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ABSTRACT

Non-redundant masking (NRM) is a high contrast high resolution technique that is relevant for future space
missions dedicated to either general astrophysics or extrasolar planetary astronomy. NRM mitigates not only
atmospheric but instrument-induced speckle noise as well. The recently added mask in the Fine Guidance
Sensor Tunable Filter Imager (FGS-TFI) on the James Webb Space Telescope (JWST) will open up a search
space between 50 and 400 mas at wavelengths longer than 3.8μm. Contrast of 104 will be achievable in a 10
ks exposure of an M = 7 star, with routine observing, target acquisition, and data calibration methods. NRM
places protoplanets in Taurus as well as Jovians younger than 300Myr and more massive than 2MJ orbiting
solar type stars within JWST’s reach. Stars as bright as M = 3 will also be observable, thus meshing well
with next-generation ground-based extreme adaptive optics coronagraphs. This parameter space is inaccessible
to both JWST coronagraphs and future 30-m class ground-based telescopes, especially in the mid-IR. We show
that NRM used on future space telescopes can deliver unsurpassed image contrast in key niches, while reducing
mission risk associated with active primary mirrors.
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1. INTRODUCTION

Landmark discoveries such as dusty disks imaged around young stellar objects, mass-loss shells of evolved
stars and the fascinating time-varying spiral plumes surrounding dusty Wolf-Rayet systems have been reported
amongst the 50-odd peer-reviewed papers describing results produced by this technique (Ref. 1–15). However,
the atmosphere places limitations on non-redundant masking (NRM) performance.

NRM on a space telescope has not been described in the literature to date. We present detailed simulations of
NRM performance on the James Webb Space Telescope (JWST) to demonstrate the exciting planetary science
enabled by the recent addition of NRM to JWST’s suite of established instruments, and to emphasize the
importance of this technique to other future space-based observatories. On JWST NRM will widen the telescope’s
science reach to include a unique combination of wavelength and angular resolution regimes inaccessible from
the ground, even with the advent of extreme adaptive optics (ExAO) and coronagraphs behind 30 m extremely
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Figure 1. The parameter space available to the newly-added non-redundant sparse aperture mask on JWST’s FGS-TFI
instrument. It is designed to operate at 3.8 microns and longer.

large telescopes of the future. For example, NRM used at 4μm will place warm extrasolar jovians within 4 to 30
AU of F, G, and K dwarfs 30pc from the Sun within JWST’s purview (Figure 1).

Indeed, NRM can add high resolution capability to large filled-aperture space telescopes without sacrificing
their wide utility for general astrophysical observations. Furthermore, the NRM search space is complementary
to future coronagraphic space missions dedicated to extrasolar planet imaging and characterization, as well as to
ground-based ExAO instruments,16, 17 in that it yields moderate contrasts between 0.5 and 4λ/D (λ being the
observing wavelength, D the telescope diameter). Diffraction-limited stellar coronagraphy, on the other hand,
typically covers a search space at higher contrast, at separations larger than ∼ 4λ/D (Ref. 18). Techniques
such as Angular or Spectral Differential Imaging (e.g., Ref. 19, 20 and references therein) do not work well at
these small angular separations. In addition, NRM data has a high degree of self-consistency that is absent in
full-aperture direct or coronagraphic imaging.

We examine the scientific merit and feasibility of NRM on JWST’s Fine Guidance Sensor’s Tunable Fil-
ter Imager (FGS-TFI),21 between 3.8μm and 5μm, operating at a spectral resolution of 100. These contrast
predictions are relevant to JWST science planning for its newly-added high angular resolution capability. Our
NRM designs work well in 10% bandpass filters, making NRM a possible technique for JWST’s near-IR imager
NIRCam and mid-IR imager MIRI.22 Our results can be scaled with both wavelength and optical path difference
stability when planning NRM on future missions.

JWST’s target acquisition methods, pointing stability, and data calibration pipeline processing are aimed at
general purpose imaging with an undemanding operating protocol. They will suffice for the high dynamic range
NRM observations we describe here. In contrast, coronagraphic observations require specialized target acquisition
and peak-up,23 very small pointing errors,24 exquisite wavefront flatness and highly uniform pupil illumination.
In comparison, NRM relies on long-term stability of the telescope’s wavefront during a several minute or hour
long exposure, rather than on any stringent requirements on wavefront quality. It therefore mitigates some of
the risk associated with the complex mechanisms and sequences involved in co-phasing JWST’s 18-segment,
deployable 6.5 m primary mirror (PM) as the telescope orbits the second Earth-Sun Lagrangian equilibrium
point (e.g., Ref. 25).

2. NRM INTERFEROMETRY AND ITS LIMITS

Interferometry with non-redundant baselines was developed for radio astronomy,26 and subsequently adapted to
optical wavelengths.27 Today it is used in IR and optical bandpasses, often behind instruments not originally
developed for sparse aperture interferometry.1

Refs. 4, 28–30 and references therein present a fuller description of NRM. In brief, a non-redundant array of
subapertures is achieved with an N -holes ({h1, h2, ..., hN}) placed so no vector (baseline) between the centers of
two holes is repeated (see Figure 2, left). The resulting PSF is created by several coherent fringe patterns (each
with different angular periods on the detector, thanks to non-redundancy) overlaid across one another. A fringe
formed by holes hi and hj is quantified by a complex visibility, which has an amplitude (degree of modulation)
and a phase (the offset of the fringe’s center from the centroid of the PSF). The fringe visibility is the complex

Proc. of SPIE Vol. 7440  74400Y-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/28/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



Figure 2. Left: The FGS-TFI 7-hole non-redundant pupil mask (holes) overlaid on the JWST primary mirror. The
secondary mirror supports are shown as three thick black lines. The mask has undersized holes to mitigate against pupil
shear. Center: A 4.05 µm FGS-TFI image of a point source, with a 1% bandwidth filter, on a square root logarithmic
stretch. The pixel scale (65 mas) is that of FGS-TFI. The first Airy ring diameter is 2.4′′. Generally data out to the first
Airy ring is analyzed. Right: the power spectrum of the image (also on a square root scale), showing fringe power on the
21 baselines passed by the mask.

product of a Fourier component of the object and a system visibility. When observing a point-source, this phase
φij measures the piston wavefront error between the two holes. A closure phase is formed by the addition of
three fringe phases created by a triangle of holes, {hi, hj , hk}, notably φij +φjk +φki. Although piston wavefront
errors change the fringe phases, the closure phases are insensitive to these wavefront errors and only measure
source structure. There are N(N − 1)/2 independent closure phases measurable in the image.

NRM is a form of imaging with a PSF that looks unusual. The NRM PSF displays multiple sharp peaks,
whereas traditional diffraction-limited PSFs are dominated by one peak (Figure 2, center). However, the NRM
PSF possesses some useful properties. First, through the use of closure phase, it is insensitive to large scale
wavefront errors over the pupil. Second, its core is more than twice as narrow as a traditional PSF’s (the
Michelson criterion, 0.5λ/D, cf. Rayleigh’s criterion, 1.22λ/D). Third, NRM data sets produce results that can
be averaged to reduce noise, even in the presence of slowly-varying speckles. By comparison, co-adding PSFs in
the presence of speckle noise is always limited by a speckle noise floor.31–33

On the ground NRM filters out aberrations that pass through an AO system. It is insensitive to the non-
common path (NCP) aberrations between the science and sensing arms of the instrument. The NCP issue has
only recently been addressed by specialized calibration systems in future ExAO coronagraphic systems utilizing
full-aperture pupils.34 Today’s ground-based NRM routinely achieves stability of 0.5 degrees on the closure
phase, hence passively stabilizing the phase at the level of λ/500 to λ/1000.

For a point source any closure phase must be zero. A measured non-zero closure phase in the data provides
spatial information on the object. A consistent, systematic, instrument-induced departure from a zero closure
phase can be measured using a calibration star, and subtracted from a target’s closure phase. Conceptually,
closure phase data analysis is a model fit of the intensity distribution on sky, the observations being closure
phases from all the closed triangles that can be constructed with the given set of baselines. Fringe visibility
data makes solving for the actual image (or its measured Fourier components) possible. The inner working
angle (IWA) of such an image is 0.5λ/D, the outer working angle (OWA) is set by the shortest non-redundant
baseline available. Recovering the measured Fourier components of source structure with NRM imaging using
both closure phases and fringe visibilities is a well-posed problem. This is not the case with full aperture
imaging. Ground-based fringe visibilities suffer from temporal instabilities due to atmospheric scintillation and
transparency variations, though closure phases still extremely useful. On JWST fringe visibilities should be
stable since segment reflectivity is unlikely to vary perceptibly during a single exposures, or between science and
calibrator exposures.

In practice dynamic range may be limited by effects such as a non-isotropic guiding error, detector flat field
errors, and pupil wander. Target placement repeatable to an arcsecond on JWST’s HAWAII-2RG detectors will
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Figure 3. The pupil plane in FGS-TFI is decentered, demagnified, stretched slightly in one dimension, and slightly rotated
relative to JWST’s primary mirror (PM). The NRM in the JWST FGS-TFI pupil wheel is shown in PM coordinates,
after being projected back to the PM using JWST’s optical design. Each of the 18 segment centers are indicated with
light green circles labelled with their segment names (A1,A2,..., C6). The conceptual design NRM with holes placed in a
regular hexagonal grid in (V2,V3) space is shown by small black solid circles at the nominal segment centers’ locations
(i.e., assuming segments form a regular hexagonal grid in (V2,V3) space). The projected mask’s holes in PM space are the
7 green hexagons. Slight misalignments of the holes with their respective PM segment centers will not affect the scientific
capabilities of the NRM. However it is preferable that the NRM’s holes do not span a segment-to-segment discontinuity.
Undersizing of the mask’s holes relative to the segments themselves allows for pupil shear up to 3.8% of the pupil diameter
before the mask’s holes cross segment boundaries.

improve data calibration, given the spatial frequency of the detector’ flat field structure.

3. NRM IN SPACE

Without AO, ground-based NRM, like speckle interferometry, must freeze temporally-varying fringe patterns.
AO stabilizes relative piston differences between subapertures in the aperture mask. This enables longer exposure
times, limited by pixel well-depth, thermal background rates or instrument stability. Once deployed, JWST’s
primary mirror segments’ positions relative to each other are expected to drift very slowly. Exposure times will
likely be limited by cosmic rays, with a maximum single exposure time measured in hours. Under such conditions,
NRM opens up a search space completely beyond the reach of ground-based telescopes. Thermal background
and atmospheric opacity also limit ground-based imaging longward of about 2μm. Furthermore, JWST’s unusual
primary mirror geometry and articulation are unlikely to cause problems for NRM interferometry.

For a 0.5m2 subaperture at 4μm, a 1% filter bandwidth and 50% net quantum efficiency, M � 7 is the limit
for 104 contrast in 10ks, and M = 12 the limit for 103 contrast in 10ks. A 10% bandwidth filter will reduce
exposure times by a factor of ten for the same contrast. At bandwidths in excess of 10% the 7-hole FGS-TFI
designs’ contrast starts to degrade. In FGS-TFI, sub-array readouts will enable observations of objects as bright
as M = 3.

4. SIMULATIONS

We used ten Monte Carlo realizations of JWST’s exit pupil wavefront that conform to JWST’s wavefront error
budget.39 These OPDs,40 provided with the JWPSF41 software distribution, represent the wavefront in JWST
NIRCam’s short-wavelength channel. They assume particular low-, mid-, and high-spatial frequency wavefront
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Figure 4. Predicted JWST NRM and coronagraph performance. Dynamic range using only closure phase (CLP) as well
as closure phase in combination with fringe visibility (CLP+VIS) data for 1% bandpass NRM imaging at 4.81µm (using
the 7-hole mask shown in Figure 1) in JWST’s FGS Tunable Filter Imager (TFI) is plotted (heavy curves). A 1 day
delay between the NRM target and calibrator stars, with worst-case attitude-dependent thermally induced primary mirror
configuration changes (breathing), guiding errors, and measured detector intra-pixel sensitivity are simulated. In a 10
ks exposure on an M = 7 target, photon noise sets a 10 magnitude dynamic range limit. 10% bandwidths will produce
similar results in 1ks. The range of estimated contrasts between a solar type star and 1 and 10 Jupiter mass planets, at
ages of 1 and 10 Myr (Ref. 35, 36) are shown (vertical blue lines placed at arbitrary separations). This mask will enable
JWST to detect protoplanets in Taurus. The same mask in JWST NIRCam will produce 1 to 2 magnitudes less contrast
at 2 µm, at half the corresponding angular separation. In MIRI NRM can produce even higher contrast than in FGS-TFI.
NRM performance at 4.8 µm drops outside about 600mas. NIRCam’s linear band-limited coronagraph performance using
planned JWST roll angles37 complements the FGS-TFI NRM search space. The JWST MIRI four quadrant phase mask
coronagraph 11 µm contrast curve,38 assuming a static 5mas pointing error between target and calibrator, no guiding
error, unrestricted telescope roll capability, and no error in calibration star placement is also plotted. Jovian planets are
brighter at this wavelength than at 3-5 µm.
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Figure 5. NRM detection probabilities for FGS-TFI at 4.44 µm, drawing from a large sample of young nearby stars.
Companion mass is cut off above 10 Jupiter masses. Contours show the estimated probability of finding a planet with a
given mass (in Jupiter masses, log scale), on the horizontal axis, and a given semi-major axis (AU, vertical axis) within
nominal performance (a 10 magnitude contrast floor imposed on the curves in Fig. 4). The exposure time assumed is
about 1 hour per source. Better detection probabilities would result from longer exposures on an individual object.

error allocations to JWST’s Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM).
These realizations yield PSFs at 2μm with Strehl ratios above 80%. They are estimates, given the expected
residual wavefront error 14 days after active tuning of the JWST primary mirror (PM) figure has been performed,
and the telescope slewed from a spacecraft attitude with the most thermal load from the Sun to one with the
least such thermal load. To preserve the individual segment wavefront errors associated with one realization of
the 18 segments in JWST’s PM, we extracted the individual segment piston errors from each of the ten wavefront
maps, and used them to create ten instances of a single thermally perturbed set of PM segments.

Using methods described in Refs. 42–45, we simulated images on a 9-fold finer grid than the 65 mas FGS-TFI
detector pixel pitch. We dithered the oversampled PSFs by one sample spacing to model pointing errors of 7mas
per axis. Intra-pixel quantum efficiency was modeled as a quadratic, ranging from unity at a pixel center to 0.8
at a pixel corner. We then binned the 9× 9 dithered subsampled PSFs to create an image on the FGS-TFI pixel
scale. We did not explicitly simulate photon noise, read out noise (∼ 15e− rms for a double-correlated sample),
or detector flat field errors, although our detection threshold calculations have taken some experience-based
account of these processes.

Simulated data were analyzed with a pipeline used for Keck, Palomar, and VLT data. (e.g., Ref. 46). Nine
of the ten PSF realizations in a set were taken to be calibrator observations, and one of the ten was taken to be
the target observation. This process was repeated for several choices of target PSF. Rather than replicating the
complex Monte-Carlo process of Ref. 46, we chose to use a simple detection threshold of 5σ, with closure-phase
and visibility standard deviations calculated from scatter within the 9 calibrator observations. Note that typical
99.9% detection thresholds in Ref. 46 were ∼4 to 4.5σ with a more complete Monte-Carlo, which was verified by
the lack of numerous false detections in that paper. We therefore believe our 5σ limit is conservative.

Figure 4 shows the contrast achieved with dynamic range calculated two ways: first, using only the closure
phases (labelled CLP) for a comparison with current ground-based results, and second, using both closure phases
and fringe visibilities (labelled CLP+VIS), to estimate the full range of contrast available to JWST. Contrast
between MJ and 10MJ planets 1 and 10 Myr old and a parent G2V dwarf are shown in the figure. We find
our mask designs produce these estimated contrasts even when the detector’s pixel pitch is slightly worse than
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Figure 6. Distribution of stellar ages with distance in the sample used to generate the detection probability shown in
Fig. 5. The sample comprises stars younger than 5Myr and closer than 140pc from the Sun, and stars older than 10Myr
that are within 50pc of the Sun.

Nyquist. The very highest contrast shown is obtained using both closure phases as well as visibilities.

Dithering and drizzling images47 may further enable undersampled data recovery. Information from routine
wavefront sensing observations45 may help improve the dynamic range of NRM data. We have not examined
these two refinements.

5. BENEFITS OF NRM IN SPACE

NRM brings both scientific and operational advantages to JWST, given the telescope’s segmented architecture
and planned co-phasing methods during commissioning.48–50 Every NRM image measures the relative piston
between each hole in the aperture mask, with a capture range set by the filter coherence length. Images taken
through two masks with ∼5% throughput can measure segment pistons and tilts to interferometric precision,
without the need for any alteration of the optical train, whether they be defocus, segment tilt, or indeed any
other active mirror motion. Coarse co-phasing JWST can be accomplished using 1% bandpass filters and NRMs.
Masks in separate cameras mitigate instrument failure-induced risk, and enables campaign mode observing with
the best image quality possible in any camera equipped with two NRM’s. Two such masks in a camera can
measure its field-dependent and chromatic aberrations. Camera-specific wavefront knowledge can feed into data
reduction, benefiting science that requires thorough understanding of temporal, spatial, and chromatic variations
in the PSF. In addition, NRM observations determine stellar multiplicity at the highest resolution and contrast
possible. Such observations can eliminate inappropriate wavefront sensing or guide star choices. Images taken as
the mask is stepped across the pupil (or vice versa) will measure pupil location without specialized pupil imaging
optics. Such information is relevant for IR instrument and telescope maintenance.
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6. CONCLUSION

Detailed simulations with time-varying mirror figure errors and existing data reduction methods suggest that
placing a non-redundant aperture mask on any of the JWST instruments brings exciting high resolution high
contrast imaging within reach. The 7-hole NRM in the Fine Guidance Sensor’s Tunable Filter Imager will
image protoplanets in Taurus (see Figure 5 and 6). Such aperture masking provides JWST with alternative,
risk-reducing wavefront measuring techniques, while increasing the science output of JWST substantially, and
paving the way for future missions with NRM instrumentation. Future missions can increase the science payoff
with more optimized NRM modes, making the technique interesting for galactic, extragalactic, and cosmological
observations.
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