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A novel approach to strongly contracted N-electron valence perturbation theory (SC-NEVPT2) as a
means of describing dynamic electron correlation for quantum chemical density matrix renormaliza-
tion group (DMRG) calculations is presented. In this approach the strongly contracted perturber func-
tions are projected onto a renormalized Hilbert space. Compared to a straightforward implementation
of SC-NEVPT2 with DMRG wavefunctions, the computational scaling and storage requirements are
reduced. This favorable scaling opens up the possibility of calculations with larger active spaces.
A specially designed renormalization scheme ensures that both the electronic ground state and
the perturber functions are well represented in the renormalized Hilbert space. Test calculations
on the N2 and [Cu2O2(en)2]2+ demonstrate some key properties of the method and indicate its
capabilities. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4950757]

I. INTRODUCTION

Describing complex molecular systems such as transition
metal complexes or extended conjugated π-systems with
quantitative accuracy is one of the greatest challenges in
electronic structure theory. Many of these systems require a
multiconfigurational treatment that properly takes into account
static electron correlation effects. The most widely used
approaches to capture static electron correlation effects are
the complete active space self-consistent field (CASSCF)
and complete active space configuration interaction (CASCI)
methods. As they both solve the full configuration interaction
(full-CI) problem within a finite active space they provide
the required flexibility to yield a qualitatively correct
wavefunction.1 Quantitative accuracy, however, is only
reached if dynamic electron correlation effects are considered,
too. Hence, a number of ways to treat dynamic electron
correlation on top of CASSCF and CASCI have been proposed
and established over the years including multiple flavors
of configuration interaction (CI), perturbation theory (PT),
and coupled cluster theory (CC).2–7 A common concern
of all of these methods is their computational cost. With
increasing number of strongly correlated electrons (and also
system size) the underlying CASSCF and CAS-CI calculations
become infeasible.1 In such situations one must either rely on
single-determinant based methods such as density functional
theory (DFT) or make approximations to the full-CI solution
within the active orbital space as, for example, provided
by the widely used restricted active space SCF method
(RASSCF).8,9 In the last decade the ab initio density matrix
renormalization group (DMRG) has been shown to provide
another reasonable and accurate alternative to complete active

a)Author to whom correspondence should be addressed. Electronic mail:
gkc1000@gmail.com

space methods.10–21 It can be regarded as an approximation to
the exact diagonalization of the large Hamiltonian matrix
in the basis of many-electron wavefunctions within the
active orbital space. A great advantage of DMRG is that
it approximately solves a problem whose complexity scales
exponentially with increasing system size by optimizing only
a polynomial number of parameters. Owing to this favorable
behavior DMRG is able to treat large active spaces on the
order of 20-80 orbitals.22–29

Treating dynamic electron correlation on top of large-
scale DMRG calculations is currently an active field of
research. It is possible to straightforwardly implement direct
analogues of multi-reference dynamic correlation methods on
top of DMRG wavefunctions. This has given rise to methods
such as DMRG-CAS-PT2,30 DMRG-MRCI,31,32 and DMRG-
SC-NEVPT2.33 However, none of these methods are yet able
to deal with the very largest active spaces accessible to DMRG.
At the heart of the problem is the amount of information about
the active space that is required as input to dynamic electron
correlation calculations. Even rather simple approximations
such as internally contracted CAS-PT2 require the evaluation
of active space density matrices of up to fourth order.3,4,30

For the aforementioned active space sizes a straightforward
calculation of these quantities quickly becomes prohibitive.
Therefore a number of approximate schemes have been
introduced in recent years where the complexity and amount
of required information about the active space are reduced.34

For example, canonical transformation (CT) theory which
was introduced by Chan and Yanai discards all density
matrices of higher than second order.35–38 In Zgid and Chan’s
cumulant version of SC-NEVPT2 and Yanai’s cumulant
versions of DMRG-CASPT2 and DMRG-MRCI higher
order density matrices are approximated by lower rank
cumulant expansions.31,39 A different route was taken in
Sharma’s recent MPS-PT2 and MPS-linear coupled cluster
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(MPS-LCC) methods where all states outside the active space
that contribute to the electronic ground state are approximated
as a matrix product state (MPS) which greatly reduces the
complexity of the problem.40,41 A combination of DMRG with
block correlated second order perturbation theory starting
from a GVB reference was proposed by Li et al.42,43 Also,
Sokolov and Chan recently used a time-dependent formulation
which bypasses the need for a contracted formulation and
avoids 4-particle density matrices.44 An alternative is to
forgo using the DMRG wavefunction as the reference or
to use simpler dynamic correlation methods. For example,
Reiher has recently published works where DMRG has been
combined with DFT in a range separated Ansatz as well
as an embedding scheme.45,46 All of the aforementioned
methods feature different tradeoffs between accuracy and
computational feasibility that allows them to treat differently
sized systems with varying accuracy.

In this work we present a novel approach to the
combination of DMRG and strongly contracted second order
N-electron valence perturbation theory (SC-NEVPT2) for
quantum chemical multireference calculations.5,6 The main
objective of this approach is to lower the cost to treat
systems with large active spaces and large orbital spaces
with a moderate and controllable accuracy. The complexity
of the problem and the computational cost are reduced by
projecting the perturber functions as well as the unperturbed
Hamiltonian onto a reduced Hilbert space. The form of this
reduced space is determined by a modified density matrix
renormalization procedure. This procedure ensures that both
the electronic ground state and the perturber functions are
accurately approximated during the calculation. We use test
calculations on the nitrogen dimer and [Cu2O2(en)2]2+ to
demonstrate the properties of the presented method as a
way of describing dynamical electron correlation in large
multireference systems.

II. THEORY

This section will be divided into three subsections.
Sections II A and II B comprise brief recapitulations of
the DMRG algorithm in multireference quantum chemistry
and the SC-NEVPT2 method, respectively. Eventually,
Section II C outlines the framework of the presented combi-
nation of both methods. In the following the total orbital
space is decomposed into three subspaces containing internal
(core), active, and external (virtual) orbitals. Internal orbitals
are labelled i, j, k, l while active orbitals are denoted by
orbital labels t, u, v , w and external orbitals carry labels a, b,
c, d. Orbital labels p, q, r , and s refer to general orbitals.

A. Matrix product states and the DMRG algorithm

The main focus of this work is on the novel combination
of SC-NEVPT2 with ab initio DMRG calculations. Hence,
this section highlights only some key features of matrix
product states (MPS’s) and the density matrix renormalization
group that are relevant for the present work. For more
detailed information we refer to a number of reviews
about the application of MPS’s and DMRG in quantum

FIG. 1. The arrangement of the active orbitals 1 to k on a one-dimensional
lattice and their division into three blocks L, R, and •. During the blocking
step L and • form the new block L′.

chemistry.12,25,47–49 In molecular ab initio DMRG calculations,
the DMRG algorithm is used to approximate the full-CI
solution within the active orbital space. For this purpose, the
k (usually localized) active orbitals are projected on a one-
dimensional lattice as depicted in Figure 1. In this scheme,
each active orbital is represented by a single site on the lattice.
Without going into any further detail we just note that the
order of the active orbitals on the one-dimensional lattice is a
critical aspect of the procedure and that a number of strategies
to determine suitable orders exist.50–52 Once a suitable order
has been found the active space wavefunction is approximated
as a MPS according to

|ΨMPS⟩ =

n

An1An2 · · ·Ank |n⟩ . (1)

Here, |n⟩ = |n1n2 · · · nk⟩ is the occupation number representa-
tion of any active space Slater determinant or configuration
state function. The expansion coefficients in Equation (1) are
computed as products of local site tensors At. For any given
orbital occupation nt, Ant

t is a M × M matrix and each At is
correspondingly a three-index tensor. The first and last local
site tensors are special as the dimensions of An1

1 and Ank
k

are 1 × M and M × 1, respectively. M is a preset parameter
usually referred to as the bond dimension, contraction depth,
or number of kept states. As the bond dimension M determines
the flexibility of the expansion coefficients, it also regulates
the accuracy of the approximation with higher values of M
corresponding to a more accurate approximation. For a given
MPS the DMRG ground state algorithm can be regarded as a
way to optimize the local site tensors Ant

t .
The DMRG algorithm is an iterative procedure that

successively optimizes the local site tensors at adjacent
sites on the lattice. During each iteration the local site
tensor for a specific site is optimized in three steps:
(i) blocking, (ii) solution of the Schrödinger equation, and
(iii) renormalization. The blocking step involves the division
of the lattice into three blocks: the left block L ranging from
site 1 to t − 1, the right block R consisting of sites t + 1 to
k, and the so called dot-block • on site t (Figure 1). Note
that this division pattern corresponds to the “one-site” flavor
of the DMRG. As the “one-site” algorithm tends to converge
to local minima, all presented calculations employ the more
stable and robust “two-site” algorithm, which is explained in
detail elsewhere,10 until convergence is (almost) reached and
then switch to the “one-site” algorithm. When the t’th local
site tensor is optimized during the “one-site” algorithm it is
advantageous to write the MPS from Equation (1) in its t’th
canonical representation,
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���Ψ
(t)
MPS


=


n1n2n3· · ·nN

Ln1Ln2 · · ·Lnt−1CntRnt+1 · · ·RnN

× |n1n2n3 · · · nN⟩
=

ltntrt

Cltntrt |ltntrt⟩ . (2)

Here, all local site tensors on the left side of site t are denoted
as Lnp whereas all local site tensors on the right side of
t are labelled Rnp. In the context of DMRG the matrices
Lnp and Rnp are sometimes referred to as left and right
rotation matrices and they satisfy the orthonormality relations
np

LnpTLnp = 1 and

np

RnpTRnp = 1. These matrices contain

the essential information about the renormalization process
(vide infra). In the second line of Equation (2), all left rotation
matrices are contracted and together with the set of Fock states
{|n1n2n3 · · · nt−1⟩} form a M-dimensional set of functions
{|lt⟩} that is associated with the left block. An analogous
M-dimensional set of functions {|rt⟩} is constructed on the
right block through contraction of all right rotation matrices.
Accordingly, the expansion coefficients in the t’th canonical
representation (second line of Equation (2)) feature three
indices. The expansion coefficient matrices of canonical
representations belonging to adjacent sites t and t + 1 can
be interconverted according to

Lnt−1TCntRnt+1 = Cnt+1. (3)

After division of the lattice into the three blocks and the
formation of the corresponding sets of functions, the direct
product space of {|lt⟩} and {|nt⟩} is formed,

��
l ′t
�	
= {|lt⟩} ⊗ {|nt⟩} . (4)

Accordingly, ���Ψ
(t)
MPS


is expanded as

���Ψ
(t)
MPS


=

l′trt

Cl′trt

�
l ′trt

�
. (5)

In the second step, the electronic Schrödinger equation
HC = EC is set up in the direct product basis

��
l ′t
�	
⊗ {|rt⟩}

and solved using standard quantum chemical tools such as
the Davidson or Lanczos diagonalization schemes.53,54 As a
result, the approximate electronic ground state Ψ0 and its
corresponding total energy are obtained as the lowest root
of the electronic Hamiltonian matrix H. Step (iii) features
the renormalization of

��
l ′t
�	

by means of a singular value
decomposition (SVD) of the traced reduced ground state
density matrix

D̂L = trr |Ψ0⟩ ⟨Ψ0| . (6)

In this way, the M most important states for the description of
Ψ0 that can be formed from elements in

��
l ′t
�	

are identified.
These M states form the renormalized basis

��
lrenorm
t

�	
.

Moreover, the SVD of D̂L yields the rotation matrix Lnt as the
mapping from

��
l ′t
�	

to
��

lrenorm
t

�	
which is in turn used to set

up the left basis for site t + 1 in the next blocking step, hence��
lrenorm
t

�	
= {|lt+1⟩}. Of course, it is also possible to perform

the SVD with the density of any other state obtained from the
preceding diagonalization step or the density of a weighted
sum of states. In this way one can optimize the rotation

matrices for the description of an excited state or multiple
excited states simultaneously. In any case, steps (i)–(iii) are
repeated for adjacent sites until the end of the lattice is reached.
A complete set of iterations for the entire lattice is called a
sweep. Once a sweep in one direction has been completed,
a sweep in the opposite direction is started using the left
rotation matrices as right rotation matrices and vice versa.
A complete DMRG calculation consists of multiple forward
and backward sweeps until convergence of the total energy is
reached. It is important to note that when the “one-site” scheme
is applied and the point of convergence is reached the form of
the ground state wavefunction is left unchanged throughout
an entire sweep. Hence, the k canonical representations
are equivalent 4M2-dimensional representations of the same
wavefunction.

Construction of the secular equation HC = EC in step
(ii) of a DMRG iteration requires the evaluation of matrix
elements of the electronic Hamiltonian which in second
quantization reads as

Ĥ =

pq

hpqâ†pâq +
1
2


pqr s

(pq | rs) â†pâ†r âsâq. (7)

Here, hpq and (pq | rs) are molecular one- and two-electron
integrals and â†p and âq are fermion creation and annihilation
operators, respectively. If the indices of the two electron
operator â†pâ†r âsâq are distributed over two different blocks,
its matrix elements can be evaluated as a product of local
matrix elements in the basis of the different blocks. For
example, if sites (orbitals) p and r are located on the
left block while sites q and s are located on the right
block, the matrix element of â†pâ†r âsâq between the two
functions ΦI = l ′t,1 ⊗ rt,1 and ΦJ = l ′t,2 ⊗ rt,2 can then be
written as

⟨ΦI | â†pâ†r âsâq |ΦJ⟩ =

l ′t,1rt,1

��� â
†
pâ†r âsâq

���l
′
t,2rt,2


=

l ′t,1

��� â
†
pâ†r

���l
′
t,2

 

rt,1

�
âsâq

�
rt,2

�
. (8)

Analogous equations can be formulated for operators whose
indices are distributed over other pairs of blocks, e.g., the
left and the dot block. During the blocking step of each
iteration of the DMRG algorithm one- and two-index operator
matrices of the form


l ′t,1

��� â
†
p
���l
′
t,2


,

l ′t,1

��� â
†
pâq

���l
′
t,2


, and

l ′t,1
��� â
†
pâ†q

���l
′
t,2


are generated on the left and right block.

In this work, the aforementioned operators are generated and
used in their spin-adapted form as described by Sharma and
Chan.55

B. N-electron valence perturbation theory

Second order N-electron valence perturbation theory
(NEVPT2), introduced by Angeli et al. in 2001, is now
established as a standard method to introduce dynamic
electron correlation into multireference quantum chemical
calculations.5,6 Generally, NEVPT2 follows the “diagonalize
and perturb” approach to multireference perturbation theory
and its starting point is an unperturbed wavefunction Ψ(0)

m

together with the corresponding Hamiltonian Ĥ0 that results
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from a preceding active space calculation,

���Ψ
(0)
m


=

CAS
I

cI |ΦI⟩ ,

Ĥ0 = P̂CASĤ P̂CAS,

Ĥ0
���Ψ

(0)
m


= Em

���Ψ
(0)
m


.

(9)

Here, the index m indicates that Ψ(0)
m is the m’th root of the

secular system of equations defined by the CASSCF problem
and Em denotes the energy eigenvalue corresponding to Ψ(0)

m .
Furthermore, it is implied that Ψ(0)

m features nv active electrons
and nc inactive electrons.

The space of perturber functions for NEVPT2 is defined
as the first order interacting space (FOIS) which is generated
by the action of Ĥ on the reference functionΨ(0)

m . Any function
Ψ

(nk),λ
µ contained in the FOIS can be written as a direct product

of two functions, i.e.,Ψ(nk),λ
µ = Ψ

nv+nk
µ ⊗ Φ−nkλ , whereΨnv+nk

µ

is the µ’th multireference function describing the active orbital
part with nv + nk electrons and Φ−nkλ is an orbital product of
inactive orbitals where nk electrons have been removed. In this
notation λ denotes the fixed occupation pattern of the inactive
orbitals of Ψ(nk),λ

µ . The subspace of all perturber functions
with a given inactive occupation pattern λ and number of
transferred electrons nk will be referred to as S(nk)

λ =

Ψ

(nk),λ
µ


.

In the strongly contracted form of NEVPT2 each S(nk)
λ is

represented by a single function, Ψ(nk)
λ , that is simply the sum

of all functions contained in S(nk)
λ . More precisely,

���Ψ
(nk)
λ


= V̂ (nk)

λ
���Ψ

(0)
m


= PS

(nk)
λ Ĥ ���Ψ

(0)
m


, (10)

where eight different classes of operators V̂ (nk)
λ can be

defined6

V̂ (0)
i j,ab

= γi jγab

−1/2,1/2
στ

(ia | jb) â†aσâiσâ†
bτ

â jτ + ( ja | ib) â†aσâiσâ†
bτ

âiτ


i ≤ j , a ≤ b,

V̂ (−1)
ab, i
= γab

active
t

−1/2,1/2
στ

(ia | tb) â†aσâiσâ†
bτ

âtτ + ( ja | ib) â†aσâtσâ†
bτ

âiτ


a ≤ b,

V̂ (1)
i j,a = γi j

active
t

−1/2,1/2
στ

(ia | jt) â†aσâiσâ†tτâ jτ + ( ja | it) â†aσâ jσâ†tτâiτ


a ≤ b,

V̂ (−2)
ab
= γab

active
tu

−1/2,1/2
στ

(ta | ub) â†aσâtσâ†
bτ

âuτ a ≤ b,

V̂ (2)
i j = γi j

active
tu

−1/2,1/2
στ

(it | ju) â†tσâiσâ†uτâ jτ a ≤ b,

V̂ (0)
i,a =

active
tu

−1/2,1/2
στ

(ia | tu) â†aσâiσâ†tτâuτ + (it | ua) â†tσâiσâ†aτâuτ


+

−1/2,1/2
σ

heff
ai â
†
aσâiσ,

V̂ (−1)
a =

active
tuv

−1/2,1/2
στ

(au | tv) â†aσâuσâ†tτâvτ


+

act
t

−1/2,1/2
σ

heff ′
at â†aσâtσ,

V̂ (1)
i =

active
tuv

−1/2,1/2
στ

�(iu | tv) â†aσâuσâ†vτâtτ

	
+

act
t

−1/2,1/2
σ

heff
t i â†tσâiσ,

(11)

with γpq = 1 − 1
2 δpq. For perturber classes with contractions

over active indices the two-electron (and one-electron)
integrals act as weights in the summation and hence account
for the specific importance of each contributing function. The
effective one-electron integrals heff

pq and heff ′
pq in Equation (11)

incorporate the interaction between active and internal orbitals
in a mean-field way and are defined as

heff
pq = hpq +


i

2 (ii | pq) − (pi | iq) ,

heff ′
pq = heff

pq −

t

(pt | tq) . (12)

It can be seen that the perturber functions ���Ψ
(nk)
λ


in

Equation (10) are orthogonal but not normalized.5 The squared
norm N (nk)

λ =

Ψ

(nk)
λ |Ψ(nk)

λ


plays an important role for SC-

NEVPT2 as it enters the equation for the second order
perturbed energy as well as for the first order perturbed
wavefunction,

E(2) =

nkλ

N (nk)
λ

E(0)
m − E(nk)

λ

,

Ψ
(1)
m =


nkλ

���Ψ
(nk)
λ

 
N (nk)
λ

E(0)
m − E(nk)

λ

.

(13)
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A critical aspect of the SC-NEVPT2 method is the assignment
of an energy E(k)

l
to a given perturber function Ψ(k)

l
. In many

instances of multireference perturbation theory, E(k)
l

is taken
as the energy expectation value


Ψ

(nk)
λ

��� Ĥ ���Ψ
(nk)
λ


and the

same choice has been made in this work. The complexity of
the computation of E(k)

l
is significantly reduced by applying

Dyall’s approximation to the zeroth order Hamiltonian. Within
this approximation the Hamiltonian is divided into an inactive
part that only contains diagonal one-electron terms and a more
sophisticated active part,56

ĤDyall
0 =


i

εiÊi
i +

a

εaÊa
a + C +


tu

ĥeff
tu Ê t

u

+
1
2


tuvw

(tu | vw) �Ê t
uÊv

w − δuvÊ t
w

	
, (14)

with Êp
q =

−1/2,1/2
σ

â†pσâqσ being second quantized replacement

operators. The presence of the full two-electron interaction
within the active orbital space in ĤDyall

0 ensures the
absence of any intruder-state problems in SC-NEVPT2
calculations. Furthermore, Ψ(0)

m is still an eigenfunction of
ĤDyall

0 and given the right choice of constant C = 2

i

hii

+

i j
{2 (ii | j j) − (i j | ji)} − 2


i
εi the eigenvalue of the

reference function Ψ(0)
m is unaltered by this choice of zeroth

order Hamiltonian. Hence,

ĤDyall
0

���Ψ
(0)
m


= Em

���Ψ
(0)
m


. (15)

In the following, when Ĥ0 is used, we imply usage of ĤDyall
0 .

In regular SC-NEVPT2 calculations on top of a CASCI
or CASSCF reference function, the norm N (nk)

λ and energy
expectation value E(nk)

λ of any given perturber function is
evaluated using active space densities of up to fourth order
of the zeroth order function. The corresponding formulae
can be found in the original works of Angeli et al.5,6 Sheng
et al. implemented this classical approach to incorporating
SC-NEVPT2 with DMRG.33 As outlined above, this approach
is in general not feasible for large-scale DMRG calculations
with more than 24 orbitals due to the cost of computing the
4-particle density matrix. For this reason, in Sec. II C we will
introduce a projection approximation to reduce the cost of
evaluating the norm and energy expectation value for the most
expensive classes of perturber functions. For perturber classes
V̂ (0)
i j,ab

, V̂ (−1)
ab, i

, and V̂ (1)
i j,a, however, the evaluation of N (nk)

λ and

E(nk)
λ requires density matrices of only up to second order.

Therefore, these classes are treated in a classical way using
density matrices provided by the DMRG calculation.57,58

At this point, it needs to be noted that the combination
of DMRG and the strongly contracted form of NEVPT2
faces two fundamental problems. First, the error introduced
by the contraction over active indices will increase with
the size of the active space. The integrals incorporated
in the definition of the contracted perturber functions (cf.
Equation (11)) act as weights of the different functions
in the contraction and partially redeem this shortcoming.
Nevertheless, the contraction error will become non-negligible
for active spaces on the order of 20-40 orbitals. Second,

it has recently been shown by Neese et al. that the SC-
NEVPT2 method is not invariant with respect to orbital
rotations within the active space.59 Thus, results that have
been obtained from a DMRG-SC-NEVPT2 calculation with
localized active orbitals may differ from their canonical
counterparts.

C. DMRG-proj-SC-NEVPT2
1. Renormalized perturber functions

This section outlines the details of the presented approach
to SC-NEVPT2 as a means of treating dynamic electron
correlation in a quantum chemical DMRG calculation. First,
it should be noted that, if applied as described above, the
DMRG algorithm yields an approximation to the FCI solution
for the active orbital space that does not contain any reference
to the internal orbitals. The connection to the internal orbitals
is restored by replacing the one-electron integrals in the
Hamiltonian matrix (cf. Equation (7)) by the effective one-
electron integrals heff

pq from Equation (12). Furthermore, in
order to construct a suitable zeroth order wavefunction the
resulting MPS has to be multiplied with an orbital product of
doubly occupied internal orbitals,

Ψ
(0) = ΨMPS ⊗ Φ

(0). (16)

In Equation (16), the index m was dropped because it is
implied that ΨMPS approximates the electronic ground state.
In principle, however, the presented formalism is applicable
to any excited state as well. The orbital product function Φ(0)
describes a fully occupied set of internal orbitals together
with an empty set of virtual orbitals. It should be noted
that the procedure illustrated in Equation (16) is completely
analogous to the construction of perturber functions in
Sec. II B. Based on Equation (16) one could define perturbers
by acting the operators in Equation (11) on the zeroth order
wavefunction. Because of the special form of the perturber
operators, the resulting perturber function would also be
in the form of Equation (16), namely a MPS multiplied
by a simple orbital product function (now with additional
holes and particles outside of the active space). However, the
resulting MPS would in general be of larger bond dimension
than the bond dimension used for the zeroth order DMRG
wavefunction. Further, it would involve a different set of
site tensors to the zeroth order wavefunction. Simplifications
occur therefore if we project the action of perturber operators
into the renormalized states of the DMRG wavefunction
associated with a given site w. This ensures that the perturber
functions share the same site tensors as the zeroth order
wavefunction save for the C tensor at site w. With the projector
on the canonical representation of site w being defined as
P̂DMRG
w =


l′wrw

�
l ′wrw

� 

l ′wrw

�
and Q̂DMRG

w = P̂DMRG
w ⊗ 1̂inactive we

can thus project any (strongly contracted) perturber function
in the desired form,

Ψ̃
(nk)
λ = Q̂DMRG

w Ψ
(nk)
λ = Q̂DMRG

w V̂ (nk)
λ

���Ψ
(0) . (17)

Accordingly, the second order perturbed energy becomes
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E(2) =

kl

N (nk)
λ

E(0)
m − E(nk)

λ

=

kl



Ψ(0)� V̂ (nk)†

λ Q̂DMRG
w V̂ (nk)

λ

�
Ψ(0)�

E(0) −


Ψ(0)� V̂ (nk)†

λ Q̂DMRG
w Ĥ0Q̂DMRG

w V̂ (nk)
λ

�
Ψ(0)� .

(18)

As the presented method currently only calculates perturbed
energies, Equation (18) is the central equation of this work.
Note that Equation (18) gives the exact SC-NEVPT2 energy
in the limit of an infinitely large bond dimension. For finite
bond dimension, the projection approximation will be most
accurate if we choose a site w near the middle of the lattice,
since it is here that the largest number of renormalized states
appear. For this reason, we will work with the projection to
the renormalized states at the middle of the lattice denoted by
w = t̄.

2. Calculation of the norm and the energy
expectation value

In order to evaluate the norm and energy expectation
values in Equation (18) the perturber functions Ψ̃(nk)

λ need
to be constructed in the renormalized space of the DMRG
algorithm. Creation and annihilation operators that act on the
inactive orbital space do not have to be evaluated explicitly
since the inactive part of the zeroth order function takes a
very simple form and the unperturbed Hamiltonian Ĥ0 as
well as the projection operator Q̂DMRG

w feature only diagonal
elements. In contrast, the active part of the perturber functions
is constructed explicitly using the reduced one- and two-index
renormalized operator matrices (vide supra) available from the
preceding DMRG calculation.10,55 For example, the perturber
function Ψ̃(−2)

ab
is constructed in the renormalized DMRG basis

according to


l ′wrw ⊗ ab; SM

�
V̂ (−2)
ab

���Ψ
(0)SM


=

S+1
S′=S−1

1
Γ=0


tu

√
2S′ + 1
√

2S + 1



l ′wrwS′

�
Â†Γtu ∥ΨMPSS⟩

· (au | bt) ·
S′

M′=−S′

Γ
m=−Γ

(−1)Γ+m

×UΓ−mS′M′
SM UΓ−mS′M′

SM . (19)

The term |ab⟩ on the left hand side of Equation (19)
represents an orbital product of inactive orbitals with
additional electrons in external orbitals a and b whereas�
l ′wrw

�
denotes a function contained in the renormalized active

space. Moreover, the pairs of numbers (S,M), (S′,M ′), and
(Γ,m) denote total spin and magnetic spin quantum numbers.
The last term on the right hand side of Equation (19)
features a sum of Clebsch-Gordan coefficients which

for S = 0 becomes
S′

M′=−S′

Γ
m=−Γ

(−1)Γ+mUΓ−mS′M′
00 UΓ−mS′M′

00

= δS′Γ. Analogous formulas to Equation (19) for Ψ̃(2)
i j and

Ψ̃
(0)
ia can be found in Appendix A.

Once the perturber functions are constructed in a given
renormalized representation their norm is readily calculated

as a vector product in the renormalized basis
��

l ′wrw
�	

. As
all inactive operators only contribute terms of the form
δaaδbb = 1 to the norm the inactive part of the perturber
function enters the norm only indirectly via the one- and
two-electron integrals. Analogous to the norm, the energy
expectation value of a given perturber function is evaluated
as a vector times matrix times vector product in the same
renormalized basis as the norm. The required multiplication
of a function with the superblock Hamiltonian matrix is carried
out efficiently as described elsewhere.10 Here, the inactive part
contributes with an orbital energy difference. For example,

Ψ
(0)
ia
��� Ĥ0

���Ψ
(0)
ia


= Ψ

(0)T
ia H0Ψ

(0)
ia + εi − εa, (20)

where the first term on the right hand side denotes the vector
times matrix times vector multiplication in the renormalized
active space and εa and εi refer to the orbital energies of
orbitals a and i, respectively.

3. Construction and accumulation
of three-index operators

The construction of perturber functions Ψ̃(−1)
a and Ψ̃(1)

i

in the renormalized basis of a site t̄ = k
2 necessitates the

generation of operators with three active indices that are
not available from the preceding DMRG calculation (cf.
Equation (11)). Of course, it is highly desirable to construct
them as a product of local operators as outlined in Equation (8).
The actual form of such a product of operators depends on
the distribution of the three active indices t, u, and v over two
blocks. If the indices are not all located on the same block,
there exist three possible distributions, each corresponding to
a different product of operators. For example, the following
expressions are obtained for the reduced three-index operator
matrix Ô1/2

tuv that appears in Ψ̃(−1)
a :

Case 1: t and u are on the same block

Ô1/2
tuv =

√
2Ê0

tu⊗1/2 â1/2
v . (21)

Case 2: t and v are on the same block

Ô1/2
tuv =

1
Γ=0

√
2Γ + 1
√

2
ÊΓt v⊗1/2â1/2

u . (22)

Case 3: u and v are on the same block

Ô1/2
tuv =

1
Γ=0

(−1)Γ
√

2Γ + 1
√

2
ÂΓt v⊗1/2 â1/2

u . (23)

Analogous formulas for the operator appearing in Ψ̃(1)
i are

given in Appendix B. It is important to note that the
distribution of a given set of indices over two blocks depends
on the position in the sweep one is in. Consequently it
is possible to express the great majority of terms required
for the construction of Ψ̃(−1)

a and Ψ̃(1)
i as a product of

local operators. One must only choose an adequate iteration
in the sweep for each term (vide infra) and then apply
subsequent renormalizations to obtain the appropriate (and
now approximate) representation for site t̄. The very few
exceptions are only met when t = u = v . In these cases
Equation (21) is also used but the tensor product cannot
be taken as a product of local tensors but has to be carried out
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explicitly in the local basis {|nt⟩}. But since the Hilbert space
on a single site is only 4-dimensional this is feasible.

In order to evaluate as many three index-operators as
possible as a product of two local operators according to
Equations (21)–(23) the operator matrices are generated and
accumulated over the course of two sweeps, in the following
referred to as forward and backward sweep. During each
iteration of the forward sweep all three-index operator matrices
with at least one index located on the dot-block and the
remaining indices located on the left block are constructed
until the middle of the lattice is reached. In this way, every
operator matrix with three indices on the left half of the lattice
is constructed once (and only once!). At the beginning of a
given iteration all previously constructed matrices are brought
to the current canonical representation according to

Ônew
tuv = Ôold

tuv ⊗ 1̂nt, (24)

where t is the site that corresponds to the dot-block •. At
the end of the renormalization step all constructed three-index
operator matrices are renormalized using the left rotation
matrix Lni

,

Ônew
tuv = LT

nt
Ôold

tuvLnt
. (25)

When the middle of the lattice is reached, all three-index
operators that are entirely located on the left side of the lattice
are constructed and brought to the canonical representation
associated with site t̄ = k

2 . During the remaining iterations
of the forward sweep the constructed three-index operator
matrices are left untouched and no further matrices are
constructed. All matrices with indices exclusively on the
right hand side of the lattice are constructed and transformed
in the same fashion during the first half of the backward
sweep. Eventually, when the backward sweep reaches the
middle of the lattice two sets of operators with their indices
located exclusively on the left and right side of the lattice,
respectively, are available in the canonical representation
associated with site t̄. The remaining operators are readily
evaluated as product of local operators in

���l
′
t̄


and {|r t̄⟩}.

With all required three-index operator matrices at hand the
perturber function Ψ̃(−1)

a is formed as


l ′t̄r t̄ ⊗ a; SM

�
V (−1)
a

���Ψ
(0)SM


=

t

S+1/2
S′=|S−1/2|

√
2S′ + 1
√

2S + 1
heff
at



l ′t̄r t̄S

′� â1/2
t ∥ΨS⟩

+

tuv

S+1/2
S′=|S−1/2|

√
2S′ + 1
√

2S + 1

×


l ′t̄r t̄S

′� Ô1/2
tuv ∥ΨS⟩ · (av | tu) . (26)

The corresponding formula for Ψ̃(1)
i is given in Appendix B.

4. A modified renormalization scheme

Projection of the perturber function on the renormalized
active space of site t̄ as outlined in Section II C 1 implies that
some information about the perturber functions is discarded
unless, of course, the bond dimension is infinite. Thus only
if the discarded information is not essential for the correct
evaluation of the norm and energy expectation value are the
here made approximations valid. However, in the regular
DMRG algorithm the renormalized space is optimized to
yield the best possible 4M2-dimensional representation of the
electronic ground state, which does not coincide with the
optimal representation of the perturber functions. A more
suitable representation of the perturber functions can be
obtained by taking them into account explicitly during the
renormalization step. In the presented method, the modified
density matrix

ρ′ = α |ΨMPS⟩ ⟨ΨMPS| + (1 − α) ρperturber (27)

enters the SVD. This modified density is a weighted sum
of the electronic ground state density and the active part of
the density of the first order interacting space (FOIS). More
precisely,

ρ̂perturber =

t

wt (S,S′) �ΨtSS′
� 

Ψ

tSS′
�

+

u

wu (S,S′) |ΨuSS′⟩ ⟨ΨuSS′|

+

tu


Γ

wtu (S,S′,Γ) �Ψt
uSS′Γ

� 

Ψ

t
uSS′Γ

�

+

tu


Γ

w ′tu (S,S′,Γ)
�
Ψ

t
uSS′Γ

� 

Ψ

t
uSS′Γ

�

+

tu


Γ

w ′′tu (S,S′,Γ) |ΨtuSS′Γ⟩ ⟨ΨtuSS′Γ|

+

tuv

wtuv (S,S′) �Ψtu
v SS′

� 

Ψ

tu
v SS′

�

+

tuv

w ′tuv (S,S′)
�
Ψ

t
uvSS′

� 

Ψ

t
uvSS′

�
(28)

which is a weighted sum of densities that correspond to
wavefunctions that originate from the action of active space
creation and annihilation operators on the ground state
MPS, such as

�
Ψt

uSS′Γ
�
=
(
â†t âu

)Γ
⊗S′ |ΨMPSS⟩. The weights

in Equation (28) are defined as the sum of squares of the
products of electronic integrals and prefactors as they appear
in the definition of the corresponding perturber classes (c.f.,
for example, Equation (19)). For example,

wtu (S,S′,Γ) =

i j

*.
,

√
2S′ + 1
√

2S + 1
· (t j | ui) ·

S′
M′=−S′

Γ
m=−Γ

(−1)Γ+mUΓ−mS′M′
SM UΓ−mS′M′

SM
+/
-

2

. (29)
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Introducing the density of Equation (27) to the renormalization
procedure ensures that those parts of the active space that
are most important for the description of the perturber
functions are incorporated in the renormalized space. Of
course, this improvement comes at the cost of a slightly
slower convergence of the ground state energy with respect
to the bond dimension M as compared to the standard
renormalization procedure. However, this effect is negligible
in reality because the convergence of the perturbation energy
is much slower than the convergence of the ground state
energy. Eventually it is important to note that the actual value
of the reference density weight α does not alter the final
result as one should converge both the ground state and the
perturbation energy up to a given threshold. Accordingly, α
only influences the relative convergence rate of both quantities.
If not otherwise stated, all calculations in Sec. III apply the
here presented renormalization scheme.

5. Scaling

The scaling of computational time and memory
requirements with respect to increasing the size of the
orbital spaces (nint, nact = k and next) and the bond dimension
M is a critical aspect of any quantum chemical DMRG
calculation. Table I summarizes the scaling of time and
memory requirements for the five classes of perturber
functions that are evaluated non-classically. In the case of
Ψ̃

(−2)
ab

, Ψ̃(2)
i j , and Ψ̃(0)

ia the CPU time scaling depends on three
steps of the calculation. The first step involves the generation
of the two-index operators and their contraction withΨMPS and
scales as O

�
n2

actM
3�. After their formation the intermediates

of the form Vtu = OtuC are kept in memory requiring memory
that scales as O

�
n2

actM
2�. Each of the n2

act intermediates is then
contracted with the electronic Hamiltonian taking O

�
n4

actM
3�

CPU time and results in intermediates σtu = H0Vtu with
storage requirements of O

�
n2

actM
2�. Eventually, the perturber

functions are built from the prestored intermediates with
a cost of O

�
n2

extn
2
actM

2� for Ψ̃(−2)
ab

. Note that for Ψ̃(2)
i j and

Ψ̃
(0)
ia the cost for this step actually scales as O

�
n2

intn
2
actM

2�

and O
�
nextnintn2

actM
2�, respectively. However, since generally

the number of external orbitals, next, exceeds the number
of internal orbitals, nint, the step of O

�
n2

extn
2
actM

2� will
become the computational bottleneck. Generally, the memory
requirements on the order of O

�
n2

actM
2� are of the same order

of magnitude as those of the underlying DMRG calculation.
The calculation of the contributions from Ψ̃(−1)

a and Ψ̃(1)
i

features five significant steps starting with the generation of
the operator matrices whose indices are located only on one

side of the lattice (vide supra). This step scales as O
�
n3

actM
2�

in computational time and since the storage requirement
scales as O

�
n3

actM
2� the operator matrices are stored on disk.

However, it is noteworthy that since the index combinations
for these operators are strongly restricted the requirement is
reduced by a factor of

� 1
2

�3
= 1

8 . As outlined above, the three-
index operators need to be renormalized during the modified
sweeps with a computational cost that scales as O

�
n3

actM
3�.

The third step involves the contraction of all three-index
operators with ΨMPS which costs O

�
n3

actM
3� computational

time. Importantly, the resulting intermediates Vtuv = OtuvC
are not kept in memory but directly added to the final
perturber functions thus prohibiting a true storage requirement
of O

�
n3

actM
2�. Generating the perturber functions in this

way scales as O
�
n3

actnext/intM2� and requires O
�
next/intM2�

memory. In the last step the active Hamiltonian is contracted
with Ψ̃(1)

i and Ψ̃(1)
i which scales as O

�
n2

actnext/intM3�. For
the evaluation of contributions from Ψ̃(−1)

a and Ψ̃(1)
i this step

together with the renormalization and contraction of the three-
index operators constitutes the computational bottleneck. At
this point it should be noted that each renormalization step
as it is introduced in Sec. II C 4 requires contraction of
some one-, two-, and three-index operators with ΨMPS. Hence,
the computational time for each renormalization step scales
as 3 · ñ2

actM
3 + 2 · ñ3

actM
3 where ñact denotes the number of

sites on the left (or right) block. However, the second, larger
term only applies until the middle of the lattice is reached.
The generation of the weights from Equation (28) scales
as n2

extñ
2
act + nextnintñ

2
act + n2

intñ
2
act + nextñ

3
act + nintñ

3
act which is

usually negligible compared to the cost of the contraction.
Note that in the projected implementation, the choice

has been made for each perturber class to minimize the
scaling with respect to the number of active orbitals, even
at a cost of quadratic scaling with the number of external
orbitals. However, it is possible to mix and match the projected
treatment of one class of perturber functions with a classical
treatment of other classes. For example, if one chooses to
build the 3-particle density matrix in a classical sense,33

the dominant scaling to treat the Ψ(−2)
ab

and Ψ(2)
i j perturbers

becomes M3n4
act + M2n6

act, eliminating the main dependence
on the number of external functions. We can also compare
the overall scaling of the projected algorithm with the scaling
of the classical treatment of all perturbers. There, the main
cost comes from perturber classes Ψ(−1)

a and Ψ(1)
i , which

involve the construction of the 4-particle active space density
matrix, leading to a scaling of M3n5

act + M2n8
act. If we assume

next ∝ nact, then we see that the projection approximation
significantly lowers the scaling of the SC-NEVPT2 algorithm

TABLE I. Scalings of computational costs and memory requirement for different perturber classes.

Perturber class CPU time scaling Memory scaling

Ψ
(−2)
ab

n2
actM

3+n4
actM

3+n2
actn

2
extM

2 n2
actM

2+n2
actM

2

Ψ
(2)
i j n2

actM
3+n4

actM
3+n2

actn
2
intM

2 n2
actM

2+n2
actM

2

Ψ
(0)
ia n2

actM
3+n4

actM
3+n2

actnextnintM
2 n2

actM
2+n2

actM
2

Ψ
(−1)
a n3

actM
2+n3

actM
3+n3

actM
3+n3

actnextM
2+n2

actnextM
3 n3

actM
2+nextM

2

Ψ
(1)
i n3

actM
2+n3

actM
3+n3

actM
3+n3

actnintM
2+n2

actnintM
3 n3

actM
2+nintM

2
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as compared to the classical implementation, thus potentially
allowing very large active spaces to be treated. The price to
pay is a projection error which must be converged with the
bond dimension. The numerical consequences of this error we
will now examine in Sec. III.

III. RESULTS

A. The N2 molecule

In this section a number of test calculations on the N2
molecule are presented and discussed in order to demonstrate
some key features of the projected DMRG-SC-NEVPT2
method. All presented calculations were performed using
a fully parallel version of the BLOCK program and feature
an active space of 8 electrons in 10 orbitals.10,55 The active
and inactive orbitals were optimized in a preceding CASSCF
calculation that employed the def2-TZVP basis set using the
ORCA program package.60,61 Note that during the calculations
presented in this section a feature of the BLOCK program that
automatically discards all states with an eigenvalue of less
than 10−12 in the SVD was disabled.

First, the impact of the modified renormalization scheme
described in Section II C 4 on projected DMRG-SC-NEVPT2
calculations was investigated. Figure 2 depicts the total
energy of N2 at a bond distance of 1.1 Å with respect
to the bond dimension M in the range of M = 30 − 150
states for a varying reference density weight α. All observed
changes in the total energy in Figure 2 solely originate from
changes of the perturbation energy since the unperturbed
energy is already converged to within 1 mEh of the CASCI
value for M = 25. When the FOIS density is not considered
during renormalization (α = 1) the energy decreases steeply
and converges to within 0.1 mEh of the exact CASCI+SC-
NEVPT2 value for M = 125. The curve for α = 0.5 in Figure 2
nicely demonstrates that the convergence of the total energy
towards the exact value is substantially accelerated by taking
the FOIS density into account according to Equation (27).
Shifting the reference density weight to α = 0.3 and α = 0.7
leads to only small energy differences compared to α = 0.5
(in fact the results for α = 0.7 and α = 0.5 are virtually

FIG. 2. Total energy of N2 calculated with projected DMRG-NEVPT2 for
varying bond dimensions and reference density weights.

indistinguishable in Figure 2). However, when only the
FOIS density enters the SVD (α = 0) the total energy starts
at a considerably lower value but converges much slower
(M = 500, not shown in Figure 2) to the final value than for
α = 0.5. Interestingly, the total energy approaches the exact
value from below in this case. In summary, the presented
results demonstrate that only an even mixture of reference and
FOIS density yields the desired convergence behavior.

The importance of converging the total energy is
underlined by the results presented in Figures 3(a) and 3(b).
It shows the calculated binding curve of N2 with varying
bond dimension M in comparison to the results obtained
from regular SC-NEVPT2 theory (denoted as CASCI+SC-
NEVPT2 results). For bond dimensions of M = 30 and
M = 50 the binding curve exhibits several visible bumps
that correspond to an unphysical behavior. The data presented
in Figure 3(b) reveal that the deviation from the exact curve
appears to be arbitrary (but positive) and does not follow a
systematic pattern. Only a tendency to higher deviations for
larger bond distances can be observed which may originate
from the more complicated structure of the wavefunction in
the bond breaking scenario. The lack of systematic errors with
different bond lengths reflects the fact that the DMRG sweeps
at different bond lengths may choose to retain renormalized
states of slightly different character (e.g., with a different
distribution of quantum numbers). At the M values considered
here, this behavior leads to only very small non-smoothness
of the CAS-CI energy, which is well converged at modest
M , but leads to large jumps in the PT2 energy, which
requires larger bond dimensions to converge. In principle, to
ensure smoothness one can use maximum overlap methods to
adiabatically evolve the DMRG renormalized basis from one
geometry to the next, but this was not done here. As expected,
with increasing bond dimension the deviations decrease and
the calculated binding curves approach the exact CASCI+SC-
NEVPT2 curve. At a value of M = 100 the curve in Figure 3(a)
is virtually indistinguishable from the exact curve and the
deviation is on the order of a few mEh (<5 mEh, cf.
Figure 3(b)). When M is increased further, the error decreases
below the mEh level. Similar observations are made for the
calculated spectroscopic constants displayed in Table II. For
a bond dimension of M = 100, when smoothness of the
binding curve is ensured, the calculated harmonic frequency
ωe approaches the frequency obtained for the combination of
CASCI+SC-NEVPT2. Interestingly, the equilibrium distance
Re and the anharmonicity constant ωexe are already for
M = 30 in good agreement with the values obtained from
CASCI-+SC-NEVPT2 and MRCI. However, it is somewhat
disappointing that M needs to be significantly larger than the
M required for an accurate zeroth order wavefunction. This
reflects the fact that a single renormalized basis is being used
to represent the ground state and the perturbers. This is the
price to pay for the low computational scaling with the number
of active orbitals of the current algorithm.

B. [Cu2O2(en)2]2+
In addition to the rather simplistic calculations on the N2

molecule we performed more challenging calculations on the
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FIG. 3. Calculated binding curves of
N2 (a) and deviation from the exact
CASCI+NEVPT2 curve (b) with vary-
ing bond dimension M . The reference
density weight has been fixed at α
= 0.5.

TABLE II. Calculated spectroscopic constants for N2.

Re (Å) ωe (cm−1) ωexe (cm−1)

CASCI(8,10)/SC-NEVPT2 1.096 2346.7 17.2
DMRG-proj-SC-NEVPT2(M= 30) 1.093 2367.0 17.1
DMRG-proj-SC-NEVPT2(M= 50) 1.091 2395.0 17.7
DMRG-proj-SC-NEVPT2(M= 100) 1.096 2351.2 17.3
MRCI(6,6) 1.093 2366.7 17.9
Experiment62 1.097 2358.6 14.3

dimeric [Cu2O2(en)2]2+ (Figure 4(a), en = ethylenediamine)
complex. [Cu2O2(en)2]2+ contains a (Cu2O2) core that is
an integral feature of the active site in a number of
copper enzymes.63,64 On account of its biological importance,
this (Cu2O2) core has been subject to a vast number of
spectroscopic and theoretical investigations including ab initio
DMRG calculations.36,39,65–74 In the course of this work, a
series of projected DMRG-SC-NEVPT2 calculations were
conducted on “structure 7” from Ref. 74 that features an
O–O bond distance of 1.60 Å. All calculations employed an
active space of 18 electrons in 20 orbitals that were optimized
in a preceding DMRGSCF (M = 1000) calculation with the
def2-SVP basis set using the ORCA program package.60,61

For test and demonstration purposes we chose the active
space to be still feasible with the presented method with
large bond dimensions but too large for a conventional
CASSCF/SC-NEVPT2 treatment. Active orbital occupation
numbers close to 0 and 2 indicate that all static electron
correlation effects are covered with this active space. Thus,
increasing the active space would only serve to include a minor
part of the dynamical electron correlation in the underlying
DMRG calculation.

Figure 4(b) shows the calculated total energy using the
modified renormalization scheme described in Section II C 4
with a fixed reference density weight of α = 0.5 versus the

used bond dimension. With increasing bond dimension the
energy decreases and reaches a value of −3087.1646 Eh at
M = 2500. Calculations that employ the “exact” DMRG-SC-
NEVPT2 scheme of Guo et al. on the same system using the
same orbitals yielded a value of 3087.1652 Eh (Figure 4(b)).33

Due to computational limitations the exact calculations are
restricted to bond dimensions of up to M = 1500. However,
the exact results are already converged beyond 1 mEh accuracy
at M = 500. These results demonstrate two key features of
proj-DMRG-SC-NEVPT2: While the algorithm allows for
calculations with larger bond dimensions and has a much lower
scaling with active space dimension than exact DMRG-SC-
NEVPT2 calculations it unfortunately requires comparably
large bond dimensions to achieve the same target accuracy of
less than 1 mEh.

IV. CONCLUSIONS

This work introduces a projected approach to SC-
NEVPT2 as a means to describe dynamic electron correlation
on top of molecular ab initio DMRG calculations. In this
approach the contributions to the perturbation energy are
calculated in two different ways. The contribution from
perturber classes Ψ(0)

i j,ab
, Ψ(−1)

i,ab
, and Ψ(1)

i j,a is evaluated
according to the formulae given by Angeli et al. in their
original work using active space reduced density matrices
of first and second order.6 The required reduced density
matrices are generated by well established procedures.57,58 In
contrast, the remaining perturber functions are approximated
from the one- and two-index renormalized operator matrices
that are generated and stored during the underlying DMRG
calculation. Formally the latter procedure corresponds to a
projection of the perturber functions on the renormalized
DMRG space at the centre of the lattice. With the
renormalized perturber functions at hand their contribution to
the perturbation energy is readily obtained from Equation (18).
While for Ψ̃(−2)

ab
, Ψ̃(0)

i,a, and Ψ̃(2)
i j the perturber functions are

FIG. 4. Ball and stick visualization
of [Cu2O2(en)2]2+ (a) and total energy
calculated with the projected DMRG-
NEVPT2 with respect to the bond di-
mension M (b). The reference density
weight in (b) has been fixed to α = 0.5.
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constructed during a single iteration, the required operator
matrices for perturber classes Ψ̃(−1)

a and Ψ̃(1)
i are accumulated

in the course of two entire sweeps.
The main objective of the presented method is to

circumvent the calculation of higher than second order density
matrices which becomes prohibitive for large active spaces.
Instead, only intermediates with a maximum of three active
space indices are generated and stored. This simplification
leads to an implementation with a scaling with the number of
active orbitals of only n4

act (assuming the number of external
orbitals is proportional to the number of active orbitals). The
cost is a loss of accuracy due to the projection approximation.
However, as the presented algorithm converges to the exact
CASCI+SC-NEVPT2 result for infinite bond dimensions,
the accuracy can in principle be estimated and controlled
by conducting a series of calculations with varying bond
dimension. The convergence of the total energy towards
the exact result can be accelerated by using the presented
improved renormalization scheme. This takes the action of
the perturbing operator explicitly into account and thus yields
a more balanced renormalized space.

Test calculations on the N2 molecule demonstrate the
effectiveness of the modified renormalization scheme in
improving the renormalized space for the description of the
perturber functions and hence the perturbed energy. Still it
is somewhat disappointing that converging the perturbation
energy to an accuracy of 1 mEh requires a bond dimension
that is significantly larger than the bond dimension required
to converge the underlying DMRG CAS calculation to the
same accuracy. Furthermore, the potential energy curves
shown in Figure 3 emphasize the importance of converging
the obtained results with respect to the bond dimension.
Otherwise the obtained curves may exhibit jumps. A series
of calculations on the dimeric [Cu2O2(en)2]2+ indicate that
the projection approximation can practically be applied to a

complicated problem in a non-trivial active space. However,
the most promising route forward for the future may be
to sacrifice some of the constraints used in the projection
approximation associated with the formally low scaling. For
example, different classes of perturbers could use different
MPS representations (to achieve higher accuracy for small
bond dimensions) and perturbers involving two external
indices could be evaluated classically (to remove the large
prefactor associated with the ratio of the number of external
to active orbitals). Such hybrid algorithmic formulations will
be studied in future works.
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APPENDIX A: FORMULAS FOR Ψ̃(2)
ij AND Ψ̃(0)

ia

The projection of Ψ(2)
i j onto the renormalized space is

given by

⟨Liri ⊗ i j; SM | V̂ (−2)
i j

���Ψ
(0)SM


=

S+1
S′=|S−1|

1
Γ=0


tu

√
2S′ + 1
√

2S + 1

× ⟨LiriS′ ∥ ÂΓtu ∥ΨMPSS⟩ · (t j | ui)

·
S′

M′=−S′

Γ
m=−Γ

(−1)Γ+mUΓ−mS′M′
SM UΓ−mS′M′

SM , (A1)

whereas the projection of Ψ(0)
ia reads to

⟨Liri ⊗ ia; SM | V̂ (−2)
ab

���Ψ
(0)SM


= 2

tu

⟨LiriS ∥ Ê0
tu ∥ΨMPSS⟩ (ai | tu) −

S+1
S′=|S−1|

1
Γ=0


tu

√
2S′ + 1
√

2S + 1

× ⟨LiriS′ ∥ ÊΓtu ∥ΨMPSS⟩ · (au | ti) ·
S′

M′=−S′

Γ
m=−Γ

(−1)Γ+mUΓ−mS′M′
SM UΓ−mS′M′

SM . (A2)

APPENDIX B: FORMULAS FOR Ψ̃(1)
i

The three-index operators appearing in Ψ̃(1)
i are evaluated

according to
Case 1: t and u are on the same block

˜̂O1/2
tuv =

1
Γ=0

(−1)Γ
√

2Γ + 1
√

2
ÂΓtu⊗1/2 â1/2

v . (B1)

Case 2: t and v are on the same block

˜̂O1/2
tuv =

1
Γ=0

(−1)1+Γ
√

2Γ + 1
√

2
ÊΓt v⊗1/2 â†1/2

u . (B2)

Case 3: u and v are on the same block

˜̂O1/2
tuv =

√
2Ê0

uv⊗1/2 â†1/2
t . (B3)

With these expressions at hand the perturber function Ψ̃(1)
i is

constructed using


l ′t̄r t̄ ⊗ i; SM

�
V (1)
i

���Ψ
(0)SM


=

t

S+1/2
S′=|S−1/2|

√
2S′ + 1
√

2S + 1
heff
at



l ′t̄r t̄S

′� â†1/2
t ∥ΨS⟩

+

tuv

S+1/2
S′=|S−1/2|

√
2S′ + 1
√

2S + 1



l ′t̄r t̄S

′� ˜̂O1/2
tuv

× ∥ΨS⟩ · (ti | uv) . (B4)
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