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Abstract— This paper proposes a new method for rigid body
pose estimation based on spectrahedral representations of the
tautological orbitopes of SE(2) and SE(3). The approach can
use dense point cloud data from stereo vision or an RGB-
D sensor (such as the Microsoft Kinect), as well as visual
appearance data as input. The method is a convex relaxation of
the classical pose estimation problem, and is based on explicit
linear matrix inequality (LMI) representations for the convex
hulls of SE(2) and SE(3). Given these representations, the
relaxed pose estimation problem can be framed as a robust least
squares problem with the optimization variable constrained to
these convex sets. Although this formulation is a relaxation of
the original problem, numerical experiments indicates that it
is indeed exact – i.e. its solution is a member of SE(2) or
SE(3) – in many interesting settings. We additionally show
that this method is guaranteed to be exact for a large class of
pose estimation problems.

I. INTRODUCTION

The pose estimation problem in computer vision is to
identify a transformation that, when applied to a known
object model, yields the object as perceived through the
system’s sensors. Pose estimation is fundamental in robotics
as it allows systems to reason about the state of the environ-
ment from their sensory data. Applications arise in robotic
manipulation [15], [18], [31] object tracking [24], and visual
odometry [29], among others.

Many successful techniques have been proposed and vali-
dated. The typical procedure consists of identifying notewor-
thy features of the object model, and then identifying similar
features from the sensed input. Given this correspondence,
one of several methods estimates the transformation that
aligns as many of these features as possible, for example
[21]. Typically, potential mismatches in correspondence re-
quire the optimization to be repeated, giving rise to algo-
rithms such as iterated closest point (ICP) [6]. These tech-
niques are typically combined with probabilistic selection of
features for matching using the RANSAC algorithm.

However, many existing methods for pose estimation
are primarily local-search methods that perform iterative
linearization of the coordinate transform from the object’s
last known position via Levenberg-Marquardt [31], [20].
While such approximations are appropriate at high frame
rates or slow object/robot movement, these methods re-
quire re-initialization if the object is not continually tracked
successfully. These issues can be alleviated by techniques
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that provide a strong prior on the object, such as those
incorporating Extended Kalman Filters [24], [11], [27].

The problem of pose estimation is also often plagued
by the presence of outliers in the sensory data stream,
which may arise from multiple causes, such as erroneous
visual depth discontinuities. Additionally, the construction
of approximation algorithms further aggravates the problem
of mis-correspondence. The common Best-Bin First (BBF)
[4], used to rapidly compute approximate nearest neighbors,
creates spurious correspondences in its quest for speed.
Further, there is the tradeoff in feature-detection methods,
for instance in the choice between SIFT [23] and SURF
[3] features, with the former typically being more accurate
and the latter more rapid. The system designer therefore
faces a number of tradeoffs between robustness and speed,
contributing to the presence of outliers and uncertainty [25],
[19]. Indeed, it is the presence of such errors that limits the
use of closed form solutions to the pose estimation problem
in practice [16], [17].

Inspired by recent advances in convex algebraic geometry
(reviewed in Section II), this paper takes a quite different
approach to the pose estimation problem: pose estimation
is framed as a (robust) least squares problem (Section III),
where the optimization variable lies in the convex hull of
either SE(2) or SE(3).

By relaxing the constraint on the optimization variable
(i.e. the transformation matrix), and allowing it to lie in
the convex hull of the Lie group, rather than the Lie group
itself, the resulting optimization is a semidefinite program
(SDP), and hence convex. Formulating the pose estimation
problem as a convex optimization problem is appealing as
there exist a number of off-the-shelf public and commercial
solvers that allow for the practitioner to focus on the design
of the system rather than the details of the numerical solution
method. These solvers obtain second order convergence and
may therefore be quite rapid in practice. This emphasis on
a convex relaxation of the SE(n) constraint has also been
examined in [13], developed independently of the current
work, where the authors relax the constraint of the special
euclidean group by requiring the solution to lie in the convex
hull of the orthogonal group O(n).

Furthermore, if the relaxation can be shown to be exact,
that is to say that the optimal solution to the problem
is a member of SE(2) or SE(3), then the procedure is
guaranteed to yield the global optimum, alleviating the
need for any form of probabilistic sampling of the solution
space. Indeed, numerical experiments show that under many
standard settings the relaxation is exact, and our method
yields the optimal solution to the pose estimation problem.
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Encouraged by this empirical success, we also show that
under mild assumptions a wide class of pose estimation
problems are provably exact. In Section VI, we comment
on both promising directions for expanding the class of
problems for which this method is provably exact, and on
heuristics for generating a transformation matrix given a
solution that is not a member of SE(2) or SE(3).

In the spirit of recent results in machine learning, we also
show that a robust variant of the problem may be framed
as an `1-regularized optimization problem [10] (Section
IV). The ability to incorporate regularization techniques
further distinguishes our method from existing solutions.
Application of the methodology to a practical example is
demonstrated in Section V, along with a comparison to other
approaches. This example shows that our approach provides
consistently better estimates across all ranges of noise, and is
particularly advantageous as the sensor noise level increases.

II. BRIEF INTRODUCTION TO ORBITOPES

The focus of this paper is on estimating the poses of rigid
objects in SE(n) and SO(n) for n = 2, 3. Our analysis does
not carry directly to n > 3, and for the remainder of the
paper we use SE(n) to refer to only n = 2, 3. Our approach
relies upon the concept of an orbitope, which is formally the
convex hull of the orbits given by the action of a compact
algebraic group G acting linearly on a real vector space.
Orbits arising from such groups have the structure of a real
algebraic variety and thus, the orbitope is a convex semi-
algebraic set. These objects, whose study was formalized
and initiated in [30], are at the heart of the emerging field
of convex algebraic geometry.

In the case of finite groups G, the study of such objects
has a rich history. The platonic solids, the permutahedra, the
Birkhoff polytope and the traveling saleseman polytopes are
examples of such discretely generated orbitopes. These well
studied objects have been analyzed in depth in the context
of combinatorial optimization [28], [34], [26]. Orbitopes
of compact Lie groups have proved useful in the analysis
of protein structure prediction [22], quantum information
theory [1] and real algebraic geometry (in [2], certain SO(n)
orbitopes are used to show that there are many more non-
negative polynomials than sums of squares).

We will be interested in the convex representation of
orbitopes generated by a group acting on its identity element,
that is to say the group’s tautological orbitope. In particular,
our method is based on recent results on the spectrahe-
dral representation of tautological orbitopes for the groups
SO(n), n = 2, 3.

A set is said to admit a spectrahedral representation if it
can be described as the intersection of the cone of positive
semidefinite matrices and and an affine subspace, i.e. if it
can be written in terms of a linear matrix inequality (LMI).
It is possible to then optimize affine and convex quadratic
functions over these sets using the well established methods
of semi-definite programming (SDP). Additionally, if a set
is second-order cone (SOC) representable – a restricted
class of spectrahedral constraints – then SOC programming

techniques may be leveraged. These have the advantage of
being significantly faster than their SDP counterparts.

A. The tautological orbitope for SO(2)

We begin by noting that a simple parameterization of
proper rotations in 2-dimensional space is given by

SO(2) =

{[
cos θ sin θ
− sin θ cosθ

]
: θ ∈ [0, 2π)

}
. (1)

Letting x = cos θ and y = sin θ, we can equivalently rewrite
this expression as

SO(2) = L ·
{

(x, y) ∈ R2 : x2 + y2 = 1
}

(2)

for a linear mapping L : R2 → R2×2. In this way, SO(2) is
expressed as a linear map of a simple set, i.e. the unit sphere.
This is key as the convex hull operator, which we denote by
conv(·), commutes with linear mappings.

Next, this constraint is relaxed by taking its convex
hull. The unit sphere becomes the unit disk, and thus the
constraint is replaced with x2 + y2 ≤ 1. While simple, the
computational gains realized by this step are significant.

conv(SO(2)) =

{[
x y
−y x

]
: x2 + y2 ≤ 1

}
=

{[
x y
−y x

]
:

 I

(
x
y

)
(x y) 1

 < 0

}
(3)

where the last equality follows by applying the Schur com-
plement [8] to the SOC constraint x2 + y2 ≤ 1. The latter
constraint in (3) is in fact an LMI, and the unit disk is
therefore said to be spectrahedrally representable, and thus
tractable to optimize over.

Remark 1. The orbitope of conv (SO(2)) is SOC repre-
sentable. These objects have significant computational ad-
vantages over general semidefinite programs and optimiza-
tion over hundreds of variables may be done on time scales
of several milliseconds [12].

B. The tautological orbitope of SO(3)

An explicit representation of the tautological orbitope of
SO(3) is given by the following result from [30].

Proposition 2. The tautological orbitope conv (SO(3)) is a
spectrahedron whose boundary is a quartic hypersurface. In
fact, a 3 × 3-matrix X = (xij) lies in conv (SO(3)) if and
only if it satisfies (4).

Proof. The following is a slightly modified version of the
original derivation suggested by Pablo Parrilo to the authors
of [30], included here for completeness. An explicit parame-
terization of SO(3) is given by its embedding into the space
of pure quaternions (a subgroup of SU(2)) as

SO(3) =
{
U ∈ R3×3 | (5)

U(u) =

 2(u2
0 + u2

1)− 1 2(u1u2 − u0u3) 2(u1u3 + u0u2)
2(u1u2 + u0u3) 2(u2

0 + u2
2)− 1 2(u2u3 − u0u1)

2(u1u3 − u0u2) 2(u2u3 + u0u1) 2(u2
0 + u2

3)− 1


u ,

(
u0 u1 u2 u3

)
, ‖u‖22 = 1

}




1 + x11 + x22 + x33 x32 − x23 x13 − x31 x21 − x12

∗ 1 + x11 − x22 − x33 x21 + x12 x13 + x31

∗ ∗ 1− x11 + x22 − x33 x32 + x23

∗ ∗ ∗ 1− x11 − x22 + x33

 � 0 (4)

Fig. 1. Spectrahedral representation of conv(SO(3)) [30]. Omitted ∗ elements indicate the symmetric completion of the matrix.

Noting that each term in U(u) is quadratic in elements of u,
we may define an auxiliary matrix

V :=


u2

0 u0u1 u0u2 u0u3

u1u0 u2
1 u1u2 u1u3

u2u0 u2u1 u2
2 u2u3

u3u0 u3u1 u3u2 u2
3

 = uuT . (6)

We therefore see that if u is such that U(u) ∈ SO(3), then
V is a positive semi-definite (which we denote by V < 0)
rank-1 symmetric matrix satifsying trace(V ) = ‖u‖22 = 1,
and that there exists an invertible affine mapping A such
that U(u) = A(V ). Equivalently, we may define the set

V := {V < 0 : rankV = 1, traceV = 1 } ⊂ R4×4

and express SO(3) as

SO(3) = A · V (7)

for the appropriately chosen affine map A : R4×4 → R3×3.
Taking the convex hull of (7) we obtain

conv(SO(3)) = A · convV
= A · conv{V < 0 | rankV = 1, traceV = 1}
= A · {V < 0 | traceV = 1}. (8)

It then suffices to invert A to obtain the spectrahedral
representation for conv(SO(3)) as given in (4).

C. The tautological orbitope for SE(n)

A spectrahedral representation of SE(n) follows naturally
from one for SO(n). The space of the translations is simply
Rn, which of course is already a convex set. Thus, noting that
when SE(n) is expressed in homogeneous coordinates, it is
none other than a linear mapping of elements of SO(n)×Rn,
we are free to take convex hulls of the individual components
of the transformation matrix. A parameterization of S ∈
conv (SE(n)) in homogeneous coordinates is therefore given
by

S =

[
R T
0 1

]
(9)

where T ∈ Rn and R ∈ conv(SO(n)).

III. LEAST SQUARES ESTIMATION FORMULATION

We assume we are given a model of an object whose
pose we wish to estimate based on sensor data. This model
consists of a vector (mi)

N
i=1 of N features of a model with

coordinates in Rn for n = 2, 3 in the object’s body-fixed ref-
erence frame. We are then given an observation that consists
of a vector (oi)

N
i=1 of the corresponding feature coordinates

in the observation frame. The observation frame itself may

consist of a projection P to a lower, two dimensional image
frame as is the case for visual data, or the data may remain
in three dimensions. In either case, we wish to solve for the
object pose that is most consistent with this observation.

The problem is general and, as framed, comprises a central
component of many pose estimation problems in robotics.
All pose estimation problems consists of matching known
features on a model to observed features, whether these
observations arise from an image, point cloud, or other
sources.

Classical Least Squares Estimation. The problem of data
fitting is a common one, with the most popular approach
being that least-squares regression. In our case, the data and
the model are related by a transformation element of SE(n),
with n ∈ {2, 3}. For n = 2, this leads to the optimization
problem

min

N∑
i=1

‖oi − Smi‖22 (10)

s.t. S ∈ SE(2)

The three-dimensionsal visual feature problem is similar but
must also incorporate a projection, P , onto the camera frame.
The general form of the least squares optimization problem
is then

min
S

N∑
i=1

‖oi − PSmi‖22 (11)

s.t. S ∈ SE(n)

where n = 2, 3, and P may be set to the identity, or the
camera matrix, as appropriate. Problems (10) and (11) are
non-convex optimization problems, and typically difficult
to solve. Beyond the issue of only finding local minima,
the optimization can be slow because SE(n) is difficult
to represent in a manner that is amenable to optimization,
with parametrizations typically incorporating trigonometric
functions.

Convex Least Squares Estimation over SE(n). The diffi-
culties presented by parameterizations of SE(n) in the least
squares problem can be alleviated by relaxing the problem,
and replacing the Lie group constraints with their respective
orbitope constraints. In particular, by using the spectahedral
representations of the orbitopes of SE(n) as discussed, we
may write:

min
S

N∑
i=1

‖oi − PSmi‖22 (12)

s.t. S ∈ conv (SE(n))



for n = 2, 3, where conv (SE(n)) now admits a semidefinite
representation, as in equations (3), (4) and (9).

To complete the formulation, the problem data is rep-
resented in a vector form: let O , [o1, . . . , oN ]

T , M ,
[m1, . . . ,mN ]

T , P̄ = IN×N⊗P , and S̄ = IN×N⊗S, where
⊗ denotes the Kronecker Product, allowing us to rewrite
optimization (12) as:

min
S̄

∥∥O − P̄ S̄M∥∥2

2

s.t. S̄ ∈ conv (I ⊗ SE(3))
(13)

Remark 3. It is possible to include additional feature
weighting information in the optimization problem (13) by
simply weighting P̄ = C ⊗ P , and S̄ = C ⊗ S for C the
diagonal matrix of weights {c1, c2, . . . , cN}. This may arise,
for instance, in SIFT feature matching wherein there is a
score that is calculated for each feature pair, but any similar
heuristic would be admissable.

In order to formulate the pose estimation problem as a
SDP, we have relaxed the constraint on the transformation
matrix – in particular, rather than searching over SE(n),
we now optimize over its convex hull. Thus, in general, it
is not true that the solution to (13) will be an admissible
transformation, as Euclidean transformations are not closed
under convex combinations. Thus an important, albeit obvi-
ous, question arises: when can we guarantee that the solution
of our convex relaxation (13) is in fact an element of SE(n).

A. Guarantee of Boundary Solution for SO(n)

Theorem 4 (Sufficient conditions for exactness). Given n =
2, 3 O,M ∈ R4N , and t ∈ Rn, if P ∈ O(n + 1), with
O(n + 1) the orthogonal group, then the solution R to the
optimization problem

min
R

∥∥O − P̄ S̄M∥∥2

2
(14)

s.t. S̄ = IN×N ⊗ S

S =

[
R t
0 1

]
R ∈ conv (SO(n))

lies in SO(n).

Proof. Consider the non-convex optimization:

min
R

∥∥O − P̄ S̄M∥∥2

2
(15)

s.t. S̄ = IN×N ⊗ S

S =

[
R t
0 1

]
R ∈ SO(n)

Our approach will be to show that this optimization
has an equivalent convex reformulation given by (14). The
optimization is examined in the equivalent summation form
(11). We first rewrite the objective so as to isolate the
rotational component R:

‖oi − PSmi‖22 = ‖oi − Pτ − Pρmi‖22

where

ρ =

[
R 0
0 1

]
and τ = [tT , 1]T . It is well known that the optimal value for
t is the translation that aligns the centroids of M and O [16]
and it may therefore be calculated a-priori.

Recalling that for a matrix T ∈ O(n + 1), we have that
‖Tx‖2 = ‖x‖2, and letting vi = oi − Pτ , we may write for
each i ∈ {1, . . . , N},

‖vi − Pρmi‖22 = < vi − Pρmi, vi − Pρmi >

= ‖vi‖22 − 2 < vi, Pρmi >

+ < Pρmi, Pρmi >

= ‖vi‖22 − 2 < vi, Pρmi > + ‖Pρmi‖22
= ‖vi‖22 − 2 < vi, Pρmi > + ‖mi‖22 ,

where the last equality follows from Pρ ∈ O(n + 1). As
constant terms in the objective do not affect the optimal
solution, optimization (15) can be rewritten in terms of the
linear objective function −2 < O, P̄ S̄M >:

min
R

−2 < O, P̄ S̄M > (16)

s.t. S̄ = IN×N ⊗ S

S =

[
R t
0 1

]
R ∈ SO(n)

It is a standard result of convex optimization that linear
objective functions attain their minima at extreme points of
the feasible set [8] – thus there is no loss in replacing the
constraint R ∈ SO(n) with R ∈ conv(SO(n)) in (16), as the
set of extreme points of conv(SO(n)) is precisely SO(n).
Rewriting the objective in its quadratic, rather than linear,
form then yields (14), concluding the proof.

B. Projection of Interior Solutions

Although we have shown that the least-squares estimation
over the Special Euclidean group will always produce border
solutions, we will subsequently modify the optimization and
lose this guarantee. In the case where the optimal solution
is not an element of SE(n), a practical algorithm will
require a method of quickly generating a “nearby” Euclidean
transformation. As a potential heuristic, we propose using
a projection of the inadmissible transformation onto the
admissible set. When this projection is taken with respect to
the Frobenius norm, a simple singular value decomposition
(SVD) based solution exists [5].

In particular, let a rotation S ∈ conv(SO(n)) have the
SVD

S = UΣV T . (17)

Then S′ = UV T is the projection of S onto SO(n), i.e.
S′ = arg min{‖T − S‖Frobenius : T ∈ SO(n)}. Future work
will look to quantify the performance of such heuristics.



IV. ROBUST FORMULATION

It is well know that the least-squares methodology is sen-
sitive to the presence of outliers. The orbitope optimization
approach can be modified to be more resilient to outliers by
framing it as a robust least squares problem.

An advantage of using convex optimization lies in its
flexibility. The optimization problem may be augmented with
various features to improve performance beyond that obtain-
able by simple least squares estimation. Typical of vision
problems are the existence of spurious outliers that distort
the data, causing the estimators to diverge significantly [24].
It is therefore desirable that we remove the effects of such
outliers automatically.

Suppose that we wish to estimate the parameters β such
that ‖o− βm‖22 is minimized for data o,m. We may augment
the traditional `2 objective with an `1 penalty term, or
regularizer, as

min
β
‖o− βm‖22 + λ ‖β‖1

where λ > 0 is a tuning parameter, resulting in the so-called
LASSO least squares problem [32]. Interestingly, the effect
of this regularizer is to drive many of the coefficients of
β to zero, resulting in a parameter vector that is sparse.
There are many applications where it is reasonable to expect
that the true solutions are in fact sparse. This is the driving
force behind the field of compressed sensing [9]. In the pose
estimation problem it is reasonable to expect that there will
exist outliers, but such outliers will be sparse in the data, i.e.
we expect most correspondences to be accurate.

Inspired by these methods, we present an `1-penalty based
modification of optimization (13). In particular, we wish
to minimize

∥∥O − P̄ S̄M∥∥2

2
while having a solution that is

robust to outliers, i.e. X contains some elements we wish
to ignore. We separate the error into two components: an
intrinsic error Z2 due to sensor noise, and an error Z1 due
to incorrect correspondence (or outliers):

O − P̄ S̄M = Z1 + Z2

The regularized problem then becomes

min
S̄,Z1,Z2

‖Z2‖22 + λ ‖Z1‖1

s.t. S̄ ∈ conv (I ⊗ SE (n))

O − P̄ S̄M = Z1 + Z2,

or, after solving for Z2 = (O − P̄ S̄M)− Z1,

min
S̄,Z1

∥∥(O − P̄ S̄M)− Z1

∥∥2

2
+ λ ‖Z1‖1

s.t. S̄ ∈ conv (I ⊗ SE (3)) (18)

for some user determined λ > 0. Thus in principle, Z1 will
act as a correction term in the least squares component of
the objective function, removing the effect of outliers – by
adding the `1 penalty and tuning parameter λ, we control
the sparsity and norm of Z1, and thus ensure that it does
not overwhelm the correct data. Unfortunately, the lack of a
linear objective causes the optimization program to lose the

Fig. 2. Pose estimation for a corrupted Stanford Bunny mesh. Blue
points are the optimized model points while red are the observation points.
Gaussian noise with zero mean and standard deviation of δ = .06 was used.
was chosen for the visualization.

guarantee of being on the boundary of conv(SO(n)), as was
the case without the regularization.

Remark 5. Numerical experiments suggest that this method
also typically gives solutions that are in SE(n). As men-
tioned in Section III-B, we are exploring possible projection
based heuristics for when our relaxation fails to be exact.

V. EXAMPLES

A benchmark pose estimation problem was used to com-
pare the proposed method against some classical pose estima-
tion procedures. To perform the optimization portion of our
algorithm, we used the CVX parser [14] in conjunction with
the publicly available SDPT3 semidefinite program solver
[33].

A. Three Dimensional Pose Estimation

The method was tested on a pose estimation problem
involving three dimensional point-cloud data. As a ground
truth model, we used the Stanford Bunny from the Stanford
Computer Graphics Laboratory, consisting of a mesh of
944 points. The model was normalized so that the bunny
had maximal extent from the origin of one unit in the
y-coordinate from the origin. The centroid of the model
was placed at the origin, as all methods may be centered
in this manner. To synthesize measurements, the model
points were corrupted with varying amounts of Gaussian
noise. This corruption had zero mean, standard deviation
δ, and was applied to the (x, y, z) components of each
model point individually. The correspondence between the
points was maintained in order to negate the effects of this
component of the optimization problem. A visualization of
a typical result is shown in Figure 2 for a particular noise
covariance value. Performance results with varying numbers
of corrupted samples are shown in Figure 3. The errors
reported were the sum of the squares of the individual
error distances between corresponding points, where the
error was taken with respect to the true, underlying model



Fig. 3. Mean error over twenty trials when using Orbitope, PCA, and
Levenberg-Marquardt optimizations in blue, green, and red respectively with
varying numbers of randomly sampled observed points. Noise with standard
deviation δ = 0.01 was used.

Fig. 4. Mean error over twenty trials when using Orbitope, PCA, and
Levenberg-Marquardt optimizations in blue, green, and red respectively
when varying noise standard deviation. Number of samples N = 23 and
N = 944 were used in the left figures respectively.

and not the observed points. We compared our method to
an implementation using Levenberg-Marquardt, as well as
an implementation that aligns the principal components of
the observed data to the model using Principle Component
Analysis (PCA). These are both estimates to find a transfor-
mation to match a known model to observed points, given
the correspondence between these two groups. These three
methods would typically be used as part of a single iteration
of ICP (in particular, usually PCA), where after the solution
is computed the correspondence problem would again be
solved, and the process repeated. The methods were also
tested on varying levels of noise, with the results shown in
Figure 4.

The examples were run on a 1.7Ghz Macbook Air. The
Levenberg-Marquardt algorithm typically required 25ms for
execution; aligning the principal components of the data
typically required 2ms; and the orbitope optimization lasted
130ms. For the range of sample points used, the execution
times did not vary significantly. All methods also did not
change their execution time significantly with respect to the
chosen noise levels. As the correspondence was perfect, all
method performed well. However, the method proposed here

Fig. 5. Visualization of results for robust estimation problem. Noise of
δ = 0.01 is added to the normalized model, and the ears consisting of points
with component y ≥ 0.6 are translated by t = (2, 2, 2) to create artificial
outliers. The detected data is shown in red, while the matched model using
the robust optimization is shown in blue, while the PCA match is shown in
green.

provided superior solutions not only in aggregate but in the
individual trials as well. For instance, in the 20 trials for
which the noise was held at δ = 0.1, and N = 944 points,
the orbitope optimization error varied between 95% and 23%
of the Levenburg-Marquardt error.

Next we tested the outlier rejection capabilities of the
method by introducing artificial outliers into the model. The
number of outlier points was relatively sparse compared to
the total number of model points, and they were correctly
detected as outliers by the algorithm for λ = 0.1 The results
are visualized in Figure 5. The error residual for the robust
method was e = 0.7825 while that of PCA was e = 25.3098.
For these noise levels, the error of the orbitope optimization
is typical (Figure 4) for the case where there are no outliers,
indicating the shifting of the ears has only marginal impact
on the solution. Indeed, it is possible to make this gap
arbitrarily large by moving the ears further. Such situations
are common in practice where, for example, collections of
points may be erroneously associated with a model, or points
of a model may not be visible due to occlusion.

VI. DISCUSSION

This paper introduced a substantially new formulation of
the pose estimation problem based on spectrahedral represen-
tations of the convex hulls of SO(n) and SE(n), for n ∈
{2, 3}. This reformulation allowed for a convex relaxation
of the pose estimation problem, resulting in a convex least
squares problem. We also introduced an `1 penalized variant
of our problem so as to automatically remove outliers.

We proved that under certain conditions, the solution is
guaranteed to be a proper rigid body transformation, and is
therefore a globally optimal solution to the pose estimation
problem. As mentioned, the investigation of more general
conditions under which boundary solutions are guaranteed
is an active area of current research, as well as the quality



of projection based heuristics for when our relaxation fails
to be exact.

Our numerical experiments showed that this new estima-
tion method consistently produced more accurate estimates,
particularly at high noise levels. Recent work [10] in the
context of linear inverse problems has resulted in error
bounds on regularized estimation problems. The application
of these methods to the pose estimation problem may yield
quantifiable bounds on estimation error, and an insight as to
the types of disturbances (e.g., Gaussian vs. Poisson noise)
which are best handled by the method.

The method proposed here was an order of magnitude
slower than existing methods. There are a number of ways
to greatly increase its speed. Our implementation relied on
using CVX in conjunction with SDPT3: these are general
solvers and parsers, and there is overhead accumulated. In a
deployed implementation the solver would be coded directly
in a language such as C++ with no parsing. Additionally,
such least squares formulations are amenable to alternating
direction method of multipliers (ADMM) solutions, allowing
for parallelization of the optimization procedure [7]. Finally,
in many applications it is appropriate to use a well-informed
initial guess for the solver, such as the object’s last known
pose. Such warm-starts are not necessary for our optimiza-
tion method, but can further improve execution time.
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