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ABSTRACT

It has been demonstrated that non-destructive inspection of plates can be performed by using two-dimensional
maps of instantaneous out-of-plane displacements obtained with a self-developed pulsed TV-holography system.
Specifically, the interaction of guided elastic waves with defects produces scattering patterns that contain in-
formation about the defects (position, dimensions, orientation, etc.). For quantitative characterization on this
basis, modeling of the wave propagation and interaction with the defects is necessary. In fact, the development
of models for scattering of waves in plates is yet an active research field in which the most reliable approach
is usually based on the rigorous formulation of elasticity theory. By contrast, in this work the capability of a
simple two-dimensional scalar model for obtaining a quantitative description of the output two-dimensional maps
associated to artificial defects in plates is studied. Some experiments recording the interaction of narrowband
Rayleigh waves with artificial defects in aluminum plates are presented, in which the acoustic field is obtained
from the TV-holography optical phase-change maps by means of a specially developed two-step spatio-temporal
Fourier transform method. For the modeling, harmonic regime and free-stress boundary conditions are assumed.
Comparisons between experimental and simulated maps are included for defects with different shapes.
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1. INTRODUCTION

Ultrasonic techniques are routinely employed for non-destructive testing (NDT) and evaluation of plate-like
structures in industry.1 Along the last three decades many new developments have been introduced that have
provided assessment results progressively more quantitative in an increasing number of applications. This has
been possible due to the simultaneous advances in theoretical studies of elastic wave propagation and scattering
and developments of numerical techniques that provide approximate solutions in practical applications.2

In our case, we have demonstrated that non-destructive inspection of plates can be performed by using two-
dimensional acoustic fields of instantaneous out-of-plane displacements obtained with a self-developed pulsed
TV-holography system.3, 4 The ultrasonic two-dimensional field maps the elastic wave scattering patterns, that
contain information related to defects (position, dimensions, orientation, etc.). For obtaining a quantitative
characterization on this basis, the most direct and reliable possibility would be to adapt to our system output
one of the existing numerical schemes based on the vectorial linear theory of elasticity (f.i. references 5–9).
Nevertheless, selection among this wide spectrum of possible models (and its subsequent adaptation) is far from
being direct in our case and the main reasons are twofold. On the one hand, in contrast to more classical ultrasonic
schemes (pulse-echo or pitch-catch classical configurations) that provide outputs with high temporal resolution
and low spatial information content, our system presents complementary characteristics providing information
with high spatial resolution, i.e. a large number of spatial samples (about 106), at a much smaller number of
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Figure 1. Scheme of a plate of thickness 2h with a cylindrical defect of diameter D and residual depth e.

temporal samples (typically 8). On the other hand, the field of view of the detected two-dimensional scattering
pattern contains tens of ultrasonic wavelengths, which means that the modeling of the wave propagation and
interaction has to be adequate within the mid-high frequency range. These two features invalidate or limit the
applicability of many existing approaches that have been designed for high temporal resolution outputs and/or
low frequency regime.

An alternative to vectorial models is to employ simplified theories as the basis for numerical or analytical
approximations. These type of models, that are valid only for a limited number of situations but that occur
often in practice, could have a wide applicability. In this context, plate theories have been employed recently
for analyzing the scattering of guided waves by cylindrical inclusions in plates.10 Also, a two-dimensional scalar
model has been employed for solving the inverse problem of scattering by cylindrical inclusions in plates using
experimental data obtained with a TV-holography technique close to ours.11 Reported results in reference 11
also include the presentation of simulated scattering patterns for different defect types but a direct comparison
between simulated and experimental ultrasonic field values is not presented.

In this work we study the capability of this two-dimensional scalar model for obtaining a quantitative descrip-
tion of the output two-dimensional maps associated to artificial defects in plates. We introduce the theoretical
framework for modeling in the harmonic regimen. Then we describe the TV-holography experimental system for
elastic wave detection and the procedure for obtaining the 2D acoustic field from optical phase-change maps by
means of a specially developed Fourier transform method. Also it is stated a brief outline of the state-of-the art
numerical method employed for obtaining simulated scattering data. Interactions of narrowband guided waves
with artificial defects in aluminum plates are recorded and compared with the corresponding simulated patterns.
To the best of our knowledge this is the first time that such a comparison is presented.

2. THEORETICAL FRAMEWORK

2.1 Linear elasticity theory
Basic relation of linear elasticity theory12 are included here to establish notation and the framework of the
simplified scalar model presented later in section 2.3. Referring to the geometry of figure 1 (x1, x2, x3) denote
cartesian coordinates, u = (u1, u2, u3) the displacement vector and

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
(1)

are the components of the strain tensor ε for the small (infinitesimal) strain regimen. In the case of a linear
isotropic solid its material characteristics can be specified only by Lamé constants λL and μL and the stress-strain
relationship simplifies to

τij = λLδij

∑
k

εkk + 2μLεij (2)

Proc. of SPIE Vol. 7389  738937-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/28/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



�

� � �

�

� � �

�

� � �

�

� � �

�
����� 	�

� �

� �

� �

� �

� �

� �

� 	

� �

� �

� �

� �

� 	
�

�

� 
 � � � 
 � � � � � � � � �

� � 
 � � 
 � � � 
 � � � � � � � � �

Figure 2. Frequency spectrum of Lamb modes for a plate with stress-free boundaries, γ = 2hω/πcL and ξ = 2hk1/π are
the normalized frequency and wavenumber respectively

being δij the Kronecker delta. In the following we restrict ourselves to harmonic time dependence in such a way
that for a single temporal frequency f we have

u (r, t) = Re [û (r, t)] = Re [ûm (r) exp (j2πft)] (3)

being û the complex displacement, ûm the complex amplitude vector of the wave and j the imaginary unit. In
this conditions, employing (1) and (2) in balance momentum equation for a region free of body forces results

(λL + μL)∇ (∇ · ûm) + μL∇2ûm + ρω2ûm = 0 (4)

where ρ is the mass density and ω = 2πf the circular frequency. Equation (4) is the well-known Lamé-Navier
equation for harmonic regimen. Displacement u associated by (3) to any complex amplitude ûm that is solution of
this equation, can be discomposed in longitudinal uL and transversal uT components, that propagate respectively
with phase velocities

cL =

√
λL + 2μL

ρ
(5)

cT =
√

μL

ρ
(6)

2.2 Guided waves in plates and the 2D Helmholtz scalar equation

Wave propagation in plates is usually analyzed in terms of particular combinations (called modes) of longitudinal
and transversal displacement characterized by transversal stationary displacement distributions.12 For a given
temporal frequency, each mode travels with a characteristic phase velocity along a direction contained in plane
(x1, x2). In the most common case of plates with stress-free boundaries, modes can be classified into two groups:
the so called horizontal shear (SH) modes that have displacement vectors uSH parallel to plane (x1, x2) and the
Lamb modes, with displacement vectors uSV that have in-plane and out-of-plane components (see figure 1) and
characterized by the frequency spectrum represetend in figure 2.

SH modes can be described in terms of one scalar potential, but Lamb modes are usually described by using
scalar and vector potentials simultaneously (see f.i. reference 12). Recently, an alternative has been developed by
Achenbach and coworkers that describe Lamb modes with only one scalar potential φ and two one-dimensional
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functions Wn(x3) and Vn(x3) that characterize transversal shapes for the mode labeled n.13 The out-of-plane
component is simply given by un,3 = Wn (x3)φ (x1, x2). Hence, as the scalar potential φ (x1, x2) verifies the
two-dimensional scalar Helmholtz equation in plane (x1, x2), it is evident that for each mode n, the equation

Δûn,3m + k2
nûn,3m = 0 (7)

is also verified for any plane x3 = constant within the plate. Δ denotes the two-dimensional laplacian operator
in (x1, x2) and kn the Lamb wavenumber.

2.3 Scattering of guided waves in plates by through-thickness defects
At this point we will restrict the scope of the analysis to scattering phenomena generated by defects with two-
dimensional geometry (as the case of a through-thickness hole with residual depth e = 0, see figure 1). In these
conditions plate geometry is two-dimensional, in the sense that it depends only on (x1, x2) coordinates. When
scattering is produced in conditions in which only one propagating Lamb mode contributes to u3, then equation
(7) can be employed. Following the approach of reference 11 we will assume that this is the case.

Then, if Γ denotes the boundary of the two-dimensional through-thickness defect and û3m denotes complex
amplitude associated to the out-of-plane component u3 (x1, x2, h) of the scattered field, we can model our problem
by means of the Partial Differential Equation

{
Δû3m + k2û3m = 0 outside Γ
∂û3m

∂n |Γ = g,
(8)

where g is a function defined on Γ. Stress-free conditions at defect boundary imply conditions on the spatial
derivatives of the scattered field as a function of the spatial derivatives of the incident field. For this reason a
generic Neumann Boundary condition is stated.

The validity of this model can be justified a posteriori on the basis of the comparison of model results with
experimental data. Nevertheless, and although it is not the objective of this paper to justify model (8) and
its conditions of applicability from fundamental equations of linear elasticity (1)-(4) we provide a brief a priori
justification of our assumption for the case of through-thickness defects. This can be done by referring to an
analytical model based on Achenbach approach for describing the scattering of Lamb waves by cylindrical holes
in plates.14 In this reference it is kept clear that an exact description of the scattering process requires SH
modes for taking into account modal conversion effects at the cylinder border. Also, SH and Lamb evanescent
modes have to be included in order to fulfill the stress-free boundary conditions. Nevertheless, for defects with
two-dimensional geometry modal conversion occurs only between in-plane components. This means that u3

displacements for Lamb modes, are not mixed with contributions of SH modes. Also, a few wavelengths away
from the defect, contributions of the evanescent modes are not relevant. Hence, the out-of-plane component can
be described as a superposition of incident and scattered Lamb modes. When only one propagating Lamb mode
contributes to the out-of-plane component, Helmholtz equation is completely justified. The same is true when
several contributions from Lamb modes exist, but all with the same frequency and Lamb wavenumber. This is
the case of Rayleigh waves, that can be understood in the context of guided waves in plates as a superposition
of S0 and A0 modes in their overlapping zone of the spectrum (see figure 2).

3. MATERIALS AND METHODS

3.1 Test plates
Experiments were performed in aluminium plates with dimensions 300 mm×100 mm×10 mm and with through-
thickness holes and slots adequatelly prepared. The longitudinal wave velocity was measured by means of the
classical pulse-echo method, resulting cL = 6358 m/s.

Areas without defects were employed for analizing the incident field. Boundary conditions were studied
employing the edge of the plates. In all cases plates were supported so that the constraints at their surface
are minimized; they simply rest on a horizontal board covered in velvet fabric. Plasticine was used as acoustic
absorber at the edges of the plates to avoid reflections of the incident and scattered waves that could disturb the
measured acoustic fields (figure 3).
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Figure 3. Reference image for a through-thickness hole (e = 0) of D = 12 mm.
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Figure 4. Experimental set-up.
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3.2 Description of the experimental system

The lay-out of the experimental system used to generate and to detect the elastic waves is depicted in figure 4.

For this set of experiments a central temporal frequency of f = 1.000 MHz was employed. Rayleigh waves
were generated by means of the classical wedge method, in which the longitudinal wave emitted by a piezoelectric
transducer is coupled to the plate surface through a Bakelite prismatic coupling block of angle θw = 65◦ (Fig. 4).
A long tone-burst consisting of 99 cycles with a central frequency f = 1.000 MHz was used to excite the
piezoelectric, in a way that the generated Rayleigh wavetrains are quasi-monochromatic.

Under these circumstances, the stress at the plate surface caused by the wedge presents a periodicity given
by λ1 and moves at a velocity cp that correspond, respectively, to the wavelength λR and the phase velocity cR

of the Rayleigh wave at the frequency f . The wavelength of the produced quasi-monochromatic Rayleigh wave
λR was measured with the procedure described in reference 15, resulting λR = 2.96 mm, so that the Rayleigh
phase velocity is given by cR = λRf , resulting cR = 2930 m/s.

On the other hand, the instantaneous out-of-plane acoustic field u3 (r, t) at the plate surface due to the
propagation of the Rayleigh wavetrain is measured with a self-developed double-pulsed TV holography system,4

which has been successfully employed to measure quasi-monochromatic guided waves in plates with non-specular
finish. The core of the system is a twin-cavity pulsed, injection seeded and frequency doubled Nd:YAG laser
(Spectron SL404T), which emits two laser pulses with a duration of 20 ns that are used as the illumination source.
Then, two correlograms are recorded in separate frames of a CCD camera (PCO Sensicam Double-Shutter). Each
correlogram corresponds to the interference of a reference beam and an object beam scattered back by the plate
surface. The system is set up to be sensitive to the out-of-plane component of the displacement of the surface
points. For maximizing sensitivity, the delay of the laser pulses is set to 3 half-periods of the Rayleigh wave
(i.e., the minimum number of odd half-periods for which the camera can record the two correlograms in different
frames).

A processing procedure based on the spatial Fourier transform method is applied to the correlograms,16 which
renders the so-called optical phase-change map ΔΦ (r, t), proportional to the instantaneous out-of-plane acoustic
displacement field u3 (r, t), i.e.:

ΔΦ (r, t) =
8π

λ
u3 (r, t) (9)

being λ the wavelength of the laser and t the instant of emission of the first laser pulse.

3.3 Procedure for obtaining the experimental complex amplitude

The optical phase-change map given by (9) represents itself a useful means to assess the interaction of the Rayleigh
wave and the defect. However, a second processing procedure based on the Fourier transform can be applied in
order to improve signal-to-noise ratio and to calculate the acoustic amplitude u3m (r, t) = mod [û3m (r, t)] and
the total acoustic phase ϕ3T (r, t) = arg [û3m (r, t)] of the Rayleigh wave, from which the complex amplitude

û3m (r) = u3m (r) exp (ϕm (r)) (10)

of the ultrasonic field can be obtained by simply selecting and arbitrary value of time t0 for which ϕm (r) =
ϕm (r, t0). Our procedure17 consist of an improved version of previous method described in reference ,16 that
is based on the spatio-temporal 3D Fourier transform of a set of optical phase-change maps corresponding to
successive instants delayed by a quarter of the wave period. In our case, eight optical phase-change maps delayed
250 ns were taken in each experiment and the spatio-temporal 3D Fourier transform method was applied to the
whole set. The obtained experimental complex amplitude is the raw data for the comparison with numerical
simulations.

3.4 Numerical Method

In order to efficiently produce accurate solutions of problem (8), we utilize a modified version of a highly efficient
and accurate numerical methodology introduced recently,18 which we describe briefly in what follows.
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As it is well known, the (unique) solution of the Neumann Problem (8) can be expressed as a double-layer
potential

û3m(r) =
∫

Γ

∂Gk(r, r′)
∂n′

r

μ(r′)d
′Γ. (11)

Here Gk denotes the Hankel function

Gk(r, r′) =
i

4
H1

0 (k|r − r′|) (12)

and, letting N denote the hypersingular operator

N(μ)(r) ≡ lim
z→0

∂

∂nr

∫
Γ

∂Gk(r, r′ + znr′)
∂n′

r

μ(r′)d
′, (13)

the density μ is the unique solution of the first kind integral equation

N(μ) = g. (14)

Once the unknown surface density μ has been obtained, the solution û3m of equation (8) can be produced at any
point outside Γ by applying numerical quadrature to equation (11).

Our numerical solver produces approximate solutions μ of equation (14) for a given right-hand side g by
seeking a set of values μj ≈ μ(rj) of the unknown μ at a set of points rj (j = 1, . . . , n) on the curve Γ.
The algorithm relies on a highly accurate approximation of the integral equation (14) which can be obtained
by appealing to an expression of the right-hand side of equation (13) that only uses tangential derivatives,
in conjunction with interpolation of the values μj by trigonometric polynomials and exact differentiation and
integration of trigonometric monomials. In order to resolve high curvatures while taking advantage of the
excellent properties of trigonometric interpolation, the method utilizes smooth changes of variables that map an
equi-spaced grid in the interval [0, 2π] to a grid on Γ that contains a high density of discretization points rj in
high curvature portions of Γ. Note, in particular, that as a result of this discretization strategy, the density of
discretization points rj varies smoothly along Γ. The method then proceeds by constructing a linear system of
equations for the quantities μj , which arises as the discretized version of the left-hand-side in equation (14) is
set to equal the right hand side of that equation at each point rj , j = 1, . . . , n. The algorithm is then completed
by solving this linear system by means of a numerical implementation of the Gaussian elimination method. It
was verified through a variety of numerical experiments, including comparisons with exact solutions, that the
solutions û3m produced by this methodology are highly accurate, and that the associated errors decay rapidly
as discretizations are refined.

4. RESULTS AND DISCUSSION

4.1 Incident field characterization

In order to know the characteristics of the incident acoustic field and the repeatability of the measured maps, a
series of acquisitions in the same conditions was performed within time intervals of 5 minutes. After processing
the raw images in the same manner with identical parameters, the deviations between maps were of the order of
20 percent for both amplitude and real part (figure 5). Taking into account that the typical value of the amplitude
was about 5 nm, these values are in accordance with a previous estimation of the noise of the technique.3 Other
features of interest are the slight curvature of the wavefronts and a non-uniform amplitude profile in a section
transversal to the main propagation direction that complicates the comparison with numerical results.

4.2 Boundary conditions

To gain understanding about the boundary conditions to apply at the border of the defects, we studied the
reflection of the incident acoustic field at the straight edge of a plate without defects for different incidence angles.
The obtained results (Fig. 6) show that boundary conditions do not depend substantially on the incidence angle
and also that, although the observed BC are neither Dirichlet nor Neumann, they are not far from the Neumann
ones. So, we adopted them as a starting point for the numerical simulations of the scattering patterns.
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Figure 5. Repeatibility results. a) modulus of reference incident field, b) real part of a), c) difference of the modulus of
reference field and another equivalent incident field, d) difference of the real parts of reference field and another equivalent
incident field, e) horizontal profiles of a) (solid) and c) (dashed), f) horizontal profiles of b) (solid) and d) (dashed).
Dimensions in meters. Mid-grey level represents zero. Profile amplitude in units of λ/4π. The axis numbering in a),b),c)
and d) corresponds to that of figure 3
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numerical. Dimension in meters. Mid-grey level represents zero. The axis numbering corresponds to that of figure 3
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Figure 9. Profiles for complex amplitud corresponding to hole of diameter D=12mm.: a) modulus of complex amplitude
of the total field, b) modulus of complex amplitude of scattered field; amplitude in units of λ/4π; (dashed) experimental,
(solid) numerical, Profiles along white horizontal line marked in figure 3

4.3 Scattering patterns

In figures 7 and 8 the comparison between the experimental and simulated scattering patterns of Rayleigh waves
corresponding to two holes and a slot are presented. A simple visual inspection reveals their close agreement
in the three cases in modulus, phase and real part. A quantitative analysis was performed by comparing the
profiles along a central line of the maps, both for the total and scattered fields (Fig. 9). Even the main features
of scattering pattern appear well correlated, pixel-to-pixel agreement between maps is not as good as their 2D
visual matching. This is in consonance with measured noise levels. At this point, image processing techniques
that average or reject the noise on the basis of spatial or morphological filtering could be applied. In any case, we
believe that the presented results are enough to say that the experimental contrast of the numerical simulation
is positive.

5. CONCLUSIONS

Scattering of elastic waves in plates has been studied employing two-dimensional maps of instantaneous out-of-
plane displacements obtained with a self-developed pulsed TV-holography system. Experimental data have been
compared with simulated scattering pattern employing an state of the art numerical technique. The achieved
agreement gives support to the employed two-dimensional model. To improve the reliability of this model, further
work should be done to analyze more defect typologies and sizes under different Lamb modes and frequencies.
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