
The rationality theorem for multisite post-translational
modification systems

Matthew Thomsona and Jeremy Gunawardenab,1
aBiophysics Program, Harvard University, Cambridge, MA 02138, USA
bDepartment of Systems Biology, Harvard Medical School, Boston, MA 02115, USA

Abstract
Post-translational modification of proteins plays a central role in cellular regulation but its study has
been hampered by the exponential increase in substrate modification forms (“modforms”) with
increasing numbers of sites. We consider here biochemical networks arising from post-translational
modification under mass-action kinetics, allowing for multiple substrates, having different types of
modification (phosphorylation, methylation, acetylation, etc) on multiple sites, acted upon by
multiple forward and reverse enzymes (in total number L), using general enzymatic mechanisms.
These assumptions are substantially more general than in previous studies. We show that the steady-
state modform concentrations constitute an algebraic variety that can be parameterised by rational
functions of the L free enzyme concentrations, with coefficients which are rational functions of the
rate constants. The parameterisation allows steady states to be calculated by solving L algebraic
equations, a dramatic reduction compared to simulating an exponentially large number of differential
equations. This complexity collapse enables analysis in contexts that were previously intractable and
leads to biological predictions that we review. Our results lay a foundation for the systems biology
of post-translational modification and suggest deeper connections between biochemical networks
and algebraic geometry.
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1. Introduction
Post-translational modification (PTM) of proteins is a central regulatory mechanism in
eukaryotic cells [44]. Although phosphorylation was the first modification to be discovered
[12,24], and remains the best studied, proteins are subject to other types of modification by
covalent attachment of molecules to the side chains of amino acid residues. The modifiers
include other small molecules, as in methylation, acetylation and sulfation, complex sugars,
as in glycosylation, and small protein moieties, as in ubiquitin-like modification [44]. It has
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become increasingly clear that these modifications work together to orchestrate cellular
function [20].

PTMs are dynamically maintained. Forward enzymes, which transfer modifiers from donor
molecules to specific residues, are usually competing against reverse enzymes, which
hydrolyse modified residues, detaching the modifier and returning it to the pool from which
donor molecules are synthesised. In the case of phosphorylation, these enzymes are protein
kinases and phosphoprotein phosphatases, respectively. These so-called “futile cycles” of
modification and demodification can use energy to keep the concentrations of modified
substrates far from equilibrium, testifying to the importance of such processes as regulatory
mechanisms.

A given protein may be modified on multiple sites. For instance, the transcription factor and
tumour suppressor p53 has 18 serine/threonine sites that can be phosphorylated and 10 lysine
sites that can accommodate acetylation, methylation and attachment of ubiquitin, SUMO and
NEDD [25]. O-linked modifications like phosphorylation, on residues like serine, threonine
or tyrosine, are digital—at most one phosphate group is attached to each residue—but N-linked
modifications like methylation, on residues like lysine or arginine, can be more complex
[44]. Ubiquitin, in particular, can form linear and branched poly-ubiquitin chains connected
by iso-peptide linkages through lysine residues. In general, an individual molecule with n sites
of modification may be in one of several global states of modification (“modforms”), whose
numbers increase exponentially with n. Cartoon diagrams often pick one of these modforms,
usually the maximally modified one, to depict the state of a protein in the cell. However, there
is always a population of such molecules present and individual molecules in the population
may be in different states. The state of the population is best described as a frequency
distribution over these single molecule states. We call this the modform distribution. Not all
modforms will necessarily be present at any one time but this begs the question of which
modforms are present and of how the relevant forward and reverse enzymes cooperate to shape
the modform distribution. The methods of this paper were developed in part to address such
questions.

The combinatorial explosion in the number of potential modforms is a challenge for both
experiment and theory. Mass spectrometry techniques have only recently begun to provide
data on modform distributions [32,33], prompted, in part, by the growing realisation that
different modforms may have distinct biological effects [31,34,45]. The theoretical challenge
lies in the complexity of any mathematical model, which must accommodate some number,
L, of forward and reverse enzymes and some total number, N, of modforms targetted by those
enzymes. Additionally, the biochemistry of modification and demodification usually requires
intermediate enzyme-substrate complexes associated to each enzyme and its substrates. If there
are P such intermediate complexes, then the model will have L+N+P state variables, where
N and P grow exponentially with n, while L is relatively much smaller:

.

Because the dynamical equations are non-linear, these models cannot be analytically solved
for the temporal trajectories of the variables. Simulation provides the widely used alternative
to analytical solution. The trajectories of the system can be calculated by numerical integration
once the site-specific rate constants have been given values. These values have usually not
been measured and it may be necessary to search through the space of rate constants to
determine whether a particular behaviour is robust to the choice of rate constant values [18].
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Calculations of this kind rapidly become infeasible with increasing n, which has limited
simulation studies to systems with few sites. These difficulties have made it hard to see what,
if any, general principles lie behind the widespread use of multisite modification systems in
cellular regulation.

In this paper we show that, if attention is restricted to the steady states of a multisite PTM
system, then it is not necessary to numerically integrate L + N + P differential equations but
only to solve L algebraic equations (Theorem 3). Furthermore, this reduction can be carried
out without having to specify the rate constant values in advance. For instance, for the case of
two enzymes, the steady states can be found by an analogue of the nullcline analysis that is
widely used for two-dimensional systems of differential equations [40]: the steady states
correspond to the intersections of two curves in the plane, no matter what the number of sites.
This exponential reduction in complexity leads to biological insights in contexts that were
previously intractable, as reviewed in §4, and provides a new theoretical foundation for
studying multisite PTM systems.

The present paper generalises and conceptually simplifies a method that emerged in previous
work for systems with two enzymes and one substrate [27,41]. It allows for multiple enzymes,
multiple types of modification, multiple substrates and complex biochemistry of modification
and demodification. These assumptions are substantially more general than any used
previously in the literature, [11,14,16,22,26,28,37,38]. The main restrictions in terms of
applicability of our methods are the requirements that enzymes cannot also be substrates and
that the recharging mechanism for each modification should keep the concentration of donor
molecules constant on the time scale of steady state formation. The latter requirement is widely
believed to hold for phosphorylation, in which the donor molecule is ATP, and it has been
taken for granted in all mathematical models of phosphorylation, but its validity for other forms
of modification appears not to have been widely studied.

The two most significant examples that currently fall outside the scope of our analysis are
kinase cascades and ubiquitin-like modifications. Both violate the first requirement by relying
on chains of enzymatic modification. We discuss how our results might be extended to such
cases in §4. It is an interesting question whether ubiquitin-like modifications satisfy the second
requirement. Peptide modifiers are synthesised by mRNA translation rather than by the cell’s
central metabolism, as is the case for small molecule modifiers, and little is known about how
effectively this translation process is buffered against varying demand.

Our method of proof is one of hierarchical elimination of variables from the steady-state
equations, which, because of mass-action, are polynomials in the variables. The intermediate
enzyme-substrate complexes are first eliminated in favour of the substrates and the enzymes
(Proposition 1). Using the results of this, the substrates are then eliminated in favour of the
enzymes (Proposition 2). Each elimination step is framed as the solution to a system of linear
equations (Lemma 2) but is undertaken over an extension field of the real numbers, which
carries the nonlinearity that is present in the underlying steady-state equations. This allows us
to solve a nonlinear system of equations using essentially linear methods. The extension field
also permits the rate constants to be treated symbolically during the elimination. The Matrix-
Tree theorem (Theorem 1) plays a key role in identifying the nonlinear coefficients that arise
in the elimination steps. This important graph-theoretic result goes back to the 19th century
but was first stated in the form we use it in 1948 [43]. It does not seem to have been previously
noticed that the Matrix-Tree theorem immediately implies the famous King-Altman method,
developed in 1956 [23], for calculating the rate function of an enzyme [5]. We find it intriguing
that the method we use to analyse multisite PTM systems is so closely related to a key result
of classical biochemistry. §2 reviews the graph theoretic preliminaries, including the Matrix-
Tree theorem, before the main results are presented in §3.
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Our results are not derivable from any existing mathematical theories of biochemical reaction
networks, such as Chemical Reaction Network Theory (CRNT) [9,15], more recently
developed injectivity methods [8,39] or Monotone Systems Theory [1]. We believe that they
are best interpreted in algebraic geometric terms, as discussed at more length in an earlier paper
[27]. Under the mass-action kinetics used here, a network of biochemical reactions gives rise
to a polynomial dynamical system. Hence, for given rate constant values, the steady states form
a real algebraic variety [6]. Despite this, the use of algebraic geometric methods to study
biochemical networks has been surprisingly limited, the most interesting exception being the
use of toric varieties to reinterpret the Deficiency Zero theorem of CRNT [7,13]. For multisite
PTM systems, we show that the variety of steady-state modform concentrations can be
parameterised by L rational functions (Theorem 4). A rational parameterisation provides an
explicit description of points on a variety, in contrast to their implicit definition as solutions
of polynomial equations. Rationally parameterisable varieties are rare and of considerable
interest in their own right. The rationality of multisite PTM systems suggests that algebraic
geometry may provide powerful tools for analysing biochemical reaction networks and
overcoming molecular complexity. We may hope, thereby, to better see the biological wood
for the molecular trees.

2. Preliminaries
2.1. Symbols and polynomials

In this paper we will analyse systems of ordinary differential equations arising from networks
of biochemical reactions under mass-action kinetics. The rate constants and dynamical
variables are usually treated as real variables in ℝ. In our analysis, we will make use of certain
directed graphs whose edges have labels like aX, where a is a rate constant and X is a dynamical
variable in steady state. These labels must satisfy a positivity condition, expressed in Lemma
1 below. The rate constants can reasonably be taken to be positive but whether or not a
dynamical variable is positive in steady state is more delicate. Even if a system is started with
all its variables positive, it may not be persistent within the positive orthant and may reach a
steady state on the boundary in which some variables are zero. To avoid having to rule out
such situations and thereby limit our analysis, we take a more algebraic approach. We treat the
rate constants and the dynamical variables in steady state as uninterpreted symbols in an
appropriate extension field of ℝ. We show that the calculations can be carried out over this
extension field and, having done them, we then give real values to the symbols and draw
conclusions over ℝ. While this avoids the problem and brings added benefits, it incurs some
technical cost. The reader will not lose much by assuming that all calculations take place over
ℝ and ignoring the problems that arise with loss of positivity in the dynamical variables. The
symbolic calculations only appear in §3.3 and §3.4; rate constants and dynamical variables are
treated as real variables elsewhere.

For more information about the algebraic methods reviewed here see, for instance, [19]. For
any finite set Q = {q1, …, qn}, ℝ[Q] will denote the ring of real polynomials in the elements
of Q, considered as algebraically independent symbols. Recall that a polynomial p ∈ ℝ[Q] is
a linear combination of monomials, p = ∑αcαqα, where cα ∈ ℝ and each monomial qα is a
product of symbols,

ℝ(Q) will denote the field of rational functions in the elements of Q: the smallest field in which
the symbols in Q can be added, subtracted, multiplied and divided as if they were (non-zero)
numbers. Equivalently, ℝ(Q) is the field of fractions of ℝ[Q]: each element f ∈ ℝ(Q) can be
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expressed as the ratio of two polynomials, f = p1/p2 where p1, p2 ∈ ℝ[Q]. ℝ[Q] sits inside ℝ
(Q) in the obvious way: p = p/1.

For various finite sets Q, we will use elements of ℝ[Q] as labels in graphs, and use ℝ(Q) as a
field over which we solve linear equations. For instance, Q may consist of rate constants. To
relate calculations over ℝ[Q] or ℝ(Q) back to biology, the symbols ultimately have to be given
real values. This is not a problem for the polynomial ring ℝ[Q]. Any assignment, ι : Q → ℝ,
extends to a homomorphism of rings ι : ℝ[Q] → ℝ. Hence, any symbolic algebraic expression
in ℝ[Q] gives rise to a corresponding expression in ℝ. However, the field of rational functions,
ℝ(Q), contains elements like 1/(ι(q1) − q1), which become undefined in ℝ no matter what
assignment of real values are made to elements of Q. To infer an expression over ℝ, it is
essential to show that nothing blows up in this way.

We make use of S-positivity to do this. A polynomial p ∈ ℝ[Q] is said to be S-positive (“sum
positive”) if it is a non-zero sum of positive monomials. That is, p is S-positive if p = ∑αcαqα
≠ 0 and if cα > 0 whenever cα ≠ 0. A rational function in ℝ(Q) is said to be S-positive if it can
be expressed as the ratio of two S-positive polynomials. If the elements of Q are given positive
real values, which is biochemically realistic for rate constants, then any S-positive rational
function in ℝ(Q) will be well defined over ℝ. Note that, if Q = ∅, so that ℝ[Q] = ℝ, then x ∈
ℝ[Q] is S-positive if, and only if, it is positive in the usual sense.

If p = ∑αcαxα ∈ ℝ[Q] then p = 0 means that cα = 0 for all α. If ι : Q → ℝ, then p = 0 in ℝ
[Q] implies that ι(p) = 0 ∈ ℝ. The converse, of course, is false: if ι(p) = 0 ∈ ℝ it does not
imply that p = 0 ∈ ℝ[Q]. However, if p ≠ 0 then the variety in ℝn corresponding to the set of
solutions of p = 0 has dimension strictly less than n. Hence, if ι(p) = 0 for sufficiently many
assignments ι, then p = 0. Let ℝ+ denote the positive reals.

Remark 1—If ι(p) = 0 for all ι : Q → ℝ+, then p = 0 ∈ ℝ[Q].

2.2. Graphs and Laplacians
A labelled, directed graph is a triple, (V, E, ℓ), where V is a finite set of nodes, V = {v1, …,
vn}, E is a finite set of directed edges, E ⊆ V × V, and ℓ : E →  − {0} is a function that
associates to each edge a non-zero label in some field . Because they take values in a field,
labels can be treated algebraically as if they were numbers. Usually,  = ℝ(Q) for some set of
symbols Q and the labels are elements of ℝ[Q]. In place of a labelling function, the notation

 will denote an edge from vi to vj with label a. We will sometimes abbreviate this to
vi → vj.

If G is a labelled, directed graph, G⋆ will denote the corresponding unlabelled, undirected
graph, in which the direction of the edges is forgotten and multiple edges between the same
vertices are merged. We use vi ↔ vj to denote an edge in G⋆. Note that this could imply vi →
vj or vj → vi or both in G. We say that G is connected if G⋆ is connected: if there is a chain of
undirected edges linking any two vertices. Any labelled, directed graph is a disjoint union of
connected components. G is strongly connected if there is a directed path between any two
distinct vertices.

There is a bijective correspondence between matrices and labelled, directed graphs. If A is a
n × n matrix over , let (A) be the associated labelled, directed graph with nodes {1, …, n}

and labelled edges , if, and only if, Aij ≠ 0. Note that entry Aij goes fron j to i. If G is a
labelled, directed graph on {1, …, n}, let ℳ(G) be the n × n matrix for which ℳ(G)ij = a if,
and only if, . Evidently, ℳ( (A)) = A and (M(G)) = G.
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If G is a labelled directed graph then its Laplacian matrix, ℒ(G), is given by ℒ(G) = ℳ(G) −
diag(1.ℳ(G)). Here, 1 denotes the all 1’s row vector of the appropriate dimension, 1 = (1, …,
1), and diag(v), where v is a row vector, denotes the diagonal matrix with v on the main diagonal

The Laplacian encodes much information about graph structure; see, for instance, [3], but note
that the conventions used here are different. Note also that, by construction, 1.ℒ(G) = 0.

Lemma 1—Let G be a labelled, directed graph on n vertices with no self-loops in which each
non-zero label is a S-positive element of ℝ[Q]. If G is strongly connected then the rank of ℒ
(G) over ℝ(Q) is n − 1.

PROOF: Let u = (u1, …, un) ∈ ℝ(Q)n. Since 1.ℒ(G) = 0, it is sufficient to show that if u.ℒ
(G) = 0 then u1 = … = un ∈ ℝ(Q). Express each ui ∈ ℝ(Q) as a fraction ui = fi/gi, where fi,
gi ∈ ℝ[Q] and we may suppose that gi ≠ 0. We can now clear the denominators. Let λ =
g1g2 … gn ≠ 0 and vi = λui. Then, vi ∈ ℝ[Q] and v.ℒ(G) = 0. We can now operate in the
polynomial ring ℝ[Q] in preference to the field of fractions ℝ(Q). The entries in the Laplacian
have the following form. If i ≠ j, ℒ(G)ij is either zero or is a S-positive element of ℝ[Q], while
the diagonal entries are given by

Hence, for the i-th column of v.ℒ(G) = 0,

(1)

So far, this has all been symbolic, in ℝ[Q]. Now suppose that the symbols in Q are given
positive real values and, suppressing the corresponding assignment ι : Q → ℝ+ for readability,
let us consider the corresponding system of column equations to (1) in ℝ. Since the vi are now
real numbers, there is a smallest, vp, for which vi ≥ vp for all i. Let U ⊆ {1, …, n} be the set of
those indices i for which vi = vp. U ≠ ∅ since p ∈ U. If m ∈ U, then, in the m-th column
equation,

each non-zero term is the product of a nonnegative quantity, vk − vm, since vm is smallest, and
a strictly positive quantity ℒ(G)km, since each label in G is S-positive. It follows that vk = vm
= vp whenever there is an edge m → k, so that U is closed under outgoing edges. Since G is
strongly connected, U = {1, …, n}. Hence, vi = vp ∈ ℝ for all i. Since this holds for any
assignment of positive values to symbols in Q we deduce from Remark 1 that v1 = … = vn
symbolically in ℝ[Q]. Since λ ≠ 0 we see that u1 = … = un ∈ ℝ(Q), as required.

Some condition on the labels is necessary for the conclusion of Lemma 1. The following
labelled, directed graph on {1, 2, 3}, with labels in ℝ, is strongly connected
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but its Laplacian has rank 1, not 2:

Remark 2—If M is any n × n matrix, we can construct a labelled directed graph with no self-
loops by ignoring the labels on the main diagonal: G = (M − diag(Mii)). If, in addition, 1.M
= 0, then M is the Laplacian of G:

2.3. The Matrix-Tree Theorem
In what follows we will need to solve linear systems of the form M.z = 0, where M is a n × n
matrix over some field , z is a column vector of n unknowns and M has rank n − 1. Recall
that the adjugate matrix of M, adj(M), is defined by

(2)

where M(ji) is the maximal minor given by the determinant of the (n − 1) × (n − 1) matrix
obtained from M by removing the jth row and ith column. Note the reversal of indices in (2).
The adjugate satisfies the Laplace relations

If rk(M) = n−1, any column vector of adj(M) is a basis for the column null space. Taking the
first column, let

(3)

so that M.z = 0.

The maximal minors have a particularly striking form when M is a Laplacian matrix. Let G be
a labelled, directed graph with no self loops. T is said to be a spanning tree of G if T is a directed
subgraph which reaches each node of G such that T⋆ is connected and acyclic. T inherits labels
from G. T is said to be rooted at v ∈ G if v is the unique sink in T. That is, v is the only node
of T with no edges leaving it, v ↛ w. This implies that any non-root node has exactly one edge
leaving it, for otherwise there would either be an additional sink or an undirected cycle. Let
Θv(G) denote the set of spanning trees of G rooted at v.

Theorem 1—(The Matrix-Tree Theorem [43, §3.6]) Let G be a directed graph on {1, …, n}
with labels in the field  and no self-loops. The maximal minors of the Laplacian are given by
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It is remarkable that the maximal minor is, up to a sign, just a sum of products of labels, since
the determinant itself is a sum with alternating signs. Results like Theorem 1 go back to the
19th century work of Kirchhoff on electrical networks and of Sylvester and others on
elimination theory; see [29, Chapter 5] for references. Theorem 1 was first proved by Tutte in
1948 [43]. Combining (3) with Theorem 1, we get the following.

Lemma 2—Let M be a n × n matrix over a field  such that 1.M = 0 and rk(M) = n − 1. Let
G be the labelled, directed graph constructed as in Remark 2 for which M = ℒ(G). The one
dimensional column null space of M is generated by the vector ρ = (ρ1, …, ρn)t, where,

(4)

There is a simple condition for x to also be in the null space of M.

Remark 3—Suppose that x, ρ ∈ n with ρk ≠ 0 for some 1 ≤ k ≤ n. Then, x = λρ if, and only
if, xi = (ρi/ρk)xk for 1 ≤ i ≤ n.

The quantities ρi/ρk will play an important role below; see (8), (20) and (24). In these
calculations, the labels will lie in ℝ[Q] and will either be symbols, like q1, or S-positive
polynomials, like q1q2+q3q4. Under these conditions, we see from (4) that each ρi is either 0,
if there are no spanning trees rooted at vertex i, of, if there are such spanning trees, ρi is
(−1)n+1 times a S-positive polynomial. Accordingly, ρi/ρk is a S-positive rational function.

2.4. The King-Altman method
If the biochemical mechanism of an enzyme is known, its rate function is often calculated in
the quasi-steady state approximation [5]. King and Altman worked out a graphical method for
doing this that is widely used [5,23]. It seems not to have been previously noticed that this is
an immediate application of the Matrix-Tree Theorem. Since we will see the Matrix-Tree
Theorem at work in more detail later, we illustrate the application to rate functions with the
simple example of reversible Michaelis-Menten kinetics. Here, enzyme E and substrate S
reversibly form an enzyme-substrate complex Y, which reversibly yields enzyme and product
P (compare Figure 1a):

(5)

The rate constants, a, b, c, d are all taken to be positive. The quasi-steady state approximation
assumes that Y reaches steady state while substrate is being converted to product. Under mass-
action kinetics, the differential equations for E and Y are

(6)
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Note that E is at steady-state, if, and only if, Y is at steady state (compare Lemma 3). Hence,
(5) is in quasi-steady state, if, and only, if, (6) is in steady state. At steady-state, the right hand
side of (6) is a system of linear equations in E and Y. We can ignore the uninteresting case
when S = P = 0 and assume that the coefficients of (6) are positive, thereby avoiding symbolic
calculations. Let M be the corresponding matrix over ℝ for the basis {E, Y}. We see from (6)
that 1.M = 0. Since rk(M) = 1 by inspection, we can use Lemma 2 to find solutions of M.z = 0.
The labelled, directed graph formed from M according to Remark 2, is

(7)

This has a single spanning tree rooted at E, , and a single spanning tree rooted at
Y, . By Lemma 2, a basis for the column null space of M is

By Remark 3, M.z = 0 if, and only, if

(8)

We see that, at steady state, the enzyme-substrate complex is the free enzyme times a linear
combination of substrate and product. The coefficients of the linear form are reciprocals of the
forward and reverse Michaelis-Menten constants, Kf = (b + c)/a, and Kr = (b + c)/d [5] (compare
Proposition 1). The rate function can now be determined using the conservation law for the
enzyme, zE + zY = Etot, giving, as in [5],

This simple calculation may provide some orientation for the more involved treatment that
now follows.

3. Results
3.1. The system equations

We begin by setting up a general model for a PTM system. There are three kinds of chemical
species in the system: enzymes, substrates and intermediate enzyme-substrate complexes. Let
Enz, denote a non-empty, finite set of enzymes, Sub, a non-empty, finite set of substrate
modforms and Int, a non-empty, finite set of enzyme-substrate complexes. A non-empty, finite
set of sub-networks, Net, is defined in terms of these:
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Each sub-network, T ∈ Net, consists of an associated enzyme, e(T) ∈ Enz, a non-empty subset
of modforms, σ(T) ⊆ Sub, a non-empty subset of enzyme-substrate complexes, γ(T) ⊆ Int, and
a reaction network, N(T), defined below. The sub-networks encode the biochemical details of
how enzymes convert modforms.

This formulation allows for multiple forward and reverse enzymes, which may catalyse
different types of modification and demodification. Multiple substrates are also permitted; the
distinction between them will emerge in the calculation, as part of Condition 2. The
combinatorics of multisite modification are not directly represented: the modforms of all
substrates are simply listed 1, …, N. As discussed in the Introduction, N and P may be
exponentially larger than L.

The enzyme-substrate subsets must be disjoint between distinct sub-networks: if i ≠ j then γ
(Ti) ∩ γ(Tj) = ∅. However, distinct sub-networks may share both modforms and enzymes. We
assume, without loss of generality, that each substrate is in some σ(T) and each enzyme-
substrate complex in some γ(T)

Given Y ∈ Int, t(Y) ∈ Net denotes the (unique) sub-network containing Y.

For E = e(T), any Su ∈ σ(T) and any Yv, Yi, Yj ∈ γ(T), the sub-network N(T) is made up of any
reactions of the following three kinds,

(9)

We further assume Condition 1 in §3.3 and Condition 2 in §3.4. These are strong connectivity
conditions on certain graphs that allow Lemma 1 to be used. They will be stated after
introducing additional concepts below.

The reactions (9) imply that enzyme is conserved—it is either free or bound in some enzyme-
substrate complex—while substrate can flow between different modforms. While not much is
known about the biochemical details of how enzymes modify multisite substrates, the sub-
network assumptions allow considerable flexibility. They can accommodate, for instance,
overlapping site preferences, arbitrary orders of modification and demodification, distributivity
or processivity [11] and intricate hierarchical dependencies between enzymes [10,35]. Some
simple examples are shown in Figure 1. The main assumption behind (9) is that the donor
molecules that provide the modifier are kept at constant concentration, on the time scale of the
PTM dynamics, by mechanisms that are not explicitly modelled. As mentioned in the
Introduction, this assumption has always been made for phosphorylation but needs further
investigation for other modifications. It means that the donor molecules do not have to be
treated as dynamical variables; their affects can be absorbed into the rate constants. This permits
both forward and reverse reactions to be bimolecular with only enzyme and substrate. (In fact,
we are implicitly making a similar assumption for the reverse reactions by ignoring the water
molecules needed for hydrolysis.) Enzymes would normally be expected to give rise to tree
networks, as in Figure 1a–e, but cyclic networks like Figure 1f are mathematically allowed.
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The data above give rise to a polynomial dynamical system defined by mass-action kinetics
on the set of chemical species, Sub ∪ Enz ∪ Int. For 1 ≤ u ≤ N; for 1 ≤ v ≤ P, T = t(Yv), E = e
(t(Yv)); and for 1 ≤ w ≤ L,

(10)

(11)

(12)

Terms like  in equation (11) are indexed over edges in the undirected graph N⋆

(T). If one or other corresponding directed edge is not present in N(T), the associated label
should be treated as if it were zero. In other words,

Indexing over N⋆(T) is purely a notational convenience, which allows for a more compact
syntax.

3.2. Conservation laws
In this section, the rate constants and dynamical variables in (10)–(12) are treated as real
variables. The structure of these equations can be better seen in terms of fT, the net flux of
enzyme out of sub-network T. By definition,

so that equation (12) can be rewritten as

(13)

Moreover, if (11) is added up for all Yv ∈ T, we get a sum of two terms. The first term counts

each binomial  twice with opposite sign and hence vanishes. The second term is
just −fT. Hence,
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(14)

Finally, the enzyme flux from T is equal to the flux of all substrate modforms from T. Summed
over all sub-networks, this gives the total substrate flux. More formally, if equation (10) is
added up for all substrates, then, rearranging the order of summation, and noting that each E
+ S ↔ Y is unique since the Y are not shared, we see that

(15)

From (13) and (14) we see that

The term being differentiated is evidently the total amount of enzyme Ew in the system, which
we conclude to be the same at all times. Similarly, from (14) and (15) we see that

The term being differentiated is the total amount of substrate in the system, which must also
be the same at all times. Let Stot be the total amount of substrate and Ew,tot the total amount of
enzyme Ew. We see that, at all times, the following L + 1 conservation laws hold.

(16)

(17)

Of course, these conservation laws are evident from the form of the allowed reactions in (9)
but the derivation above checks the correctness of the system equations and illuminates the
role of fT. Reinforcing that, the following immediate consequence of (14) is a key result.

Lemma 3—In any steady state, for any sub-network T, fT = 0.

It is instructive to see this another way, which does not depend on the details of how (14) is
proved. In any steady state, the enzyme flux out of T cannot be negative. In other words, there
cannot be positive flux of enzyme into T. If there were, this flux cannot escape through any
Yv ∈ T, since the enzyme-substrate complexes are not shared between sub-networks. Hence,
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it would accumulate somewhere, violating the steady state assumption. Accordingly, fT ≥ 0.
But then from (13), dEw/dt is a sum of nonnegative terms, so that if dEw/dt = 0, then fT = 0 for
each e(T) = Ew.

3.3. Generalised Michaelis-Menten constants
Lemma 3 says that, at steady state, not merely is dEw/dt = 0, but each individual fT = 0. This
decouples the system at steady state and allows us to treat each sub-network in isolation.

In this section and the next we will work symbolically. Let Con denote the set of all rate
constants for all sub-networks T ∈ Net and all reactions (9) in N(T),

Let T be any sub-network and E = e(T). In any steady state of the system, it follows from (11)
and Lemma 3 that for all Yv ∈ γ(T) the following equations are satisfied

(18)

(19)

These form a system of linear equations in the variables E and Yv ∈ γ(T), with coefficients in
ℝ[Con ∪ Sub]. Assume, without loss of generality, that γ(T) = {Y1, …, Yp−1} where p − 1 ≤
P. Let us use the notation Yp = E temporarily, for the purposes of this argument. Let MT denote
the p × p matrix over the field ℝ(Con ∪ Sub) corresponding to (18) and (19). Evidently,
MT.Yt = 0 where Y is the row vector, Y = (Y1, …, Yp). Furthermore, it follows from (14) that
1.MT = 0.

Let GT be the labelled, directed graph formed from MT as in Remark 2, so that MT = ℒ(GT).
Figure 2b shows this graph for the sub-network in Figure 1e. GT is identical to N(T) for all

edges between Yi for 1 ≤ i < p. However, each edge  in N(T) corresponds to the

edge Yp → Yv in GT with  added to its label. Similarly, each edge  in N(T)
corresponds to the edge Yv → Yp in GT with  added to its label. The labels in GT are all S-
positive elements of ℝ[Con ∪ Sub]. We can now state the first additional condition.

Condition 1—For any sub-network T, GT is strongly connected.

All the examples in Figure 1 satisfy this condition, which seems biochemically reasonable.

By Lemma 1, MT has rank p − 1. Accordingly, a basis vector for the column null space is given

by (4). The labels on the edges of GT are rate constants, , except for the edges
outgoing from Yp, whose labels are homogeneous linear combinations of modforms (Figure
2b). It follows that each spanning tree rooted at Yp has a label product in ℝ[Con], while any
spanning tree rooted at Yi, for i ≠ p, has a label product that is homogeneous linear in the
modforms with coefficients in ℝ[Con]. Hence, by (4), ρp is a S-positive element of ℝ[Con],

Thomson and Gunawardena Page 13

J Theor Biol. Author manuscript; available in PMC 2010 December 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



while ρi, for i ≠ p, is a homogeneous linear combination of modforms whose non-zero
coefficients are S-positive elements of ℝ[Con]. Let  be such that, for 1 ≤ i < p,

(20)

The  are, by definition, generalised Michaelis-Menten constants (compare the discussion
in §2.4). Note that, as defined here, these are reciprocals of the usual Michaelis-Menten
constants [5]. We prefer this convention because it allows these constants to be 0 when
necessary, in preference to having to be ∞. By construction, the Michaelis-Menten constants
are either 0 or are S-positive elements of ℝ(Con). In particular, they are well defined for any
positive values of the rate constants in Con. The Michaelis-Menten constants for the example
in Figure 1e are shown in Table 1.

Using Remark 3, we have proved the following generalisation of (8).

Proposition 1—For any sub-network T ∈ Net, the sub-network equation (18) and equation
(19) are satisfied, if, and only if,

(21)

for 1 ≤ i < p.

3.4. Linearising the modforms
In steady state, the enzyme-substrate complexes satisfy (21). Substituting these into the
expressions for the modforms given by (10) we obtain

(22)

These expressions are linear in the Su with coefficients which are S-positive polynomials in ℝ
(Con)[Enz]. Note the critical need at this point for Yi in (21) to be linear in the Su. Let MS be
the corresponding N × N matrix over ℝ(Con ∪ Enz) for the basis S1, …, SN. By Lemma 3,
fT = 0 in steady state for all sub-networks T ∈ Net. Hence, by (15), 1.MS = 0. Let GS be the
labelled, directed graph obtained from MS as in Remark 2, so that MS = ℒ(GS). To understand
the structure of GS, it is convenient to extend the definition of the Michaelis-Menten constants
so that  for all Su ∉ σ(T). We can then replace Su ∈ σ(T) in (20) with Su ∈ Sub. With
this convention, after collecting the coefficients of Sv in (22), we see that the label on the edge
Sv → Su may be written
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whenever that expression is non-zero. Terms like  are familiar to biochemists as catalytic
efficiencies. For each T ∈ Net and any distinct pair Su, Sv ∈ Sub, define the (generalised)
catalytic efficiency, , by

Note that  if Sv ∉ σ(T). If not 0, is a S-positive element of ℝ(Con). With this notation,
we can rewrite the label on the edge Sv → Su as

(23)

whenever that expression is non-zero. Figure 3 shows GS for the example in Figure 1e.

The catalytic efficiencies provide a more concise set of labels for GS than the original rate
constants. Let Cat denote the set of all non-zero generalised catalytic efficiencies:

Note that ℝ(Cat) is a subfield of ℝ(Con) and that any S-positive element of ℝ(Cat) is also S-
positive as an element of ℝ(Con). The labels on GS are S-positive polynomials in ℝ[Cat ∪
Enz], which are homogeneous and linear in the Ew. We may regard MS as a N × N matrix over
ℝ(Cat ∪ Enz).

Since the modforms may include distinct substrates, we cannot assume that GS is connected.
We can now state the second condition for the systems considered here.

Condition 2—The connected components of GS are strongly connected.

This condition is biochemically reasonable. For a given substrate, each modification is usually
balanced by another enzyme carrying out a de-modification. This implies strong connectivity
of the corresponding component of GS. Distinct substrates will give rise to distinct components.
Although Figure 1e has only a single enzyme, the reversibility of the sub-network is sufficient
in this case to give a single component which is strongly connected, as in Figure 3.

Condition 2 implies that MS is block diagonal, with each block corresponding to one of the
connected components. Each block can be treated separately. To avoid further complicating
the exposition, we assume from now on that MS is a single block and that GS is strongly
connected. We point out what needs to be done for the general case but leave it to the reader
to write down the details. Since, by Lemma 1, rk(MS) = N − 1, we can apply Lemma 2 to obtain
a basis vector for the column null space of MS. Since GS is strongly connected, it has at least
one spanning tree rooted at each vertex. It follows from (23) that, in the notation of (4), ρi is a
S-positive element of ℝ[Cat ∪ Enz] which is homogeneous in the Ew and of degree N − 1,
since there are that many edges in any spanning tree. Hence, ρu/ρ1 is a rational function in ℝ
(Cat ∪ Enz), which we may write as a rational function of the enzymes,

(24)
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whose non-zero coefficients are S-positive elements of ℝ[Cat]. Here, we have, without loss of
generality, chosen S1 as a reference modform. With multiple components, a reference modform
will be needed for each component. Since the ρu are each homogeneous of degree N − 1, it
follows that, for λ ∈ ℝ,

(25)

so that the ru are, in fact, inhomogeneous functions of any L − 1 of the variables. For instance,
if EL ≠ 0, then

Using Lemma 2 and Remark 3, we deduce the following analogue of Proposition 1.

Proposition 2—The modform equations (22) are satisfied if, and only if,

(26)

Examples of the rational functions ru for the case of a single kinase, single phosphatase and
single substrate with 2 sites are given in [27].

3.5. The main results
We can now put everything together and return from symbols to real variables. Let us consider
any multisite PTM system satisfying the assumptions in §3.1 along with Condition 1 and
Condition 2. We assume that the rate constants have positive real values. In this case, the
maximal minor ρ1 appearing in (24) is a real polynomial of degree N − 1 in the enzymes and
ρ1 = 0 defines a hypersurface in ℝL. As long as the vector of enzyme values lies off this
hypersurface, the rational functions in (24) are well defined. If GS has many components, a
similar proviso must be made for each of them, in respect of the maximal minor for the
corresponding reference modform. Note that, since ρ1 is S-positive in ℝ[Enz], any vector in
the positive orthant will satisfy ρ1 ≠ 0. Hence, under biochemically realistic conditions, the
ru are always well defined.

Theorem 2—In any steady state of the system for which the enzyme values satisfy ρ1 ≠ 0,
equation (26) and equation (21) hold. Conversely, if the enzymes have values in ℝ for which
ρ1 ≠ 0, S1 has values in ℝ, the Su are defined by (26) and the Yv are defined by (21), then these
quantities form a steady state of the system.

PROOF: We have shown the first part above. Now suppose that Ei ∈ ℝ, such that ρ1(E1, …,
EL) ≠ 0, and S1 ∈ ℝ. Define Su by (26), which we may do since ρ1 ≠ 0, and Yv by (21), as
specified. For any T ∈ Net, it follows from Proposition 1 that the corresponding sub-network
equation (18) and equation (19) are satisfied. Since (18) is just (11) at steady state, we see that
dYv/dt = 0 for all Yv ∈ T. Furthermore, the expression on the left hand side of (19) is, by
definition, the net flux of enzyme out of T, fT . Hence, fT = 0. Since this holds for all T ∈ Net,
we see from equation (13) that dEw/dt = 0. Since (26) had to be satisfied to define the Su, it
follows from Proposition 2 that (22) is satisfied. Since this is just (10) at steady state after
substitution of (21), which has also been satisfied, we see that dSu/dt = 0. It follows that the
system is at steady state.
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If the system has specified total amounts of substrate and enzymes, it satisfies the conservation
laws (16) and (17). These provide L + 1 equations for the L enzymes and the substrate. For
each sub-network T ∈ Net, let ϕT ∈ ℝ[Enz] denote the S-positive polynomial

It follows from Proposition 1, that, whenever ρ1 ≠ 0,

Let Δ ∈ ℝ[Enz] denote the S-positive polynomial,

(27)

Rewriting (17) to solve for S1 in terms of Stot, we see that, whenever Δ ≠ 0,

(28)

We can then rewrite (16) to get

(29)

These L equations are well-defined whenever Δ ≠ 0. With multiple components, Stot can be
apportioned among the components and each reference modform will have a corresponding
equation to (28).

Let Φ : ℝL × ℝ → ℝL be defined by the left-hand side of (29) so that, for 1 ≤ w ≤ L,

Theorem 3—The steady states of a multisite PTM system are given by the solutions of a
system of L equations for the L free enzyme concentrations. More precisely, if A, E ∈ ℝL, S ∈
ℝ, Δρ1 ≠ 0 and Φ(E, S) = A, then there is a steady state of the system for which E gives the free
enzyme concentrations, S = Stot and Aw = Ew,tot. Conversely, any steady state of the system
having these totals, for which Δρ1 ≠ 0, arises in this way.

PROOF: We have shown above that any steady state of the system having the specified totals,
for which Δρ1 ≠ 0, satisfies Φ(E, S) = A. Now suppose that E ∈ ℝL, S ∈ ℝ satisfy Δρ1 ∈ 0 and
that Φ(E, S) = A. Define  so that
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which we may do since Δ ≠ 0. Now use Theorem 2 to define a steady state of the system,
, which we may do since ρ1 ≠ 0. We need only check that the total amount of substrate,

, and enzymes, , satisfy  and . The total amount of substrate is

Since (26) and (21) are satisfied through the use of Theorem 2, this gives

as required. Similarly, the total amount of enzyme Ew is

as required.

Since Δρ1 ∈ ℝ[Enz] is S-positive, it never vanishes for positive free enzyme concentrations,
which corresponds to the biochemically realistic case.

3.6. Algebraic geometry of the steady state
As suggested in the Introduction, Theorem 2 should be seen as an assertion that an appropriate
algebraic variety is rationally parameterisable. This implies that points on the variety can be
explicitly constructed as rational functions of some auxiliary parameters, in contrast to the
implicit definition of points as solutions of polynomial equations [6]. For instance, x2 + y2 =
1 provides an implicit definition of the unit circle, while the expression of x and y as

(30)

provides an explicit rational parameterisation. In general, a rational parameterisation may be
undefined at points where the denominators of the rational functions vanish (which is not the
case for (30)) and not all points on the variety may be represented (such as the point (0, 1) in
(30)).

Recall from §3.1 that there are L + N + P dynamical variables in our system. Let V ⊆
ℝL+N+P denote the steady-state variety, corresponding to the simultaneous solutions of the
system equation (10)–equation (12). V is a real algebraic variety. Let π: ℝL+N+P → ℝN denote
the projection on to the space of modforms. π(V) may lack some points required for it to be an
algebraic variety but it may be completed to one, if required, [6].
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The set π(V) has additional structure, not present in V . Equation (26) gives the modforms only
up to a constant. If λ ∈ ℝ, then it is easy to see from the system equation (10)–equation (12)
that multiplying each modform and each enzyme-substrate complex by λ, changes all the rates
by λ. In particular, if the system is at steady state, then it is still at steady state after such a
change. Hence, π(V) is a projective set: given x ∈ π(V) the line through the origin and x also
lies in π(V). We can therefore consider π(V) as a subset, π(V)ℙ, of the real projective space
ℝℙN−1. The following is a corollary of Theorem 2

Theorem 4—π(V)ℙ has a rational parameterisation. Specifically, the rational functions ru
in (24) define a surjective mapping ℝL → π(V)ℙ, which is well-defined away from the
hypersurface ρ1 = 0.

In view of (25), the dimension of π(V)ℙ, once completed to a variety, is at most L − 1. For
instance, in the case considered in [27,41], with a single kinase and a single phosphatase, π
(V)ℙ is a rational curve.

4. Discussion
Our results show that the exponentially large number of state variables, L + N + P, of a multisite
PTM system is determined at steady state by a relatively small “core” of L variables. We have
provided in Propositions 1 and 2 a linear algebraic algorithm for calculating all steady-state
variables in terms of the core. Tools like Mathematica can readily carry out linear algebra over
symbolic fields like ℝ(Q) and an example of such a program is available as the Supplementary
Information to [27].

Previous steady-state analyses of multisite PTMs have largely focussed on phosphorylation.
They have either used approximations, such as Michaelis-Menten or linear kinetics [14,26,
28,37], which ignore sequestration effects when enzymes have multiple substrates [4], or made
simplifying biological assumptions, such as small numbers of sites [27] or sequential
modification [16], which limits their applicability. The results of the present paper provide a
foundation for developing models that are closer to biological reality while also extending the
scope of analysis to allow for multiple enzymes, multiple types of modification and multiple
substrates. The permitted biochemical mechanisms are also considerably enlarged. Our method
of proof reveals the significance of the Matrix-Tree theorem, which seems to play a key role
in several forms of algebraic elimination in biochemical networks [7,23].

The present paper develops the methodology. Applications of these results are found in
previous papers which have focussed on phosphorylation with a single kinase, single
phosphatase and single substrate [27,41]. The capability to treat the number, n, of sites as a
variable has allowed us to show that, for appropriate rate constants, the number of stable
phospho-form distributions can be as many as ⌊(n + 2/2⌋, where ⌊x⌋ denotes the greatest integer
not greater than x [41]. In particular, the number of stable phospho-form distributions increases
with n. While some of these distributions are focussed on a few phospho-forms, others are
more diffuse. Since different phospho-forms may have distinct biological effects [31,34,45],
the phospho-proteome could be capable of substantial information processing. Indeed, it has
been suggested that the remarkable variety of PTMs found on histone proteins in chromatin
form a “code” for transcriptional regulation [21,42]. The analysis in [41] provides the first
example of a PTM mechanism which is capable of encoding arbitrary amounts of information
and gives an estimate of its information capacity.

A second application, for systems with two sites, has shown that the steady-state geometry can
distinguish between different reaction networks [27]. The geometry is detected algebraically
through the use of “invariants”, or polynomial functions of the steady-state phospho-form
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concentrations which depend only on the rate constants [17]. Invariants take the same value
no matter what amounts of enzymes and substrates are present or what steady state is formed.
To exploit such results we have been developing, in collaboration with Hanno Steen’s group
at Children’s Hospital in Boston, mass-spectrometric methods for accurately quantifying
phospho-form distributions. We are using this to map out, for the first time, the steady-state
geometry of a kinase, phosphatase, substrate system: the MAP kinase Erk, which is doubly
phosphorylated by the MAP kinase kinase Mek and dephosphorylated by the dual-specificity
phosphatase MKP3. Our experimental studies have already shown that these proteins engage
in a more complex set of reactions than is commonly described in the literature and we are
developing the method of invariants as a tool to work out the missing pieces.

Our results suggest several directions for future investigation. Which biochemical reaction
networks have “cores”, or small subsets of variables in terms of which all others can be
calculated at steady state? If a core exists, is it unique? How can cores be identified and how
can the functional relationship with non-core variables be algorithmically determined? Do
these functional relationships give rational parameterisations of the steady-state variety? A
particularly interesting generalisation would be to allow substrates to also be enzymes, thereby
accommodating kinase cascades. The difficulty here is that those substrates that are also
enzymes can, presumably, no longer be eliminated and must hence be in the “core”, while, at
the same time, as substrates, these variables may have non-trivial algebraic dependencies with
other core variables. In the case treated here, the variables in the core are independent: their
values can be arbitrarily assigned (Theorem 2). In more general cases there may be additional
algebraic constraints on the core variables. We believe that the language and methods of
algebraic geometry [6,27] will be particularly useful for unravelling such issues.

Looking further ahead, it is a tantalising question as to whether the elimination procedures
developed here can be extended from the steady state to the dynamics, perhaps, initially, to the
local vicinity of the steady state. Since steady-state stability is determined by the eigenvalues
of the Jacobian, it does not seem implausible that differential algebraic methods could
encompass both the steady state itself as well as its local vicinity. More globally, multisite
PTM systems have other attractors, such as limit cycles, of which the cyanobacterial circadian
oscillator is a particularly significant example [30,36]. Hilbert’s sixteenth problem asks about
the number of limit cycles of two-dimensional polynomial dynamical systems. It remains
unsolved, although some lower bounds are known [2]. Several lines of evidence, including the
work presented here, suggest that the polynomial dynamics arising from biochemical reaction
networks has very good properties at steady state. Could the same be true for other attractors
like limit cycles?

Biologists are continually striving to elicit general principles from experimental data.
Mathematical methods have been of less help in this respect than in accounting for the results
of individual experiments. The present paper provides the tools to reason about post-
translational modification systems without having to fix in advance many of the individual
details, such as the number of enzymes or the combinatorics of modification. Being able to
rise above the molecular complexity while retaining biological and biochemical realism
provides a complementary capability to that of simulation. If this capability can be extended
to a broad range of cellular processes, we will have a powerful tool with which to articulate
the principles of cellular information processing.
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Figure 1.
Examples of sub-networks. a. Michaelis-Menten style enzyme, with a single enzyme-substrate
complex, Yj, and reversible product formation, as in (5). b. Example with two enzyme-substrate
complexes, Yj, Yk, leading irreversibly to Sv, along with a dead-end complex Ym. c. Example
used in [41], with a single enzyme-substrate complex Yj and multiple products Sp, Sv, Sw. d.
Alternative network to c with a different enzyme-substrate complex for each product. e.
Example with partially overlapping routes for different products. f. Cyclic network, which may
not correspond to known biochemistry but is mathematically allowed.
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Figure 2.
Steady state calculation for the sub-network in Figure 1e. a. The network in Figure 1e with
labels on the reactions according to (9). b. The modified graph, GT, on the vertices Yj, Yk, Ym
and E with the new labels in ℝ[Con ∪ Sub], as listed in the table below. The edges outgoing
from E, numbered 1, 2 and 3, have labels which are linear and homogeneous in the modforms,
while all other edges have labels which are rate constants. c. The spanning trees rooted at each
vertex of GT, from which the maximal minors in (4) are calculated.
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Figure 3.
Modform graph, GS, for the example in Figure 1e with the labels shown as generalised catalytic
efficiencies, , in the accompanying table. The  are given in Figure 2a while the
generalised Michaelis-Menten constants,  are given in Table 1.
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Table 1

Generalised Michaelis-Menten constants for the example in Figure 1e. The entries in the first three rows are the
 defined in Proposition 1 for x = j, k, m and y = u, v, w, p. The last row gives the denominator term

D appearing in the entries for Yj and Yk. Note the S-positivity of all entries.

Su Sv Sw Sp

Yj
au, j

T (bv,k
T + ck , j

T )

D

av,k
T ck , j

T

D

aw, j
T (bv,k

T + ck , j
T )

D

0

Yk
au, j

T c j,k
T

D

av,k
T (bu, j

T + bw, j
T + c j,k

T )

D

aw, j
T c j,k

T

D

0

Ym
au,m

T

bp,m
T + bu,m

T

0 0
ap,m

T

bp,m
T + bu,m

T

D
bv,k

T (bw, j
T + c j,k

T ) + bw, j
T ck , j

T + bu, j
T (bv,k

T + ck , j
T )
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