The rules can then be applied
synchronously to all sellers, or serially to one seller at
a time in some order. We will discuss these variations
later. For now, we focus on the update rules. An update
rule can take into account some or all of the dynamic
history leading to the current state (including the cur-
rent prices), and also some internal state of the seller
that takes other factors into account. We are inter-
ested in update rules that depend on the current price
vector (and any other parameters), and are monotone,
sub-homogeneous, price-bounded, and positive with re-
spect to that price vector. We begin by defining a set
of atomic price updates:

Definition 1. A set of atomic price updates (APU)
is a finite collection of mappings F k : Rn++ × [n] 7→
R++, k = 1, . . . , l. It represents the possible rules used
by a seller to update prices given current prices of all
the sellers.

The following definition characterizes a class of
APU (this is the class for which we will prove conver-
gence/convergence rates of a price update dynamics):

Definition 2. (monotonicity, sub-homogeneity,
price-boundedness, positivity) We say that a set of
functions F = {F k : Rn++ 7→ R++} is stable monotone
sub-homogeneous positive price-bounded with parameter
θ ∈ (0, 1) (θ-MSPP) if:

• For every F k ∈ F , i ∈ [n] and for all pairs of
vectors p, q ∈ Rn++ such that p ≥ q coordinate-wise,
F k(p, i) ≥ F k(q, i) (monotonicity).

• For every F k ∈ F , i ∈ [n], p ∈ Rn++,λ ∈ (0, 1),
F k(λp, i) ≥ λθF k(p, i) (θ-subhomogeneity).

• ∃ 0 < pmin < pmax < ∞ such that for all price
vectors p ∈ [pmin, pmax]n, F k(p, i) ∈ [pmin, pmax] for
every i ∈ [n] (positive price-boundedness).

• ∃p∗ ∈ [pmin, pmax]n such that F k (p∗, i) = p∗i for
each i ∈ [n], F k ∈ F (stability).

Definition 3. Given a set of mappings F = {F :
Rn++ × [n] 7→ R++}, its lookahead closure Cl (F) is
defined recursively as follows:

1 If G ∈ F , G ∈ Cl (F).

Figure 2: Example recursion tree for a market with 3
sellers A,B,C

2 For every I ⊂ [n], F 1, . . . , F |I| ∈ Cl (F), G ∈ F ,
the function

F ′ (p, i) = G (p′, i) where p′k =

{
pk if k 6∈ I
F k (p, k) if k ∈ I

is also in Cl (F).

Interpretation of closure operation: Belief
formation We now interpret the definition of looka-
head closure (definition 3) as a belief-based price update
procedure that the sellers engage in. The set F cor-
responds to the set of “atomic price updates” (APU),
each of which defines a mapping from the set of prices
of all sellers to a new price for a given seller. Concrete
examples include best-response (BR) updates for given
demand functions (see section 3). We define F to be the
union of all update rules used by any player and assume
that this is common knowledge.

We then augment this set of basic update rules
with all rules from the lookahead closure Cl (F). We
associate elements of this lookahead closure with a
lookahead-based price update procedure followed by
sellers in the market. In order to do this, we look
at pairs (i, F ) where i ∈ [n] and F ∈ Cl (F). The
interpretation of this pair is that seller i updates his
price given existing prices of all the sellers using the
price update rule F (·, i). F can be interpreted in terms
of its recursion trees. By definition, every element of
F ′ ∈ Cl (F) is either an element of F or of the form
F ′ (p, i) = G (p′, i) where p′ is a function of p and I. The
former case corresponds to a single node tree (with node
label i) and the latter corresponds to a tree recursively
defined as the tree with root i and children I (with
subtrees corresponding to Tree

(
F k
)
):

Tree (F ′) = FormTree
(
i,Tree

(
F 1
)
, . . . ,Tree

(
F |I|

))
where FormTree (l, T1, . . . , Tk) takes an label l and a set
of trees T1, . . . , Tk and creates a new tree with a root
l and children Root (T1) , . . . ,Root (Tk) with subtrees
T1, . . . , Tk beneath them. Suppose that the recursion
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tree Tree (F ′) is given by the tree in Figure 2. Then
the price update (A,F ′) can be interpreted as follows:
A decides to update his price. In order to do this,
he simulates the actions of all sellers a few steps into
the future and computes a price update based on the
simulated state of the game (i.e prices of all the sellers).
In this particular simulation, A assumes that B simply
applies an APU rule to current prices, while C applies
an APU rule to prices he generates from simulating A
and B running some APU rules on current prices.

More general versions of this belief formation pro-
cedure are depicted in Figure 1.

We note in passing that beliefs thus formed, implic-
itly model sellers with epistemic assumptions that they
are a bit smarter than their peers—every seller j up-
dates with one extra step beyond the maximum number
of steps used in j’s mental model. Of course, such be-
liefs cannot possibly be consistent among sellers (unless
they are children in Lake Wobegon).

The following lemma states the desired properties of
belief formation (or equivalently the closure operation).

Lemma 2.1. Let F be a θ-MSPP APU. Then, Cl (F)
is also θ-MSPP.

Proof. We prove this inductively using the recursive
structure of Cl (F). Let F ∈ Cl (F). If F ∈ F , then
we know that F is positive-bounded, monotone,stable
and θ-subhomogeneous. Otherwise

F (p, i) = G (p′, i) where p′k =

{
pk if k 6∈ I
F k (p, k) if k ∈ I

Our inductive hypothesis is that F k is positive-bounded,
monotone and θ-subhomogeneous for each k ∈ I. Let
p, q ∈ Rn+, p ≥ q and i ∈ [n]. Then, by inductive
hypothesis, we have that F k (p, i) ≥ F k (q, i), so that
p′ ≥ q′. Further, since G ∈ F , G is monotone, hence
G (p′, i) ≥ G (q′, i). Hence, F (p, i) ≥ F (q, i) and F is
monotone.

Let λ ∈ (0, 1), i ∈ [n]. Then, F k (λp, i) ≥
λθF k (p, i) ≥ λF k (p, i) (since θ ≥ 1). Let p′ (λ) be
the value of p′ when p is replaced by λp, so that
F (p, i) = G (p′ (1) , i). We then have p′ (λ) ≥ λp′ (1).
Since G ∈ F , we then have F (λp, i) = G (p′ (λ) , i) ≥
G (λp′ (1) , i) ≥ λθG (p′ (1) , i) = λθF (p, i). Thus, F is
θ-subhomogeneous as well.

Further, since G,F 1, . . . , F k are positive and map
[pmin, pmax]n × [n] 7→ [pmin, pmax], so does F .

Finally, since F k (p∗, i) = p∗i , G (p∗, i) = p∗i , we have
F (p∗, i) = p∗i .

Thus, by induction, we have that every F ∈ Cl (F)
is θ-MSPP, and hence so is Cl (F).

2.1 Convergence of belief-based price updates
We now define a synchronous update dynamic for prices
given a APU F .

Definition 4. (Synchronous belief-based price
dynamics) Given a APU F , the associated belief-
based price-update (BBPU) dynamics is defined by the
following update equation:

pt+1
i =F i;t

(
pt, i

)
, i = 1, . . . , n(2.1)

where F 1;t, . . . , Fn;t ∈ Cl (F)

are chosen arbitrarily

The interpretation is that every seller updates his price
using a belief-based priced update F i;t. All sellers update
synchronously at the same time instant. The overall
dynamic is written as pt+1 = Ft (pt).

We are interested in the question of whether this
dynamic converges. Before studying this question, we
require a definition.

Definition 5. Consider the set Rn++ ⊂ Rn of vectors
with strictly positive coordinates. The Thompson metric
d on Rn++ (see [LN12]) is defined as follows. For
x, y ∈ Rn++,

d(x, y) = max
i

∣∣∣∣log

(
xi
yi

)∣∣∣∣ = ‖ log x− log y‖∞,

where log x means the vector of logarithms of the entries
of x.

We now state our main convergence result, which
proves that any BBPU dynamic arising from a θ-MSPP
APU converges to a unique set of “equilibrium prices”.

Theorem 2.1. Suppose that F is θ-MSPP for some
θ ∈ (0, 1). Then, there is a unique

p∗ ∈ [pmin, pmax]n such that F k (p∗, i) = p∗i ∀F k ∈ F

Further, the dynamic (2.1) initialized at any point p0 ∈
[pmin, pmax]n converges to the price vector p∗ . Further,
the rate of convergence can be bounded as

d
(
pt, p∗

)
≤ (θ)

t
d
(
p0, p∗

)
where pt is the price after t time steps.

Remark 1. We later apply this theorem to particular
update rules that sellers will strategically employ in case
the demand functions are known to satisfy favorable
conditions (a bit more than Weak Gross Substitutes).
For such demand functions it is long known that the
market has a unique equilibrium; in that case, the

560 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

02
/1

4/
17

 to
 7

1.
22

2.
53

.1
37

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



equilibrium generated by our strategic agents will of
course be the same. But Theorem 2.1 is more general
(and in particular is not implied by the classic results)
because the APU’s need not be generated by a demand
model.

Proof. Let F 1, . . . , Fn ∈ Cl (F). be arbitrarily chosen
and define F : [pmin, pmax]n 7→ [pmin, pmax]n as

[F (p)]i = F i (p, i)

Let p∗ be any vector such that F (p∗, i) = p∗i ∀F ∈ F
(this is guaranteed to exist by the stability assumption
in the definition 2). It is easy to see that F (p∗) = p∗.
Let p, q ∈ [pmin, pmax]n be arbitrary and d (p, q) = η.
Then we have p ≥ q exp (−η) , q ≥ p exp (−η). Thus, we
have

F i (q, i) ≥ F i (exp (−η) p, i) ≥ exp (−ηθ)F i (p, i)

F i (p, i) ≥ F i (exp (−η) q, i) ≥ exp (−ηθ)F i (q, i)

for each i ∈ [n]. Thus

d (F (p) ,F (q)) ≤ ηθ = θd (p, q)

Now, consider the dynamic (2.1), written as pt+1 =
Ft (pt). Using the above argument, we have

d
(
pt+1, p∗

)
= d

(
Ft
(
pt
)
,Ft (p∗)

)
≤ θd

(
pt, p∗

)
Since this is valid for every t, we get

d
(
pt, p∗

)
≤ θtd

(
p0, p∗

)
Thus, as t → ∞, d (pt, p∗) → 0 thereby establishing
convergence. Since p∗ was chosen arbitrarily among the
set of vectors satisfying the stability assumption from
definition 2, this also establishes uniqueness of p∗.

Similarly, we can also study dynamics where sellers
update prices asynchronously. Here, we reason over
epochs, ie, periods of time over which every seller
updates his price at least once.

Definition 6. (Asynchronous belief-based price
dynamics) Given a APU F , the associated belief-based
price-update dynamics is defined by the following update
equation:

pt+1
i =F i;t

(
pt, i

)
, pt+1

j = ptj ∀j ∈ [n] \ {i}
(2.2)

where i, F i;t ∈ Cl (F) are chosen arbitrarily

An epoch is a period of time [t1, t2] over which each
seller i ∈ [n] is chosen at least once for an update, and
[t1, t] does not satisfy the same property for any t < t2.
The epoch-level dynamics can be written as

pτ+1 = F[t1,t2] (pτ )(2.3)

Theorem 2.2. Suppose that F is θ-MSPP for some
θ ∈ (0, 1). Suppose further that the length of each epoch
in the dynamic (2.3) is bounded uniformly. Then, the
dynamic (2.3) initialized at any point p0 ∈ [pmin, pmax]n

converges to the price vector p∗ from theorem 2.2.
Further, the rate of convergence can be bounded as

d (pτ , p∗) ≤ θτd
(
p0, p∗

)
where pτ is the price vector after τ epochs.

Proof. The proof has a similar structure as Theorem 2.1
but is somewhat more complicated. We defer the details
to the appendix. (In fact Theorem 2.1 is a corollary
of this theorem, with each time step qualifying as an
epoch.)

Remark 2. This theorem even allows the possibility
of an arbitrary subset of sellers updating prices syn-
chronously at any given time instant. Thus, it includes
Theorem 2.1 as a special case.

3 Concrete markets with rationalizable MSPP
updates: Elastic Demands

We now describe a concrete setting where the updates
satisfy our axioms. In particular, we focus on price
update rules that arise as best-responses (BR) to other
sellers’ prices and a fixed demand function.

Given a demand function x (p) and two items j and
k, we define the following quantity:

∂ log
(∑

i∈[m] xij (p)
)

∂ log (pk)
(price elasticity)

(Throughout the paper we assume that all these partial
derivatives exist, so henceforth we will not state this
assumption explicitly.) If j = k the price elasticity
is called the own price elasticity (of the demand for
j), and otherwise it is called the cross price elasticity
(of the demand for j with respect to the price of
k). Informally, price elasticity connects between the
percentage of change in price and the percentage of
change in demand. A demand function x (p) is said
to satisfy the weak gross substitutes (WGS) property if
x is differentiable with respect to p and

∂xij (p)

∂pk
≥ 0 ∀i ∈ [m], j ∈ [n], k ∈ [n] \ {j}.

Notice that if x (p) satisfies WGS then this implies
that all cross price elasticities are non-negative (but the
reverse assertion does not necessarily hold).

We will discuss demand functions x (p) that satisfy
the following definition.
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Definition 7. A demand function x (p) is elastic and
bounded (E&B) with parameter κ ∈ (0, 1) iff it satisfies
the following three properties for some µ ≥ 1:

• ∀j ∈ [n], k ∈ [n] \ {j}, p ∈ Rn++:

(3.5a)
∂ log

(∑
i∈[m] xij (p)

)
∂ log (pk)

≥ 0

(Cross price elasticities non-negative, implied by
WGS)

• ∀j ∈ [n], p ∈ Rn++:

(3.5b)
∂ log

(∑
i∈[m] xij (p)

)
∂ log (pj)

≤ −µ

(Own price elasticities less than −µ)

• ∀j ∈ [n], p ∈ Rn++:

(3.5c)
∑
k∈[n]

∂ log
(∑

i∈[m] xij (p)
)

∂ log (pk)
≥ −κµ

(Net price elasticities greater than −κµ)

Remark 3. Property (3.5a) is implied by the Weak
Gross Substitutes (WGS) property but does not require
it (since (3.5a) is on the aggregate demand for a good
while WGS is usually defined on every pair of goods).
However, this does not suffice to ensure that sellers
behaving strategically will remain at equilibrium prices
even if market is already at equilibrium. For µ = 1, the
property (3.5b) is equivalent to the statement that the
profit of a seller is always monotonically decreasing in
the price of this seller’s good (see proof of Corollary 3.1
in the appendix). Without this property, sellers may
not have incentive to stay put at the market equilibrium
(assuming one exists). They can increase their profit by
increasing prices and reducing the aggregate demand for
their good, thus leaving the market uncleared.

Best-response updates In standard best-
response dynamics, each seller updates its price to
maximize its revenue given the current prices of the
other players. In the particular setting of E&B demand
functions, a seller j maximizes profit by setting the
price pj to clear the market for good j by the following
corollary:

Corollary 3.1. If the prices of all goods except j are
fixed, the profit of seller j is maximized by setting pj
such that

∑
i∈[m] xij(p) = 1.

Proof. See appendix.

Thus, if the current price vector is p, the seller chooses
a new price Fbr(p) for good j, so that

m∑
i=1

xij(p
′) = 1,(3.6)

where p′j = Fbr(p, j), and for all k 6= j, p′k = pk. The
following lemma shows that under the conditions (3.5),
Fbr is well defined and equilibrium prices exist.

Lemma 3.1. Suppose that x satisfies the conditions
(3.5). Then, Fbr is well defined (ie (3.6) has a unique
solution for every j ∈ [n]). Further, ∃ 0 < pmin <
pmax < ∞ such that Fbr (·, j) maps [pmin, pmax]n to
[pmin, pmax]. Further, ∃p∗ ∈ [pmin, pmax]n such that

∑
i∈[m]

xij (p∗) = 1 ∀i ∈ [n] (p∗ clears the market)

(3.7a)

Fbr (p∗, j) = p∗j (Best-response updates leave p∗ unchanged)
(3.7b)

Proof. See appendix section 3.1.

Lemma 3.2. Let Fbr be the best response update for an
E&B demand function with parameter κ. Then, the set
{Fbr} is a (1− κ)-MSPP APU.

Proof. See appendix.

Corollary 3.2. The BBPU dynamics defined by
Cl ({Fbr}) converges to a unique set of equilibrium prices
p∗ as

d
(
pt, p∗

)
≤ (1− κ)

t
d
(
p0, p∗

)
where p0 is the initial price vector and pt is the price
vector after t time steps (for synchronous updates) or t
epochs (for asynchronous updates).

Proof. From Lemma 3.2 and Theorems 2.2 and 2.1.

3.1 WGS CES utilities A particular class of util-
ities that give rise to E&B demand functions are CES
(constant elasticity of subtitution) utilities in the WGS
regime. CES utility functions are of the following form
(i indexes a buyer).

ui(x) =

∑
j

(cijxij)
ρ

 1
ρ

,(3.8)

where ρ ∈ (−∞, 0) ∪ (0, 1), cij ≥ 0. CES utilities are
WGS iff ρ ≥ 0. The demand function x is given by

xi (p) = argmaxxi:
∑
k∈[n] xikpk≤bi ui (xi) .
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where bi > 0 is the budget of buyer i.
We have the following result about convergence of

BBPU dynamics for the best response update with the
above demand function:

Corollary 3.3. Let Fbr be the best-response update
corresponding to the above demand function x. The
BBPU dynamics associated with Cl ({Fbr}) converges to
a unique set of equilibrium prices p∗ ∈ [pmin, pmax]n as

d
(
pt, p0

)
≤ (1− κ)

t
d
(
p0, p∗

)
if initialized at any point p0 ∈ [pmin, pmax]n and pt is the
price after t time steps (for synchronous updates) or t
epochs (for asynchronous updates), where

κ =
1

1 + ε

(
1−maxi∈[m]

cij

cij+
∑
k 6=j cik(

pmin
pmax

)
ε

)

pmin = min

min
j∈[n]

∑
i∈[m]

bi
cij∑

k∈[n] cik
, 1


pmax = max

max
j∈[n]

∑
i∈[m]

bi
cij∑

k∈[n] cik
, 1


Proof. Follows from theorems 2.1, 2.2 combined with
lemma 3.5 in the appendix.

We note here a brief comparison to the work [CFR10].
The assumptions made in the paper are closely related
to the assumptions on the demand functions in Equa-
tion (3.5). However, [CFR10] analyzed tâtonnement
with CES WGS utilities (instead of best response).
They obtain a convergence rate (theorem 2 in [CFR10])
that shows that the number of synchronous updates re-
quired to obtain a price vector a certain distance from
equilibrium is linear in a parameter d (which can be seen
as a one-sided upper bound on the Thompson-metric d
from our paper). Because the measure of distance to
equilibrium used in that paper is not shown to be a met-
ric, a straightforward comparison is not possible, but it
appears that the exponential convergence rate obtained
here will almost always dominate.
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Appendix

Results on Thompson metric The following Lemma
shows how this metric is related to the standard `2 and
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`∞ metrics.

Lemma 3.3. Let pa, pb ∈ [pmin, pmax]n with
0 < pmin < pmax. Then, we have

∥∥pa − pb∥∥∞ ≤ (pmax)
2

pmin
d
(
pa, pb

)
∥∥pa − pb∥∥

2
≤
√
n

(pmax)
2

pmin
d
(
pa, pb

)
Proof. For each i, we have∣∣pai − pbi ∣∣ ≤ pmax

∣∣∣∣paipbi − 1

∣∣∣∣ ≤ pmax

(
exp

(
d
(
pa, pb

))
− 1
)

The function f (t) = exp (t)−1−κt is non-increasing on
the interval [0, log (κ)] for every κ > 0 and evaluates to 0
at t = 0. Hence exp (t)−1 ≤ κt for every t ∈ [0, log (κ)].

Since d
(
pa, pb

)
≤ log

(
pmax

pmin

)
, we can choose κ =

pmax

pmin
and conclude that

exp
(
d
(
pa, pb

))
− 1 ≤ pmax

pmin
d
(
pa, pb

)
Thus, we have

∣∣pai − pbi ∣∣ ≤ pmax
pmax

pmin
d
(
pa, pb

)
=

(pmax)
2

pmin
d
(
pa, pb

)
Since the bound holds for each i, it holds for the ∞
norm as well. The 2-norm bound simply uses the fact
that the 2 norm is at most

√
n times the infinity norm.

Results on abstract BBPU

Proof of theorem 2.2

Proof. Consider an epoch [t1, t2]. Let uk be the last
time instant at which seller k update his price. Let
p, q ∈ [pmin, pmax]n be arbitrary and d (p, q) = η.
Consider the sequence of updates in the epoch applied
to the initial price vectors p and q. We have that
p ≥ exp (−η) q, q ≥ exp (−η) p. By the monotonicity
of the update functions, we have that pt ≥ exp (−η) qt

for every t ∈ [t1, t2].
We know that

Fuk (quk , k) ≥ Fuk (exp (−η) puk , k)

≥ exp (−ηθ)Fuk (puk , k)

Fuk (puk , k) ≥ Fuk (exp (−η) quk , k)

≥ exp (−ηθ)Fuk (quk , k)

Thus, we get

qt2k ≥ exp (−ηθ) pt2k
pt2k ≥ exp (−ηθ) qt2k

for each k ∈ [n]. Thus, we have that

d
(
F[t1,t2] (p) ,F[t1,t2] (q)

)
≤ θd (p, q)

Also, it is easy to see that F[t1,t2] (p∗) = p∗. We then
have

d
(
pτ+1.p∗

)
= d

(
F[t1,t2] (pτ ) .F[t1,t2] (p∗)

)
≤ θd (pτ , p∗)

This establishes the result.

Results on E&B demand functions

Lemma 3.4. Consider a demand function x that satis-
fies the own price elasticity conditions of Definition 7.
Fix a price vector p and a good j. Consider all price
vectors p′ with the property that for all k 6= j, p′k =
pk. Among these price vectors, the profit of seller j,∑
i∈[m] xij(p

′) · p′j, is monotonically decreasing in p′j.

Proof. Consider the aggregate spending
∑
i xij(p

′) · p′j
on good j. The derivative with respect to p′j is

∑
i

∂xij (p′)

∂p′j
p′j + xij (p′)

=
∂
∑
i xij (p′)

∂p′j
p′j +

(∑
i

xij (p′)

)

=

(
∂ log (

∑
i xij (p′))

∂ log
(
p′j
) + 1

)(∑
i

xij (p′)

)
.

This expression is negative because of the assumed own
price elasticities.

Proof of corollary 3.1

Proof. As p′j > 0 and
∑
i∈[m] xij (p′) > 0, we have that

∂
∑
i∈[m] xij (p′)

∂p′j

=

∑
i∈[m] xij (p′)

p′j
·
∂ log

(∑
i∈[m] xij (p′)

)
∂ log

(
p′j
) < 0,

so the aggregate demand
∑
i xij(p

′) for j decreases
monotonically in p′j . By Lemma 3.4, also the aggregate
spending on j decreases monotonically in p′j . Therefore,
the profit is maximized at the lowest price for which
the demand is at most 1 (lowering the price further
will not increase the quantity sold beyond the initial
endowment).
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Proof of lemma 3.1

Proof. Using (3.5b), we know that
∑
i∈[m] xij (pj , p∼j)

is strictly monotone in pj . Thus, (3.6) has a unique
solution for each j ∈ [n], p ∈ Rn++ and hence Fbr is
well-defined. Using (3.5c), we know that ∀p ∈ Rn++, λ ∈
(0, 1), j ∈ [n]:∑

i∈[m]

xij (λp)

 ≥ 1

λκµ

∑
i∈[m]

xij (p)


Let α = minj∈[n]

∑
i∈[m] xij (1). Choose pmin =

(min (α, 1))
1
κµ . Then we have ∀j ∈ [n]:

∑
i∈[m]

xij (pmin1) ≥ 1

min (α, 1)

∑
i∈[m]

xij (1)

 ≥ 1

Therefore, using (3.5a),

∑
i∈[m]

xij (pmin, p∼j) ≥ 1 ∀j ∈ [n], p∼j ∈ [pmin,∞)
n−1

(3.9)

Similarly, define β = maxj∈[n]
∑
i∈[m] xij (1).

Choose pmax = (max (β, 1))
1
κµ . Then, we have ∀j ∈ [n]:

∑
i∈[m]

xij (pmax1) ≤ 1

max (β, 1)

∑
i∈[m]

xij (1)

 ≤ 1

Again, using (3.5a), we get

∑
i∈[m]

xij (pmax, p∼j) ≤ 1 ∀j ∈ [n], , p∼j ∈ (0, pmax]
n−1

(3.10)

Combining (3.9) and (3.10), and using the fact that∑
i∈[m] xij is strictly decreasing in pj , we get that

Fbr (p, j) ∈ [pmin, pmax] ∀j ∈ [n], p ∈ [pmin, pmax]n

Further, Fbr (·, j) is continuous in p for each j.
Define the map F : Rn++ 7→ Rn++ as

[F (p)]j = Fbr (p, j) ∀j ∈ [n]

F is continuous and maps the compact convex set
[pmin, pmax]n into itself. Hence it must have a fixed point
p∗ ∈ [pmin, pmax]n (by Brouwer’s fixed point theorem).
Thus, F (p∗) = p∗, or

Fbr (p∗, j) = p∗j ∀j ∈ [n]

Hence the theorem.

Proof of lemma 3.2

Proof. We begin with monotonicity. Denote by
xij (pj , p∼j) the demand of buyer i for good j when the
price of good j is pj and the price vector of all the other
goods is p∼j .

Consider two price vectors p ≥ q, We know that∑
i∈[m]

xij (Fbr (q, j) , p∼j) ≥
∑
i∈[m]

xij (Fbr (q, j) , q∼j) = 1,

which follows by the cross price elasticity conditions of
Definition 7. By the own price elasticity conditions
(3.5b), since

∑
i∈[m] xij (Fbr (p, j) , p∼j) = 1, we have

that Fbr (p, j) ≥ Fbr (q, j).
Next we prove sub-homogeneity. Let p > 0 be a

price vector and λ ∈ (0, 1). We have∑
i∈[m]

xij (λFbr (p, j) , λp∼j)

≥ 1

λκµ

∑
i∈[m]

xij (Fbr (p, j) , p∼j)


=

1

λκµ
,

where the first inequality uses (3.5c), and the second
inequality uses the definition of Fbr (3.6). Using (3.5b),
we get∑

i∈[m] xij (λFbr (p, j) , λp∼j)∑
i xij (Fbr (λp, j) , λp∼j)

≤
(
Fbr (λp, j)

λFbr (p, j)

)µ
Since

∑
i xij (Fbr (λp, j) , λp∼j) = 1, this reduces to

1

λκµ
≤
∑
i∈[m]

xij (λFbr (p, j) , λp∼j) ≤
(
Fbr (λp, j)

λFbr (p, j)

)µ
Taking µ-th roots, we get

Fbr (λp, j) ≥ λ1−κFbr (p, j)

which shows (1− κ)-subhomogeneity.
Stability and price-boundedness follows from

lemma 3.1.

Results on WGS CES utilities

Lemma 3.5. In a Fisher market where the buyers have
CES utilities which are WGS (0 < ρ < 1), the demand
function is E&B with parameter

1

1 + ε

(
1−maxi∈[m]

cij

cij+
∑
k 6=j cik(

pmin
pmax

)
ε

)
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over the set [pmin, pmax]n where

pmin = min

min
j∈[n]

∑
i∈[m]

bi
cij∑

k∈[n] cik
, 1


pmax = max

max
j∈[n]

∑
i∈[m]

bi
cij∑

k∈[n] cik
, 1


Proof. We start by writing down x (p) in an explicit
form. It can be shown that ∀i ∈ [m], j ∈ [n]

xij (p) =
bi
pj

cij

cij +
∑
k 6=j cik

(
pj
pk

)ε
where ε = ρ

1−ρ > 0 (since ρ ∈ (0, 1)). Then, we have

∀j ∈ [n]

fj (p) =
∑
i∈[m]

xij (p) =
∑
i∈[m]

bi
pj

cij

cij +
∑
k 6=j cik

(
pj
pk

)ε
Clearly, fj is differentiable at all points p ∈ Rn++. All
conditions from definition 7 are on derivatives of this
quantity. Firstly, it is easy to see that

fj (λp) =
1

λ
fj (p) ≥ 1

λ
fj (p) ∀λ ∈ (0, 1)

This establishes property (3.5c) with parameter κµ = 1.
Further, we have

∂fj
∂pk
≥ 0 ∀k ∈ [n] \ {j}

since the parameters bi, cik, ε are positive. Finally, we
can compute the derivative

∂ log (fj)

∂ log (pj)
= −1− ε


∑
i∈[m] bi

cij
(∑

k 6=j cik

(
pj
pk

)ε)(
cij+

∑
k 6=j cik

(
pj
pk

)ε)2∑
i∈[m] bi

cij

cij+
∑
k 6=j cik

(
pj
pk

)ε


Define the probability distribution

qi =

bi
cij

cij+
∑
k 6=j cik

(
pj
pk

)ε∑
i∈[m] bi

cij

cij+
∑
k 6=j cik

(
pj
pk

)ε

Then the derivative can be written as

∂ log (fj)

∂ log (pj)

= −1− ε

∑
i∈[m]

qi

1− cij

cij +
∑
k 6=j cik

(
pj
pk

)ε


≤ −1− ε min
i∈[m]

1− cij

cij +
∑
k 6=j cik

(
pj
pk

)ε


= −1− ε+ εmax
i∈[m]

cij

cij +
∑
k 6=j cik

(
pj
pk

)ε
≤ −1− ε+ εmax

i∈[m]

cij

cij +
∑
k 6=j cik

(
pmin

pmax

)ε ∀p ∈ [pmin, pmax]n

for any 0 < pmin < pmax <∞.
Following the argument of lemma 3.2, it can be

established that the corresponding best response update
Fbr (·, j) is well-defined and Fbr (p, j) ∈ [pmin, pmax]∀p ∈
[pmin, pmax]n where

pmin = min

(
min
j∈[n]

fj (1) , 1

)
, pmax = max

(
max
j∈[n]

fj (1) , 1

)
and that the equilibirium price vector p∗ ∈ [pmin, pmax]n

exists. Since the convergence argument from theorems
2.2,2.1 only depends on properties of Fbr when price vec-
tors in [pmin, pmax]n, we only need to establish property
(3.5b) over this set. Thus, we have established proper-
ties (3.5a),(3.5b),(3.5c) with parameters

µ = 1 + ε

1− max
i∈[m]

cij

cij +
∑
k 6=j cik

(
pmin

pmax

)ε
 > 1

κ =
1

µ
< 1

where

pmin = min

min
j∈[n]

∑
i∈[m]

bi
cij∑

k∈[n] cik
, 1


pmax = max

max
j∈[n]

∑
i∈[m]

bi
cij∑

k∈[n] cik
, 1
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