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SUMMARY

A tradeoff between precision and throughput con-
strains all biological measurements, including seq-
uencing-based technologies. Here, we develop a
mathematical framework that defines this tradeoff
between mRNA-sequencing depth and error in the
extraction of biological information. We find that
transcriptional programs can be reproducibly identi-
fied at 1% of conventional read depths. We demon-
strate that this resilience to noise of ‘‘shallow’’
sequencing derives from a natural property, low
dimensionality, which is a fundamental feature of
gene expression data. Accordingly, our conclusions
hold for �350 single-cell and bulk gene expression
datasets across yeast, mouse, and human. In total,
our approach provides quantitative guidelines for
the choice of sequencing depth necessary to achieve
a desired level of analytical resolution. We codify
these guidelines in an open-source read depth calcu-
lator. This work demonstrates that the structure
inherent in biological networks can be productively
exploited to increase measurement throughput, an
idea that is now common in many branches of sci-
ence, such as image processing.

INTRODUCTION

All measurements, including biological measurements, contain a

tradeoff between precision and throughput. In sequencing-based

measurements like mRNA-sequencing (mRNA-seq), precision is

determined largely by the sequencing depth applied to individual

samples. At high sequencing depth,mRNA-seq candetect subtle

changes in gene expression including the expression of rare

splice variants or quantitative modulations in transcript abun-

dance.However, suchprecisioncomesat a cost, andsequencing

transcripts from10,000 single cells at deep sequencing coverage

(106 readspercell) currently requires2weeksof sequencing onan

Illumina HiSeq 4000.
This is an open access article under the CC BY-N
Not all biological questions require such extreme technical

sensitivity. For example, a catalog of human cell types and

the transcriptional programs that define them can potentially

be generated by querying the general transcriptional state of

single cells (Trapnell, 2015). In principle, theoretical and

computational methods could elucidate the tradeoff between

sequencing depth and granularity of the information that can

be accurately extracted from samples. Accordingly, opti-

mizing this tradeoff based on the granularity required by the

biological question at hand would yield significant increases

in the scale at which mRNA-seq can be applied, facilitating

applications such as drug screening and whole-organ or tu-

mor profiling.

The modern engineering discipline of signal processing has

demonstrated that structural properties of natural signals can

often be exploited to enable new classes of low cost measure-

ments. The central insight is that many natural signals are

effectively ‘‘low dimensional.’’ Geometrically, this means

that these signals lie on a noisy, low-dimensional manifold

embedded in the observed, high-dimensional measurement

space. Equivalently, this property indicates that there is a

basis representation in which these signals can be accurately

captured by a small number of basis vectors relative to the orig-

inal measurement dimension (Donoho, 2006; Candès et al.,

2006; Hinton and Salakhutdinov, 2006). Modern algorithms

exploit the fact that the number of measurements required to

reconstruct a low-dimensional signal can be far fewer than the

apparent number of degrees of freedom. For example, in images

of natural scenes, correlations between neighboring pixels

induce an effective low dimensionality that allows high-accuracy

image reconstruction even in the presence of considerable mea-

surement noise such as point defects in many camera pixels

(Duarte et al., 2008).

Like natural images, it has long been appreciated that biolog-

ical systems contain structural features that can lead to an

effective low dimensionality in data. Most notably, genes are

commonly co-regulated within transcriptional modules; this pro-

duces covariation in the expression of many genes (Eisen et al.,

1998; Segal et al., 2003; Bergmann et al., 2003). The widespread

presence of such modules indicates that the natural dimension-

ality of gene expression is determined not by the number of genes

in the genome but by the number of regulatory modules. By
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Figure 1. A Mathematical Model Reveals Factors Determining the Performance of Shallow mRNA-Seq

(A) mRNA-seq throughput as a function of sequencing depth per sample for a fixed sequencing capacity.

(B) Unsupervised learning techniques are used to identify transcriptional programs. We ask when and why shallow mRNA-seq can accurately identify tran-

scriptional programs.

(C) Decreasing sequencing depth adds measurement noise to the transcriptional programs identified by unsupervised learning. Our approach reveals that

dominant programs, defined as those that explain relatively large variances in the data, are tolerant to measurement noise.
analogy to signal processing, this natural structure suggests that

the lower effective dimensionality present in gene expression

data can be exploited tomake accurate, ‘‘inexpensive’’ measure-

ments that are not degraded by noise. But when, and at what

error tradeoff, can low dimensionality be leveraged to enable

low-cost, high-information-content biological measurements?

Here, inspired by these developments in signal processing,

we establish a mathematical framework that addresses the

impact of reducing coverage depth, and hence increasing mea-

surement noise, on the reconstruction of transcriptional regula-

tory programs from mRNA-seq data. Our framework reveals

that ‘‘shallow’’ mRNA-seq, which has been proposed to in-

crease mRNA-seq throughput by reducing sequencing depth

in individual samples (Jaitin et al., 2014; Pollen et al., 2014; Klie-

benstein, 2012) (Figure 1A), can be applied generally to many

bulk and single-cell mRNA-seq experiments. By investigating

the fundamental limits of shallow mRNA-seq, we define the

conditions under which it has utility and complements deep

sequencing.
240 Cell Systems 2, 239–250, April 27, 2016
Our analysis reveals that the dominance of a transcriptional

program, quantified by the fraction of the variance it explains

in the dataset, determines the read depth required to accu-

rately extract it. We demonstrate that common bioinformatic

analyses can be performed at 1% of traditional sequencing

depths with little loss in inferred biological information at the

level of transcriptional programs. We also introduce a simple

read depth calculator that determines optimal experimental

parameters to achieve a desired analytical accuracy. Our

framework and computational results highlight the effective

low dimensionality of gene expression, commonly caused by

co-regulation of genes, as both a fundamental feature of

biological data and a major underpinning of biological sig-

nals’ tolerance to measurement noise (Figures 1B and 1C). Un-

derstanding the fundamental limits and tradeoffs involved in

extracting information from mRNA-seq data will guide re-

searchers in designing large-scale bulk mRNA-seq experi-

ments and analyzing single-cell data where transcript coverage

is inherently low.



RESULTS

Statistical Properties of Gene Expression Data
Determine the Accuracy of Principal Component
Analysis at Low Read Depth
To delineate the impact of sequencing depth on the analysis of

mRNA-seq data, we developed a mathematical framework that

models the performance of a common bioinformatics tech-

nique, transcriptional program identification, at low sequencing

depth. We focus on transcriptional program identification as it

is central in many analyses including gene set analysis, network

reconstruction (Holter et al., 2001; Bonneau, 2008), and cancer

classification (Alon et al., 1999; Shai et al., 2003; Patel et al.,

2014), as well as the analysis of single-cell mRNA-seq data.

Our model defines exactly how reductions in read depth

corrupt the extracted transcriptional programs and determines

the precise depth required to recover them with a desired

accuracy.

Our analysis focuses on the identification of transcriptional

programs from mRNA-seq data through principal component

analysis (PCA), because of its prevalence in gene expression

analysis (Alter et al., 2000; Ringnér, 2008) and its fundamental

similarities to other commonly used methods. A recent review

called PCA the most widely used method for unsupervised clus-

tering and noted that it has already been successfully applied in

many single-cell genomics contexts (Trapnell, 2015). Addition-

ally, research in the computer science community over the

last decade has shown that many other unsupervised learning

methods, including k-means, spectral clustering, and Locally

Linear Embedding, are naturally related to PCA or its generaliza-

tion, Kernel PCA (Ding and He, 2004; Ng et al., 2001; Ham et al.,

2004; Bengio et al., 2004). Because of the deep connection

between PCA and other unsupervised learning techniques,

we expect that our conclusions in this section will extend to other

methods of analysis (and we provide such parallel analysis in the

Supplemental Information). Here, we focus on PCA because the

well-defined theory behind it provides a unique opportunity to

understand, analytically, the factors that determine the robust-

ness of program identification to low-coverage sequencing

noise.

PCA identifies transcriptional programs by extracting groups

of genes that covary across a set of samples. Covarying genes

are grouped into a gene expression vector known as a principal

component. Principal components are weighted by their relative

importance in capturing the gene expression variation that oc-

curs in the underlying data. Decreasing sequencing depth intro-

duces measurement noise into the gene expression data and

corrupts the extracted principal components.

If the transcriptional programs obtained from shallow mRNA-

seq data and deep mRNA-seq data are similar, then we can

accurately performmany gene expression analyses at low depth

while collecting data in much higher throughput (Figure 1). We

therefore developed a mathematical model that quantifies how

the principal components computed at low and high sequencing

depths differ. The model reveals that performance of transcrip-

tional program extraction at low read depth is specific to the da-

taset and even the program itself. It is the dominant transcrip-

tional programs, which capture most variance, that are the

most stable.
Formally, the principal components are defined as the eigen-

vectors of the gene expression covariance matrix, and the prin-

cipal values li are the associated eigenvalues that equal the

variance of the data projected onto the component (Alter

et al., 2000; Holter et al., 2001). We use perturbation theory

to model how the eigenvectors of the gene expression covari-

ance matrix change when measurement noise is added (Stew-

art and Sun, 1990; Shankar, 2012). We perform our analysis

in units of normalized read counts for conceptual clarity (or

normalized transcript counts where appropriate), but an iden-

tical analysis and error equation can be derived in FPKM units

through a simple rescaling. The principal component error is

defined as the deviation between the deep (pci) and shallow

ðdpci Þ principal components,

kpci �dpci kz
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where C and Ĉ are the covariance matrices obtained from deep

and shallow mRNA-seq data, respectively. Equation 1 can be

used to model the impact of shallow sequencing on any given

mRNA-seq dataset. Moreover, qualitative analysis of the equa-

tion reveals the key factors that determine whether low depth

profiling will accurately identify transcriptional programs. As

expected, this equation indicates that the principal component

error depends on generic features including read depth and

sample number, as these affect the difference between the

shallow and deep covariance matrices in the numerator of Equa-

tion 1 (see the Supplemental Information, section 2.1). However,

Equation 1 also reveals that the principal component error de-

pends on a system-specific property: the relative magnitude of

the principal values (captured by li � lj). Since the principal

values correspond to the variance in the data along a principal

component, this term quantifies whether the information in the

gene expression data is concentrated among a few transcrip-

tional programs. When genes covary along a small number of

principal axes, the dataset has an effective low dimensionality,

i.e., the data are concentrated on a low-dimensional sub-space,

and transcriptional programs can be extracted even in the pres-

ence of sequencing noise.

Mouse Tissues Can Be Distinguished at Low Depth in
Bulk mRNA-Seq Samples
To understand the implications of this result in the context of

an established mRNA-seq dataset, we applied Equation 1 to

a subset of the mouse ENCODE data that uses deep mRNA-

seq (>107 reads per sample) to profile gene expression of

19 different mouse tissues with a biological replicate (Shen

et al., 2012) (see the Experimental Procedures). The analysis

revealed that the leading, dominant transcriptional programs

could be extracted with <1% of the studies’ original read

depth. Specifically, the first three principal components could

be recovered with >80% accuracy (i.e., an error of 1 � 0.8 =

20%) with just 55,000 reads per experiment (Figures 2A and

S1A). To reach 80% accuracy for all of the first nine principal

components, only 145,000 reads were needed (Figure S1B).

Increasing read depth further had diminishing returns for prin-

cipal component accuracy. To increase the accuracy of the
Cell Systems 2, 239–250, April 27, 2016 241



Figure 2. Transcriptional States of Mouse Tissues Are Distinguishable at Low Read Coverage

(A) Principal component error as a function of read depth for selected principal components for the Shen et al. (2012) data. For first three principal components,

1% of the traditional read depth is sufficient for achieving >80% accuracy. Improvements in error exhibit diminishing returns as read depth is increased. Less

dominant transcription programs (principal components 8 and 15 shown) are more sensitive to sequencing noise.

(B) Variance explained by transcriptional program (blue) and differences between principal values (green) of the Shen et al. (2012) data. The leading, dominant

transcriptional programs have principal values that are well separated from later principal values, suggesting that these should be more robust to measurement

noise.

(C) GSEA significance for the top ten terms of principal component two (top) and three (bottom) as a function of read depth. 32,000 reads are sufficient to recover

all top ten terms in the first three principal components. (Analysis for first principal component shown in Figure S1C.)

(D) Projection of a subset of the Shen et al. (2012) tissue data onto principal components two and three. The ellipses represent uncertainty at specific read depths.

Similar tissues lie close together. Transcriptional program two separates neural tissues from non-neural tissues while transcriptional program three distinguishes

tissues involved in hematopoiesis from other tissues. This is consistent with the GSEA of these transcriptional programs in (C).
first three principal components an additional 5% (from 80%

to 85%), 55% more reads were required. We confirmed these

analytical results by simulating shallow mRNA-seq through

direct sub-sampling of reads from the raw dataset (see the

Experimental Procedures).

Further, as predicted by Equation 1, the dominant principal

components were more robust to shallow sequencing noise

than the trailing, minor principal components. This is a direct

consequence of the fact that the leading principal values are

well separated from other principal values, while the trailing

values are spaced closely together. For instance, l1 is separated

from other principal values by at least l1 � l2 = 5 3 10�6, more

than two orders of magnitude greater than the minimum separa-

tion of l25 from other principal values (1.5 3 10�8) (Figure 2B).

Therefore, the 25th principal component requires almost four
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million reads, 140 times more than the first principal component,

to be recovered with the same 80% accuracy.

To explore whether the shallow principal components also

retained the same biological information as the programs

computed from deep mRNA-seq data, we compared results

from Gene Set Enrichment Analysis applied to shallow and

deep mRNA-seq data. At a read depth of 107 reads per sample,

the first three principal components have many significant func-

tional enrichments with the second and third principal compo-

nents enriched for neural and hematopoietic processes, respec-

tively (Figure 2C; see Figure S1C for first principal component).

These functional enrichments corroborate the separation seen

when the gene expression profiles from each tissue are pro-

jected onto the second and third principal components (see

the Experimental Procedures). Neural tissues (cerebellum,



cortex, olfactory, and embryonic day 14.5 [E14.5] brain) project

along the second principal component while the hematopoietic

tissues (spleen, liver, thymus, bone marrow, and E14.5 liver)

project along the third principal component (Figure 2D).

The statistically significant enrichments of the first three prin-

cipal components persisted at low sequencing depths. At

<32,000 reads per sample, only 0.37% of the total reads, all

ten of the top gene sets for these principal components passed

our significance threshold of p < 10�4 (negative predictive value

and positive predictive value in Figures S1D and S1E). To put this

result in perspective, using only 32,000 reads per sample (corre-

sponding to PCA accuracies of 81%, 79%, and 75% for the first

three principal components, respectively) would allow a faithful

recapitulation of functional enrichments while still multiplexing

thousands of samples, rather than dozens, in a single Illumina

HiSeq sequencing lane. Additionally, this low number of reads

was still sufficient to separate the different cell types (Figure 2D).

We obtained similar results when working in FPKM units, sug-

gesting that the broad conclusions of our analysis are insensitive

to gene expression units (Figures S1F, S1G, and S1H).

Transcriptional States in Single Cells Are
Distinguishable with Less Than 1,000 Transcripts
per Cell
We wanted to explore whether shallow mRNA-seq could also

capture gene expression differences between individual single

cells within a heterogeneous tissue, arguably a more challenging

problem than distinguishing different bulk tissue samples. In

addition to the biological importance of quantifying variability

at the single-cell level, single-cell mRNA-seq data provide the

necessary context for analyzing the performance of shallow

sequencing for two reasons. First, single-cell mRNA-seq exper-

iments are inherently ‘‘low-depth’’ measurements as current

methods can capture only a small fraction (�20%) (Shalek

et al., 2014) of the �300,000 transcripts (Velculescu et al.,

1999) typically contained in individual cells. Second, since ad-

vances in microfluidics (Macosko et al., 2015) now facilitate the

automated preparation of tens of thousands of individual cells

for single-cell mRNA-seq, sequencing requirements impose a

key bottleneck on the further scaling of single-cell throughput.

To probe the impact of sequencing depth reductions on sin-

gle-cell mRNA-seq data, we analyzed a dataset characterizing

3,005 single cells from themouse cerebral cortex and hippocam-

pus (Zeisel et al., 2015) that were classified bioinformatically at

full sequencing depth (average of �15,000 unique transcripts

per cell) into nine different neural and non-neural cell types. In

addition to providing a rich biological context for analysis, this

dataset allows for a quantitative analysis of low-depth transcrip-

tional profiling as it incorporates molecular barcodes known as

unique molecular identifiers (UMIs) that enable the precise

counting of transcripts from each single cell. The Zeisel et al.

(2015) data therefore allowed us to analyze the impact of

sequencing depth reductions quantitatively in units of transcript

counts rather than in the less precise unit of raw sequencing

reads.

Similarly to the bulk tissue data, we found that leading prin-

cipal components in single cells could be reconstructed with a

small fraction of the total transcripts collected in the raw dataset.

We focused our analysis on three classes of cell types—two
classes of pyramidal neurons with similar gene expression pro-

files and oligodendrocytes—that are transcriptionally distinct.

As the first three principal values were well separated from the

others (Figure S2A), Equation 1 estimated that the first three prin-

cipal components could be reconstructed with 11%, 22%, and

38% error, respectively, with just 1,000 transcripts per cell

(Figure 3A).

We confirmed this result computationally. With just 100 unique

transcripts, we were able to separate oligodendrocytes from

the two classes of pyramidal neurons with >90% accuracy.

With 1,000 unique transcripts per cell, we were able to distin-

guish pyramidal neurons of the hippocampus from those of cor-

tex with the same >90% accuracy (Figure 3B). The different

depths required to distinguish these subclasses of neural and

non-neural cell-types reflect the differing robustness of the cor-

responding principal components. The first principal component

captures a broad distinction between oligodendrocytes and py-

ramidal cell types (Figure 3C, left) and is the most robust to low

read depths. The third principal component captures a more

fine-grained distinction between pyramidal neurons but is less

robust than the first principal component at low read depth

and hence requires more coverage. This is consistent with bio-

logical intuition: more depth is required to distinguish between

pyramidal neural subtypes than between oligodendrocytes and

pyramidal neurons.

We next asked how contributions of individual genes to a prin-

cipal component change as a function of read depth. For every

principal component, we derived a null model consisting of the

distribution of the individual gene weightings, called loadings,

from a shuffled version of the data (see the Experimental Proce-

dures). Comparing the data to the null model, we found that at a

depth of �340 transcripts, >80% of genes significantly associ-

ated with the first principal component could still be detected

(Figures 3C and 3D; Experimental Procedures). At just 100 tran-

scripts per cell, we were still able to identify oligodendroycte

markers, such as myelin-associated oligodendrocyte basic pro-

tein (Mobp) andmyelin-associated glycoprotein (Mag), aswell as

neural markers, such as Neuronal differentiation 6 (Neurod6) and

Neurogranin (Nrgn), as statistically significant, and reliably clas-

sify these distinct cell types. However, below 100 transcripts per

cell, cell-type classification becomes inaccurate, and this is

correlated with markers such as Neurod6 being no longer statis-

tically associated with the first principal component.

We were able to reach similar conclusions with three other

single-cell mRNA-seq datasets (Shalek et al., 2013; Treutlein

et al., 2014; Kumar et al., 2014). With similarly low sequencing

depths, we were able to distinguish transcriptional states of sin-

gle cells collected across stages of the developing mouse lung

(Figures S2B–S2D), wild-type mouse embryonic stem cells

from stem cells with a single gene knockout (Figures S2E–

S2G), and heterogeneity within a population of bone-marrow-

derived dendritic cells (Figures S2H–S2J). These results were

also not PCA-specific. We additionally examined two of these

datasets with t-distributed Stochastic Neighbor Embedding

(t-SNE) and Locally Linear Embedding (LLE), two nonlinear alter-

natives to PCA (Van der Maaten and Hinton, 2008; Roweis and

Saul, 2000) and achieved successful classification of transcrip-

tional states (Figures S2K and SKL), in each case recapitulating

the results of the original studies with fewer than 5,000 reads per
Cell Systems 2, 239–250, April 27, 2016 243



Figure 3. Transcriptional States of Single Cells in the Mouse Brain Are Distinguishable at Low Transcript Coverage

(A) Principal component error as a function of read depth for selected principal components for the Zeisel et al. (2015) data.

(B) Accuracy of cell type classification as a function of transcripts per cell. Accuracy plateaus with increasing transcript coverage. At 1,000 transcripts per cell, all

three cell types can be distinguished with low error. At 100 transcripts per cell, pyramidal cells cannot be distinguished from each other, while oligodendrocytes

remain distinct.

(C) Covariance matrix of genes with high absolute loadings in the first principal component (left). The genes with the 100 highest positive and 100 lowest negative

loadings are displayed. The first principal component is enriched for genes indicative of oligodendrocytes and neurons (middle). Gene significance as a function of

transcript count for the first principal component (right).

(D) True and false detection rates as a function of transcript count for genes significantly associated with the first three principal components. Below 100

transcripts per cell, false positives are common.
cell. These results suggest that low dimensionality enables high

accuracy classification at low read depth across many methods.

Gene Expression Covariance Induces Tolerance to
Shallow Sequencing Noise
In the datasets we considered, the dominant noise-robust prin-

cipal components corresponded directly to large modules of

covarying genes. Such modules are common in gene expres-

sion data (Eisen et al., 1998; Alter et al., 2000; Bergmann

et al., 2003; Segal et al., 2003). We therefore studied the contri-

bution of modularity to principal component robustness in a

simple, mathematical model of gene expression (Supplemental

Information, section 2.2). Our analysis showed that the variance

explained by a principal component, and hence its noise toler-
244 Cell Systems 2, 239–250, April 27, 2016
ance, increases with the covariance of genes within the associ-

ated module (Figure 4A) and also the number of genes in the

module (Figures S3A–S3C). While highly expressed genes

also contribute to noise tolerance, in the Shen et al. (2012) da-

taset we found little correlation between the expression level of

a gene and its contribution to the error of the first principal

component (R2 = 0.13; Figure S3D).

This analysis predicts that the large groups of tightly co-

varying genes observed in the Shen et al. (2012) and Zeisel

et al. (2015) datasets will contribute significantly to principal

value separation and noise tolerance. To directly quantify the

contribution of covariance to principal value separation in these

data, we randomly shuffled the sample labels for each gene. In

the shuffled data, genes vary independently, which eliminates



Figure 4. Modularity of Gene Expression Enables Accurate, Low-Depth Transcriptional Program Identification

(A) Variance explained and covariance matrix for increasing gene expression covariance in a model.

(B) Variance explained by different principal components for the Zeisel et al. (2015) dataset. Covariance matrix shows large modules of covarying genes (middle).

Dominant transcriptional programs are robust to low-coverage profiling as predicted by model (bottom). Shuffling the dataset destroys the modular structure,

resulting in noise-sensitive transcriptional programs. For the shuffled data, 4,250 transcripts are required for 80% accuracy of the first three principal compo-

nents, whereas 340 transcripts suffices for the original dataset.
gene-gene covariance and raises the effective dimensionality

of the data. In contrast to the natural, low-dimensional data,

the principal values of the resulting data were nearly uniform

in magnitude. This significantly diminished the differences be-

tween the leading principal values within the shuffled data (Fig-

ure 4B, top).

Consequently, reconstruction of the principal components

became more read-depth intensive. For instance to recover

the first principal component with 80% accuracy from the shuf-

fled Zeisel et al. (2015) data, 12.5 times more transcripts are

required than for the unshuffled data (Figure 4B, bottom). We

reached a similar conclusion for the mouse ENCODE data,

where shuffling also decreased the differences between the

leading principal values and the rest, causing a 23-fold increase

in sequencing depth required to recover the first principal

component with 90% accuracy (Figure S4).

Large-Scale Survey Reveals that Shallow mRNA-Seq Is
Widely Applicable due to Gene-Gene Covariance
Both our analysis of Equation 1 and our computational investiga-

tions of mRNA-seq datasets suggest that high gene-gene co-

variances increase the distance of leading principal values

from the rest, thereby enabling the recovery of dominant prin-

cipal components at low mRNA-seq read depths. This finding,
if a common phenomenon, suggests that shallow mRNA-seq

may be rigorously employed when answering many biological

questions. To assess whether our findings are broadly appli-

cable, we performed a broad computational survey of available

gene expression data.

Since both gene covariances and principal values are funda-

mental properties of the biological systems under study, these

quantities may be analyzed using the wealth of microarray data-

sets available, leveraging a larger collection of gene expression

datasets as compared to mRNA-seq (see Figure S5A for ana-

lyses of several mRNA-seq datasets). We selected 352 gene

expression datasets from the GEO (Edgar et al., 2002) spanning

three species (yeast, 20 datasets; mouse, 106 datasets; and hu-

man, 226 datasets) that each contained at least 20 samples and

were performed on the Affymetrix platform.

Despite the differences between these datasets in terms of

species and collection conditions, they all possessed favorable

principal value distributions reflecting an effective low dimen-

sionality. For instance, on average the first principal value was

roughly twice as large as the second principal value, and

together the first five principal values explained a significant ma-

jority of the variance, suggesting that these datasets contain a

few, dominant principal components (Figure 5A, left). By shuf-

fling these datasets to reorder the sample labels for each gene,
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Figure 5. Gene Expression Survey of 352 Public Datasets Reveals Broad Tolerance of Bioinformatics Analysis to Shallow Profiling

(A) Variance explained by the first five transcriptional programs of 352 published yeast, mouse, and human microarray datasets (left). Shuffling microarray

datasets removes gene-gene covariance and destroys the relative dominance of the leading transcriptional programs. Read depth required to recover with 80%

accuracy the first five principal components of the 352 datasets (right). Removing gene expression covariance from the data requires a median of approximately

ten times more reads to achieve the same accuracy.

(B) Accuracy of GSEA of the human microarray datasets at low read depth (100,000 reads, i.e., 1% deep depth). Reactome pathway database gene sets are

correctly identified (blue) or not identified (yellow) at low read depth (false positives in red). �80% of gene sets can be correctly recovered at 100,000 reads.

(C) Accuracy of GSEA as a function of read depth.
we again found that these principal components emerge from

gene-gene covariance.

We related this pattern of dominant principal components

to the ability to recover biological information with shallow

mRNA-seq in these datasets. To generate synthetic mRNA-

seq data from these microarray datasets, we applied a probabi-

listic model to simulate mRNA-seq at a given read depth (see the

Experimental Procedures). We found that with only 60,000 reads

per sample, 84% of the 352 datasets have %20% error in their

first principal component. This translates into an average of

almost 1,000% read depth savings to recover the first principal

component with an acceptable PCA error tolerance of 20% (Fig-

ure 5A, right). By applying gene set enrichment analysis (GSEA)

to the first principal component of each of the 352 datasets at

low (100,000 reads per sample) and high read depths (10 million
246 Cell Systems 2, 239–250, April 27, 2016
reads per sample), we found that >60% of gene set enrichments

were retainedwith only 1%of the reads (Figures 5B and 5C). This

analysis demonstrates that biological information was also re-

tained at low depth.

Collectively, our analyses demonstrate that the success of

low-coverage sequencing relies on a few dominant transcrip-

tional programs. We also show that many gene expression data-

sets contain such noise-resistant programs as determined by

PCA and identified them with dominant dimensions in the data-

set. Furthermore, low dimensionality and noise robustness are

properties of the gene expression datasets themselves and exist

independent of the choice of analysis technique. Therefore, un-

supervised learningmethods other than PCAwould reach similar

conclusions, an expectation we verified using non-negative ma-

trix factorization (Figure S5B).



The Read Depth Calculator: A Quantitative Framework
for Selecting Optimal mRNA-Seq Read Depth and
Number of Biological Samples
Because the optimal choice of read depth in an mRNA-seq

experiment is of widespread practical relevance, we developed

a read depth calculator that can provide quantitative guidelines

for shallow mRNA-seq experimental design. Having pinpointed

the factors that determine the applicability of shallow mRNA-

seq, we applied this understanding to determine the read depth

and number of biological samples to profile when designing an

experiment. To do so, we simplified the principal component er-

ror described by Equation 1 by assuming that the principal

values of mRNA-seq data are ‘‘well separated,’’ i.e., that the ratio

between consecutive principal values li+1/li is small (as defined

in the Supplemental Information, section 2.1), an assumption

justified by our large-scale microarray survey (see Figures S5C

and S5D). These assumptions enable us to provide simple

guidelines for making important experimental decisions, for

example, choosing read depth, N:

Nz
k2

nlikpci �dpci k
2

(Equation 2)

where n is the number of biological samples and k is a constant

that can be estimated from existing data (see the Supplemental

Information, section 2.1 for a derivation of this equation and its

limitations). This relationship can be understood intuitively. First,

Equation 2 states that the principal component error decreases

with read depth, a consequence of the well-known fact that the

signal-to-noise ratio of a Poisson random variable is proportional

to
ffiffiffiffi
N

p
. The read depth also depends on li, which comes from the

li � lj term of Equation 1. Finally, the influence of the sample

number n on read depth follows from the definition of covariance

as an average over samples. (Figure S5E shows that n is approx-

imately statistically uncorrelated with principal values across the

microarray datasets.)

Equation 2 has implications for optimizing the tradeoff between

read depth and sample number in single-cell mRNA-seq experi-

ments. As principal component error depends on the product of

read depth and number of samples, error in mRNA-seq analyses

can be reduced equivalently in two ways, by either increasing the

total number of profiled cells or the transcript coverage. To illus-

trate this point, we computationally determined the error in the

first principal component of the single cell mouse brain data

from Zeisel et al. (2015) as a function of cell number. Consistent

with Equation 2, our calculations show that increasing the num-

ber of profiled cells reduces error in the first principal component

(Figure 6A). Furthermore, we show thatwith the Zeisel et al. (2015)

data, multiple different experimental configurations with the

same total number of transcripts can yield the same principal

component error. For example, 100,000 transcripts divided

between either 50 or 400 cells both yield a principal component

error of �20%. This result is of particular relevance in single-

cell experiments because transcript depth per cell is currently

limited by a �20% mRNA capture efficiency, and so cannot be

easily increased (Shalek et al., 2014). In such cases, limited

sequencing resources might be best used to sequence more

cells at low depth rather than allocating sequencing resources

to oversampling a few thousand unique transcripts.
Experimentalists can use the read depth calculator to pre-

dict requirements for read depth or sample number in high-

throughput transcriptional profiling given their desired accuracy

based on the statistics of principal value separation in our global

survey. Figure 6B shows the reads required for desired accu-

racies and an assumed principal value for a human transcrip-

tional experiment with 100 samples (typical values for the first

five principal values for human are indicated in dashed lines).

As an illustration, a hypothetical experiment with a typical first

principal value of 1.4 3 10�5 (median principal value from the

226 human microarray datasets) and 100 samples where 80%

PCA accuracy is tolerable requires less than 5,000 reads per

experiment or less than 500,000 reads in total, occupying less

than 0.125% of a single sequencing lane in the Illumina HiSeq

4000.

The predictions from this analytically derived read depth

calculator are demonstrably accurate. We compared the analyt-

ically predicted number of reads required for 80%PCA accuracy

in the first five transcriptional programs to the value determined

through simulated shallow mRNA-seq for 226 microarray and 4

mRNA-seq human datasets. We determined k empirically by

fitting 50% of the datasets. Cross-validation with the remaining

50% of the datasets showed remarkable agreement between

the analytical predictions and computationally determined

values. In these calculations, the analytically predicted number

of reads required to reach 80% accuracy deviates from the

depth required in simulation by less than 10% (Figure 6C). The

read depth calculator is available online (http://thomsonlab.

github.io/html/formula.html).

Finally, while we use the first principal component for illustra-

tion, Equation 2 can be applied to any principal component,

including the trailing principal components. Recent work dis-

cusses a statistical method to identify those principal compo-

nents that are likely to be informative, and this work can be

used in conjunction with Equation 2 to pinpoint the relevant prin-

cipal components and the sequencing parameters needed to es-

timate them satisfactorily (Klein et al., 2015).

DISCUSSION

Single-cell transcriptional profiling is a technology that holds

the promise of unlocking the inner workings of cells and uncov-

ering the roots of their individuality (Klein et al., 2015; Macosko

et al., 2015). We show that for many applications that rely on

the determination of transcriptional programs, biological in-

sights can be recapitulated at a fraction of the widely proposed

high read depths. Our results are based on a rigorous mathe-

matical framework that quantifies the tradeoff between read

depth and accuracy of transcriptional program identification.

Our analytical results pinpoint gene-gene covariance, a ubiqui-

tous biological property, as the key feature that enables un-

compromised performance of unsupervised gene expression

analysis at low read depth. The same mathematical framework

also leads to practical methods to determine the optimal

read depth and sample number for the design of mRNA-seq

experiments.

Given the principal values that we observe in the humanmicro-

array datasets, our analysis suggests that one can profile tens of

thousands of samples, as opposed to dozens, while still being
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Figure 6. Mathematical Framework Provides a Read Depth Calculator and Guidelines for Shallow mRNA-Seq Experimental Design

(A) Error in the first principal component of the Zeisel et al. (2015) dataset for varying cell number and read-depth. Black circles denote a fixed number of total

transcripts (100,000). Error can be reduced by either increasing transcript coverage or the number of cells profiled.

(B) Number of reads required (color) to achieve a desired error (y axis) for a given principal value (x axis). Typical principal values (dashed black vertical lines) are

the medians across the 352 gene expression datasets.

(C) Error of the read depth calculator (Equation 2) across 176 gene expression datasets used for validation (out of 352 total). The calculator predicts the number of

reads to achieve 80%PCA accuracy in each dataset (colored dots). The predicted values closely agree with simulated results, with themedian error <10% for the

first five transcriptional programs.
able to accurately identify transcriptional programs. At this scale,

researchers can perform entire chemical or genetic knockout

screens or profile all �1,000 cells in an entire Caenorhabditis

elegans, 40 times over, in a single 400,000,000 read lane on

the Illumina HiSeq 4000. Because shallowmRNA-based screens

would provide information at the level of transcriptional pro-

grams and not individual genes, complementing these experi-

ments by careful profiling of specific genes with targeted

mRNA-seq (Fan et al., 2015) or samples of interest with conven-

tional deep sequencing would provide a more complete picture

of the relevant biology.

Fundamentally, our results rely on a natural property of gene

expression data: its effective ‘‘low dimensionality.’’ We observed

that gene expression datasets often have principal values that

span orders of magnitude independently of the measurement

platform and that this property is responsible for the noise toler-
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ance of early principal components. These leading, noise-robust

principal components are effectively a small number of ‘‘dimen-

sions’’ that dominate the biological phenomena under investiga-

tion. These insights are consistent with previous observations

that were made following the advent of microarray technology

(Eisen et al., 1998; Segal et al., 2003; Bergmann et al., 2003), pro-

posing that low dimensionality arises from extensive covariation

in gene expression. We suggest that the covariances and prin-

cipal values in gene expression are determined by the architec-

tural properties of the underlying transcriptional networks, such

as the co-regulation of genes, and therefore it is the biological

system itself that confers noise tolerance in shallow mRNA-seq

measurements. Related work in neuroscience has explored the

implications of hierarchical network architecture for learning

the dominant dimensions of data (Saxe et al., 2013; Hinton and

Salakhutdinov, 2006).



Discovering and exploiting low dimensionality to reduce un-

certainty in measurements is at the heart of modern signal pro-

cessing techniques (Donoho 2006; Candès et al., 2006). These

methods first found success in imaging applications, where

low dimensionality arises from the statistics and redundancies

of natural images, enabling most images to be accurately repre-

sented by a small number of wavelets or other basis functions.

Our results suggest that shallow mRNA-seq is similarly enabled

by an inherent low dimensionality in gene expression datasets

that emerges from groups of covarying genes. Just as only a

few wavelets are needed to represent most images, only a few

groups of transcriptional programs seem to be necessary to pro-

duce a coarse-grained representation of transcriptional state.

We believe that the measurement of many diverse biological

systems could benefit from the identification and analysis of hid-

den low-dimensional representations. For instance, proteome

quantification, protein-protein interactions, and human genetic

variant data all contain high levels of correlations, suggesting

these datasets may all be effectively low dimensional. We antic-

ipate new modes of biological inquiry as advances from signal

processing are integrated into biological data analysis and as

the underlying structural features of biological networks are ex-

ploited for large-scale measurements.

EXPERIMENTAL PROCEDURES

Simulated Shallow Sequencing through Down-sampling of Reads

Transcriptional datasets were obtained from the GEO (Zeisel et al. [2015] was

from http://www.linnarssonlab.org). mRNA-seq read counts were normalized

by the total number of reads in the sample. For each read depth, we model the

sequencing noise with a multinomial distribution. The Zeisel et al. (2015) data

were sampled without replacement because of the unique molecular identi-

fiers (see Supplemental Experimental Procedures).

Finding Genes Significantly Associated with a Principal Component

We first generated a null distribution of gene loadings from the principal com-

ponents of a shuffled, transcript-countmatrix. All p valueswere computed with

respect to this distribution; averages over 15 replicates are reported.

Gene Set Enrichment Analysis

GSEA was performed with 1,370 gene lists from MSigDB (Subramanian et al.,

2005). The loadings of each principal component were collected in a distribu-

tion and loadings within 2 SDs from the mean of this distribution were consid-

ered for analysis. We applied a hypergeometric test with a significance p value

cutoff of 10�4.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and five figures and can be found with this article online at http://dx.doi.org/

10.1016/j.cels.2016.04.001.
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