
Tensor factorizations of local second-order Møller–Plesset theory

Jun Yang, , Yuki Kurashige, , Frederick R. Manby, , and Garnet K. L. Chan,

Citation: J. Chem. Phys. 134, 044123 (2011); doi: 10.1063/1.3528935
View online: http://dx.doi.org/10.1063/1.3528935
View Table of Contents: http://aip.scitation.org/toc/jcp/134/4
Published by the American Institute of Physics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216256384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aip.scitation.org/author/Yang%2C+Jun
http://aip.scitation.org/author/Kurashige%2C+Yuki
http://aip.scitation.org/author/Manby%2C+Frederick+R
http://aip.scitation.org/author/Chan%2C+Garnet+K+L
/loi/jcp
http://dx.doi.org/10.1063/1.3528935
http://aip.scitation.org/toc/jcp/134/4
http://aip.scitation.org/publisher/


THE JOURNAL OF CHEMICAL PHYSICS 134, 044123 (2011)

Tensor factorizations of local second-order Møller–Plesset theory
Jun Yang,1,a) Yuki Kurashige,2,b) Frederick R. Manby,3,c) and Garnet K. L. Chan4,d)

1Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
2Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, 38
Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
3Center for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS,
United Kingdom
4Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA

(Received 24 August 2010; accepted 30 November 2010; published online 27 January 2011)

Efficient electronic structure methods can be built around efficient tensor representations of the wave-
function. Here we first describe a general view of tensor factorization for the compact representation
of electronic wavefunctions. Next, we use this language to construct a low-complexity represen-
tation of the doubles amplitudes in local second-order Møller–Plesset perturbation theory. We in-
troduce two approximations—the direct orbital-specific virtual approximation and the full orbital-
specific virtual approximation. In these approximations, each occupied orbital is associated with a
small set of correlating virtual orbitals. Conceptually, the representation lies between the projected
atomic orbital representation in Pulay–Saebø local correlation theories and pair natural orbital cor-
relation theories. We have tested the orbital-specific virtual approximations on a variety of systems
and properties including total energies, reaction energies, and potential energy curves. Compared to
the Pulay–Saebø ansatz, we find that these approximations exhibit favorable accuracy and computa-
tional times while yielding smooth potential energy curves. © 2011 American Institute of Physics.
[doi:10.1063/1.3528935]

I. INTRODUCTION

In electron correlation there are two problems of com-
plexity. The first relates to the information (storage) required
to represent the wavefunction and the second to the complex-
ity of manipulating the wavefunction to calculate observables.
Consider, for example, the doubles amplitudes tab

i j (where i j
denote occupied orbitals, ab denote virtual orbitals) common
to the second-order Møller–Plesset perturbation (MP2), cou-
pled cluster doubles (CCD), and coupled electron pair ap-
proximations (CEPA). The storage scales like N 4 while the
cost of obtaining the energy scales like N 5 for MP2 and N 6

for CCD and CEPA, where N is a measure of the size of the
system.

In several limits, we expect these formal complexities to
be too high. For example, if there is a large number of atomic
orbitals on a single center, there is redundancy in the prod-
uct occupied-virtual pair basis. Also, in large molecules the
cost to obtain the energy should be linear in the size of the
molecule. In both these situations, the mismatch between for-
mal complexity and our expected complexity suggests that
the amplitudes and amplitude equations have some special
structure. For example, in Pulay–Saebø local correlation the-
ories based on the projected atomic orbital (PAO) ansatz,1–3

the sparsity structure of the amplitudes is built in through
distance-based truncations,4 and using this framework it has
been possible to achieve linear scaling of storage and com-
putational cost with system size.5–9 Naturally, these trunca-
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tions are not orbitally invariant and require a representation
of the orbitals in which the amplitude matrix is maximally
sparse. An important task in devising algorithms with re-
duced complexities is to find optimal transformations of the
amplitudes to representations that are approximable with low
complexity.

The doubles amplitude tab
i j is a tensorial quantity. Here,

by tensor we do not refer to the transformation properties (as
used, for example, in nonorthogonal representations,10, 11),
but simply to the fact that many indices are involved. The
problem of finding a low-complexity representation can be
viewed as one of tensor representations or tensor factoriza-
tions. While there has been much recent work in constructing
low-complexity representations for the doubles amplitudes
and two-electron integrals, both through using more optimal
orbitals (for example, along the lines of local pair natural
orbitals (LPNOs) (Refs. 10 and 12–17), optimized virtual or-
bital spaces,18, 19 frozen natural orbitals,20–23 and others24, 25)
as well as matrix factorizations of the integrals and ampli-
tudes (such as Cholesky decompositions and density fitting
(DF) (or resolutions of the identity, RI) (Refs. 26–36), these
approaches have not yet explored the full generality of the
tensorial structure.

The current work has two goals. The first is to establish
language with which we can discuss tensor factorization in a
general way. In particular, this will allow us to classify differ-
ent tensor factorizations by the topology and nature of their
connectivities. The second goal is to explore a specific fac-
torization which we refer to as an orbital-specific virtual ap-
proximation. This representation has a simple and intuitive
interpretation that bridges earlier work on optimal virtuals
and work on PNOs. We explore the orbital-specific virtual
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FIG. 1. Pictorial representations of (a) Cholesky decomposition and (b) ma-
trix product decomposition.

approximation in the context of local second-order Møller–
Plesset perturbation theory. We present applications on a va-
riety of large molecules, clusters, and reactions. We find that
the ansatz is very favorable both in its formal properties such
as potential energy curve smoothness, and weak computa-
tional dependence on the size of the underlying basis, as well
as regarding its absolute costs in terms of storage and tim-
ings when compared to an existing efficient implementation
of the local Pulay–Saebø correlation ansatz.6, 37 Finally, we
finish with a discussion of the future prospects of such an
approach.

(Note: After this work was completed, we have become
aware that Pulay and co-workers have been pursuing an ap-
proach for local correlation that is similar to the orbital-
specific virtual approximation investigated here.)

II. THEORY AND ALGORITHM

A. Classification of tensor factorizations

We are concerned primarily with the doubles amplitude
tensor tab

i j . We illustrate it pictorially as a connected four-point
object (see objects on the left in Figs. 1 and 2). A closely
related quantity, particularly in second-order Møller–Plesset
theory, is the two-electron integral vab

i j . In canonical closed-
shell MP2 theory, the two are related by

tab
i j = (

2vab
i j − vba

i j

)
(εi + ε j − εa − εb)−1. (1)

To construct a low-complexity representation of the
two-electron integrals or amplitudes, we approximate the
high-dimensional amplitude or integral tensors by lower-
dimensional components. These component tensors may
share the same “physical” indices i, j, a, b as the target
tensor, but may also carry additional “auxiliary” indices
λ,μ, ν, ρ, . . .. Since the auxiliary indices do not appear in the
target tensor, they must be traced over in some way, and both
the distribution of the physical and auxiliary indices among
the component tensors as well as the pattern of contractions
define the particular tensor representation. Since these con-
tractions are usually nonlinear, it is often useful to visualize
the contractions pictorially rather than algebraically.

To illustrate this, consider first the density-fitting and
Cholesky decomposition approximations. In all these approx-
imations, the two-electron integrals are viewed as a matrix
factorization,

vab
i j =

∑
λ

La
iλLb

jλ, (2)

where λ is the auxiliary index. Pictorially, we view the above
as separating the ia, jb electron–hole degrees of freedom,
which must then be reconnected via an auxiliary index [see
Fig. 1(a)]. Naturally, the efficiency of the factorization relies
on the rank of the decomposition (the number of terms in the
sum) being low. As another example, consider the types of
correlation ansatz (such as the Pulay–Saebø local correlation
ansatz) which use a noncanonical virtual orbital basis, for ex-
ample, the PAO virtuals. Noncanonical virtuals φμ are related
to canonical virtuals φa by a transformation

φμ =
∑

μ

ta
μφa, (3)

and, consequently, the canonical and noncanonical doubles
amplitudes are related by

tab
i j =

∑
μν

tμν

i j t a
μtb

ν , (4)

which defines the amplitude approximation. Pictorially, this
approximation is illustrated in Fig. 2(a). For appropriate ta

μ

(such as defined by the PAO virtuals), representation (4)
allows one to favorably exploit locality. For example, in

FIG. 2. Pictorial representations of (a) tab
i j = ∑

μν tμν
i j ta

μtb
ν (Pulay–Saebø

PAO approximation), (b) tab
i j = ∑

μν t
μi j
i ja t

μi ν j
i j t

νi j
i jb (pair natural orbital ap-

proximation), and (c) tab
i j = ∑

μν tμi
ia t

μi ν j
i j t

ν j
jb (orbital-specific virtual approx-

imation).



044123-3 Tensor-network factorizations J. Chem. Phys. 134, 044123 (2011)

the Pulay–Saebø–Werner–Schütz approaches1–3, 6–9, a spar-
sity structure on tμν

i j is imposed by requiring tμν

i j = 0 when
i is far apart from j , and for other i j , the sum over μ and
ν is restricted to defined domains [i j] that are in the spatial
vicinity of i j .

Thus, the essence of low-complexity tensor approxima-
tion is captured by the types of indices on the components
and their connectivity, as illustrated in their pictorial represen-
tation. We can consider generalizations of the above approx-
imations in a variety of ways. For example, we can consider
approximations with additional auxiliary indices. One exam-
ple is [cf. Fig. 1(b)]

tab
i j =

∑
λ1...λ4

tλ1λ2
i t a

λ2λ3
tb
λ3λ4

tλ4λ1
j (5)

= tr[ti tatbt j ] (6)

where the amplitude tab
i j is reconstructed as a trace of a ma-

trix product. This approximation recalls the matrix product
decomposition in the density matrix renormalization group
(DMRG) (Refs. 38 and 39), although the physical content
here is quite distinct, since the DMRG is carried out in the
occupation number space rather than in the excitation space.
Another way to construct new approximations is to intro-
duce components with repeated physical indices. A particu-
larly simple example is

tab
i j = ti j tiat jb, (7)

where there are no auxiliary indices at all. This recalls the
correlator product state approximation (also known as an en-
tangled plaquette state,40, 41), although once again the tensor
is expressed in an excitation rather than occupation number
picture. Naturally, we can consider many other combinations
of auxiliary indices and physical indices, and the appropriate-
ness of the particular choice depends on the problem at hand.

B. Orbital-specific virtual approximation

We now consider a simple tensor factorization of the dou-
bles amplitudes tab

i j that we will study in this work. We first
define the direct orbital-specific virtual (dOSV) approxima-
tion to the amplitudes as [cf. Fig. 2(c)]

tab
i j =

∑
μν

tμi
ia t

μi ν j

i j t
ν j

jb. (8)

This has a simple physical interpretation: the component tμi
ia

(and similarly t
ν j

jb) defines a set of virtual orbitals for each oc-

cupied orbital and t
μi ν j

i j represents amplitudes in this orbital-
specific basis. Note that the subscript i in μi is somewhat
redundant, but we retain it to emphasize that μi labels an
orbital-specific virtual associated with occupied orbital i . By
choosing a good set of components tμi

ia , either by direct op-
timization or otherwise (see later), we may define suitable
adaptations of the virtual basis for each occupied orbital. This
is quite natural in a local correlation theory, as the optimal
orbital-specific virtuals for a localized occupied orbital must

be located in close spatial proximity; however, even when the
occupied orbitals are delocalized, we can still expect this fac-
torization to be beneficial, as a given occupied orbital does
not correlate equally with all parts of the virtual space.

In the dOSV approximation, occupied orbital i excites
only to its virtual set μi (i → μi ) and occupied orbital j
only to its orbital set ν j ( j → ν j ): the “exchange” excitations
i → ν j , j → μi being excluded. It was shown, however, in
the context of Pulay–Saebø local theory that the inclusion of
exchange excitations can lead to greatly improved results.42–45

While formally the exchange excitations can be included by
increasing the size of sets μi and ν j , we can also include them
explicitly in the structure of the ansatz, which leads to the full
orbital-specific virtual (OSV) approximation

tab
i j =

∑
μν

(
tμi
ia tμi νi

i j tνi
jb + tμi

ia t
μi ν j

i j t
ν j

jb

+ t
μ j

ia t
μ j νi

i j tνi
jb + t

μ j

ia t
μ j ν j

i j t
ν j

jb

)
. (9)

This can be written in matrix form

tab
i j =

∑
μν

(
tμi
ia t

μ j

ia

) (
tμi νi
i j t

μi ν j

i j

t
μ j νi

i j t
μ j ν j

i j

)(
tνi

jb

t
ν j

jb

)
. (10)

To gain further understanding, we briefly discuss the
connection to other approximations where noncanonical vir-
tual spaces are used. In theories which use a global set of
noncanonical virtuals, such as the PAO virtual space in the
Pulay–Saebø ansatz, the amplitude tensor is expressible as
in Eq. (4), where ta

μ and tb
ν parametrize the transformation

to a new virtual basis. In PNO theories pioneered some time
ago10, 12–15 and which have been recently revisited by Neese
and co-workers,16, 17 a correlating virtual space is defined for
each occupied pair i j , and the amplitudes are factorized as
(cf. Fig. 2(b))

tab
i j =

∑
μν

t
μi j

i ja t
μi ν j

i j t
νi j

i jb. (11)

Compared to the Pulay–Saebø ansatz where a global set of
virtuals is used, the orbital-specific virtual approximation is
able to adapt the virtual space, which leads to a more com-
pact representation of the amplitudes. On the other hand,
the orbital-specific virtual approximation adapts each virtual
space to a single occupied orbital rather than a pair. This
avoids some of the complexities inherent to the PNO ansatz
where the definitions of the virtual spaces involve four-index
components t

μi j

i ja of similar formal complexity to the ampli-
tudes themselves and which lead to virtual blocks of over-
lap and Fock matrices with higher dimensions (e.g., Sμi j νkl )
in the PNO space than those in the orbital-specific virtual
space (e.g., Sμi νk ). Consequently, we see that formally the
orbital-specific virtual approximation interpolates between
the Pulay–Saebø form and the PNO approximation. We now
turn toward its practical implementation in second-order per-
turbation theory (MP2).
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III. IMPLEMENTATION

A. MP2 wavefunction and singular value
orbital-specific virtuals

The central task of MP2 theory is to determine the first-
order wavefunction |�(1)〉,

|�(1)〉 = 1

2

∑
i jab

tab
i j

∣∣�ab
i j

〉
(12)

where in the above i, j, . . . and a, b, . . . refer, respectively, to
the occupied and virtual spatial orbitals. Explicitly in spin-
orbital notation∣∣�ab

i j

〉 =
∑

σ,σ ′∈{α,β}

∣∣�aσbσ ′
iσ jσ ′

〉
. (13)

For closed-shell molecules the spin-free orbital notation
avoids the explicit use of spin coordinates and is very con-
venient.

Inserting the orbital-specific virtual approximation
[cf. Eq. (8)] into Eq. (12), we parametrize the first-order
wavefunction in terms of factorized amplitudes t

μi ν j

i j and
corresponding determinants |�μi ν j

i j 〉. For the direct orbital-
specific virtual approximation of Møller–Plesset perturbation
(dOSVMP2),

|�(1)〉 = 1

2

∑
i jμν

t
μi ν j

i j

∣∣�μi ν j

i j

〉
, (14)

where∣∣�μi ν j

i j

〉 =
∑
ab

tμi
ia

∣∣�ab
i j

〉
t
ν j

jb, (15)

while for the full orbital-specific virtual approximation of
Møller–Plesset perturbation (OSVMP2), we have

|�(1)〉 = 1

2

∑
i jμν

(
tμi νi
i j

∣∣�μi νi
i j

〉 + t
μi ν j

i j

∣∣�μi ν j

i j

〉 + t
μ j νi

i j

∣∣�μ j νi

i j

〉
+ t

μ j ν j

i j

∣∣�μ j ν j

i j

〉)
. (16)

In Eq. (14) we have introduced an orbital-specific virtual |μi 〉
defined through an orbital transformation from the virtual |a〉
using tμi

ia ,

|μi 〉 =
∑

a

tμi
ia |a〉. (17)

Naturally, we would like the OSVs to be well adapted to
each occupied orbital in Eq. (17). One quick and economical
scheme to determine tμi

ia is to perform a singular value decom-
position (SVD) of the MP2 diagonal amplitudes tab

ii for each
occupied orbital i ,

tab
ii =

∑
μ

tμi
ia sμi t

μi
ib , (18)

where sμi is the singular value. In the canonical basis, tab
ii is

directly calculated from

tab
ii = vab

ii

2εi − εa − εb
. (19)

When the localized occupied orbitals are used, εi is the diag-
onal element of the Fock matrix in the local orbital basis. εa

and εb are the diagonal elements of the virtual block of Fock
matrix.

The SVD provides a natural setting to truncate the OSV
space, as the singular vectors with small singular values sμ

should contribute little to the final amplitudes. Consequently
it is reasonable to include only those vectors with the largest
eigenvalues, keeping either a fixed number of OSVs per oc-
cupied orbital, a fixed percentage of OSVs, or by using a nu-
merical threshold on sμ. We have used the first two truncation
schemes in this work. After truncation, the complete virtual
space is parametrized by an incomplete set of orbital-specific
virtuals. This, of course, introduces errors relative to canoni-
cal MP2 theory. However, as numerically shown in Sec. IV,
the resulting correlation energies exhibit only minor devia-
tions (e.g., < 0.01%) from canonical values while achieving
very substantial gains in computational efficiency.

The OSVs defined above are not always orthogonal. The
overlap matrix between the OSVs |μi 〉 and |ν j 〉 is

Sμi ν j = 〈μi |ν j 〉 =
∑

a

tμi
ia t

ν j

ja . (20)

Through the SVD, the OSVs |μi 〉 belonging to the same oc-
cupied orbital are orthonormal but the OSVs from different
occupied orbitals are not.

We also note that the SVD does not necessarily yield the
most optimal orbital-specific virtual orbitals. The optimiza-
tion of tμi

ia relaxes the OSVs and may help achieve a more
compact description of the correlation effects. This is under
investigation and will be presented elsewhere.

B. Residual equations

We derive the exact MP2 residual equations in the OSV
basis starting from the Hylleraas functional,46

h = 〈�(1)|F − E (0)|�(1)〉 + 2〈�(1)|V|�(0)〉, (21)

where F is the Fock operator and V is the two-electron
fluctuation potential. E (0) is the sum of occupied Hartree–
Fock eigenvalues. By parametrizing �(1) in the dOSVMP2
[cf. Eq. (14)] and making the first derivative of h with respect
to t

μi ν j

i j vanish, we arrive at the following formal residual,

R
μi ν j

i j =
(

∂h

∂t
μi ν j

i j

)
= 〈

�
μi ν j

i j

∣∣F − E (0)
∣∣�(1)

〉
+ 〈

�
μi ν j

i j

∣∣V∣∣�(0)
〉 = 0. (22)

The expansion of R
μi ν j

i j has the following explicit form for a
particular pair (i, j),

R(i, j) = 2K(i, j) − J(i, j) + 2
[
T(i, j)F( j, j) + F(i,i)T(i, j)

−
∑

k

Fk j T(i,k)S(k, j) −
∑

k

FikS(i,k)T(k, j)

]
−S(i, j)

[
T( j,i)F(i, j) −

∑
k

FikT( j,k)S(k, j)

]
−

[
F(i, j)T( j,i) −

∑
k

Fk j S(i,k)T(k,i)

]
S(i, j). (23)
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Here T(i, j) is the matrix form of amplitudes {tμi ν j

i j }, fixing
i, j . Fik and Fk j are elements of the occupied block of the
Fock matrix. K(i, j) and J(i, j) denote the matrices storing two-
electron exchange and Coulomb integrals (φiφμi |φ jφν j ) and
(φiφν j |φ jφμi ), respectively. S(i, j) and F(i, j) are, respectively,
the overlap and Fock matrices with elements 〈φμi |φν j 〉 and
〈φμi |F̂ |φν j 〉 for a pair (i, j). None of the above quantities
give rise to real bottlenecks for memory or disk storage if the
orbital-specific virtual space is truncated.

In the OSVMP2 [cf. Eq. (16)], we minimize the
Hylleraas functional with respect to the amplitudes tμi νi

i j ,

t
μi ν j

i j , t
μ j νi

i j , t
μ j ν j

i j giving rise to analogs of Eq. (22). The
explicit residuals are then

R(i, j) = K(i, j)+
∑

k

{S(i j,ik)T(i,k)[δk j F(ik,i j) − Fk j S(ik,i j)]

+ [δikF(i j,k j) − FikS(i j,k j)] Tk j S(k j,i j)}, (24)

where R(i, j) is now a matrix of dimension dim (μi )
+ dim (ν j ), with elements of types Rμi νi

i j , R
μi ν j

i j , R
μ j νi

i j , R
μ j ν j

i j ,
and similar to K(i, j). S(i j,ik) is the overlap matrix assembled
between the bras {〈μi |, 〈μ j |} and the kets {|νi 〉, |νk〉} once
needed,

S(i j,ik) =
[

S(i,i) S(i,k)

S( j,i) S( j,k)

]
, (25)

and F(i j,ik) is the analogously defined Fock matrix.

C. Projective residual equations for dOSVMP2
(dOSVMP2-P)

Compared to the standard local MP2 residual equations,
those for the orbital-specific virtuals appear more compli-
cated, especially for the direct (dOSVMP2) ansatz. Formally,
we can obtain the MP2 amplitudes not only through varia-
tional minimization of the Hylleraas functional but also by
projection with an appropriate set of bra states. In the case of
dOSVMP2, this leads to a simpler set of residual equations
which define a different set of amplitudes than those arising
from Eq. (23). We write

R̃
μi ν j

i j = 〈
�̃

μi ν j

i j

∣∣F − E (0)
∣∣�(1)

〉 + 〈
�̃

μi ν j

i j

∣∣V∣∣�(0)
〉 = 0. (26)

The bra states are chosen to be biorthonormal to the ket states
in the spatial orbital basis following Refs. 2 and 47,

〈
�̃

μi ν j

i j

∣∣�ωkγl

kl

〉 = 1√
1 + δi jδμi ν j

(δikδ jlδμωδνγ + δ jkδilδνωδμγ )

(27)

with a normalization prefactor. The biorthonormal OSV bra
state 〈�̃μi ν j

i j | is defined from the canonical biorthonormal bra
state 〈�̃ab

i j |,
〈
�̃

μi ν j

i j

∣∣ =
∑
ab

〈
�̃ab

i j

∣∣tμi
ia t

ν j

jb, (28)

with47 〈
�̃ab

i j

∣∣ = 1
3

(
2
〈
�ab

i j

∣∣ + 〈
�ba

i j

∣∣),〈
�̃ab

i j

∣∣�cd
kl

〉 = 1√
1 + δi jδab

(δikδ jlδacδbd + δ jkδilδbcδad ).

(29)

Note that if we truncate the OSV space, then the space
spanned by the bras {〈�̃μi ν j

i j |} is not the same as the space

spanned by {〈�μi ν j

i j |} due to the presence of the exchange-
like excitation 〈�ba

i j | in the definition of 〈�̃ba
i j |. This is what

gives rise to the difference between the projective and (stan-
dard) Hylleraas based residual equations for the dOSVMP2
approximation.

Thus expanding Eq. (26) yields the projective residual
equation R̃(i, j),

R̃(i, j) =K(i, j) + T̃(i, j)F( j, j) + F(i,i)T̃(i, j)−
∑

k

Fk j T̃(i,k)S(k, j)

−
∑

k

FikS(i,k)T̃(k, j), (30)

which has clearly a simpler form than the standard residual in
Eq. (23). We denote the direct orbital-specific virtual approxi-
mation defined by the amplitudes from Eq. (30), the projective
dOSVMP2-P approximation. In a complete virtual space, the
solution of either dOSVMP2 or dOSVMP2-P yields the exact
canonical MP2 energy and the first-order wavefunction. In an
incomplete virtual space (e.g., if not all the orbital-specific
virtuals are used), however, dOSVMP2-P generally does not
result in a correlation energy that is variationally bounded
above the canonical MP2 value with respect to the size of in-
complete virtual space. The numerical comparison between
dOSVMP2 and dOSVMP2-P will be given in Sec. IV.

D. Preconditioning

As the Fock matrix is diagonal in the canonical basis, the
canonical MP2 amplitudes are directly calculated as

tab
i j = vab

i j

εi + ε j − εa − εb
, (31)

where ε’s are the diagonal elements of the canonical Fock
matrix. However, in the orbital-specific virtual space, the
Fock matrix contains significant off-diagonal elements and
the residual equations must be solved iteratively. Here the
use of a preconditioner is essential. To this end we define
pseudovirtual energies. The pseudovirtual energies can be
obtained by diagonalizing the Fock matrix in the space of
orbital-specific virtuals for each diagonal occupied pair (i,i)
similar to as done in Ref. 5,

F(i,i)X(i,i) = S(i,i)X(i,i)E(i,i), (32)

where X(i,i) is the transformation matrix that diagonalizes
both F(i,i) and S(i,i). E(i,i) is diagonal and contains the pseu-
dovirtual energies. When preconditioning the residual R(i, j)



044123-6 Yang et al. J. Chem. Phys. 134, 044123 (2011)

corresponding to orbital pair (i, j), we then consider the resid-
ual as a matrix with the first index corresponding to the
virtuals associated with i and the second with the virtuals
associated with j . Consequently, the transformation is per-
formed on the virtual indices of the original residual R(i, j)

with X†
(i,i) and X( j, j), respectively.

R(i, j) = X†
(i,i)R(i, j)X( j, j). (33)

The amplitude update matrix �t(i, j) in the transformed basis
is then

�t
μi ν j

i j = R
μi ν j

i j

εi + ε j − εμi − εν j

, (34)

where R
μi ν j

i j is the element of the residual matrix R(i, j). The
pseudovirtual energies of εμi and εν j are the elements of
E(i,i) and E( j, j), respectively. Finally the update in the origi-
nal orbital-specific basis is given by the back-transformation

�t(i, j) = X(i,i)�t(i, j)X
†
( j, j). (35)

The same algorithm can be used with both dOSVMP2 and
OSVMP2, the latter requiring the obvious generalizations of
indices (i, j) to (i,i), (i, j), ( j,i), ( j, j).

Note that for OSVMP2 the eigenvectors X(i, j) may be
linearly dependent. (The same issue arises, e.g., in the Pulay–
Saebø local correlation theory5). The redundant vectors are
eliminated by a canonical orthogonalization of S(i, j), discard-
ing eigenvalues of S(i, j) below a given linear dependency
threshold (not to be confused with the screening threshold TS

later). Here we use a linear dependency threshold of 10−6 for
all OSVMP2 calculations.

With the above preconditioning, the amplitudes and MP2
energies converge very quickly. For example, typically, the
change in correlation energy falls below 10−6 a.u. within
8–10 iterations for dOSVMP2-P and OSVMP2 and within
16–20 iterations for dOSVMP2.

E. Computational cost and screening

The most expensive term in our current implementation
of the residual equations (23) and (30) is the contraction∑

k Fk j T(i,k)S(k, j), similar to the corresponding terms in the
local Pulay–Saebø ansatz. In the Pulay–Saebø ansatz this term
can be computed in two ways, i.e., the contractions can be
carried out inside or outside the summation but both lead to
O3 scalings in large molecules if we use all occupied pairs.6

In the case of OSV approaches for large molecules, the con-
traction also scales as O3 though we expect (and find in our
numerical results below) that the prefactor of the O3 term is
better than that of the PAO implementation due to the smaller
number of OSVs needed for a given accuracy.

We can further lower the computational cost by introduc-
ing some screening approximations to the N 6 contraction. As
we have discussed previously, the most important OSVs that
can be correlated with each occupied orbital are located close
to the occupied orbital itself. By exploiting orbital locality,
the overlap matrix element Sγkν j decays exponentially with
the separation of k and j . Based on this we can simply ignore

entire classes of unimportant N 6 contractions in the residuals
without losing much accuracy and consequently reduce the
scaling of solving the residual equations in a large system to
order O2. The following ratio t S

k j for a given pair (k, j) is com-
puted in order to define an appropriate screening threshold,

t S
k j =

∑
γ ν S2

γkν j∑
γ ν S2

γkνk

. (36)

With a screening threshold of TS we then neglect any overlap
matrix S(k,j) belonging to a pair (k, j) if t S

k j < TS. From the
definition, t S

k j ranges between 0 and 1: thus when TS = 0 the
overlap matrices belonging to all pairs of (k, j) are taken into
account; when TS = 1 only the diagonal contributions with
k = j are included. Equation (36) allows us to avoid a less
desirable spatial truncation criterion.

Currently, however, the main cost in our OSVMP2 im-
plementation is the integral transformation, since the full
local occupied space is employed throughout transform-
ing complete two-electron integrals. For example, with-
out using sparsity, the first-quarter integral transformation
(αβ|γ δ) → (iβ|γ δ) scales as N 5 and limits the size of
molecules that we can treat efficiently. As has been previ-
ously demonstrated by Werner and co-workers,5, 6 however,
a linear scaling transformation algorithm can be achieved by
discarding spatially distant occupied orbital pairs and exploit-
ing integral prescreening techniques. DF/RI techniques in
local approximations35, 36 can further decrease the cost of in-
tegral transformations by 1–2 orders of magnitude for large
molecules. These techniques will be incorporated into our al-
gorithm in future work.

IV. COMPARING THE dOSVMP2 AND OSVMP2
APPROXIMATIONS

We have introduced two related factorizations of MP2
theory, dOSVMP2 and OSVMP2. In addition, in dOSVMP2
we can define the amplitudes through two different resid-
ual equations: one obtained via the Hylleraas functional
(dOSVMP2), and one obtained by projection (dOSVMP2-P).
These variants have been implemented in the quantum chem-
istry program DALTON.48 We now assess the numerical be-
havior of these different schemes for correlation energies
and reaction energies. All calculations were performed with
TS = 0 unless the TS is explicitly given. The internal or-
bitals were localized using Boys localization49 throughout the
present work.

A. Correlation energies

The number of OSVs associated with each occupied or-
bital [the number of μi or νi in, e.g., Eq. (8)] needed to re-
cover a given accuracy in the correlation energy relative to the
canonical MP2 energy is reported for polyglycine oligopep-
tides, water clusters, and polyene chains. As seen in Table I, a
small number of OSVs recover most of the correlation energy
(e.g., ≥ 99.5%); the precise number depends on the electronic
structure of the molecule. OSVMP2 (which includes the ex-
change excitations) requires far fewer OSVs to reach the same
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TABLE I. Comparisons of the number of OSVs needed to obtain different accuracies (99.5%, 99.9%, and 99.99%) in the MP2 correlation energies using
dOSVMP2, dOSVMP2-P, and OSVMP2 approximations, respectively. The cc-pVDZ basis sets (Ref. 50) were used. The canonical MP2 reference correlation
energies were obtained using the MOLPRO program package (Ref. 37). Nv is the total number of canonical virtual orbitals. The cartesian coordinates of [gly]n

and (H2O)n are given in Refs. 51 and 52, respectively.

[gly]n dOSVMP2 dOSVMP2-P OSVMP2

n Nv 99.5% 99.9% 99.99% 99.5% 99.9% 99.99% 99.5% 99.9% 99.99%

1 75 35 51 65 32 48 63 16 22 31
2 131 41 62 91 38 58 88 18 25 39
4 243 44 68 103 42 65 99 19 28 44
6 355 46 70 106 43 66 103 19 28 46
8 467 46 71 108 43 67 103 19 28 46

12 691 47 71 108 44 68 104 20 29 46
14 803 47 72 109 44 68 105 20 29 47

(H2O)n dOSVMP2 dOSVMP2-P OSVMP2

n Nv 99.5% 99.9% 99.99% 99.5% 99.9% 99.99% 99.5% 99.9% 99.99%

10prism 190 24 35 62 23 33 59 13 17 25
12Pr444 228 24 37 71 24 35 66 13 18 27
14Pr2444 266 24 37 71 24 35 66 13 18 28
16Pr4444 304 25 38 75 24 36 70 13 18 28
18Pr44244 342 25 38 75 24 36 70 13 18 28
19globular 361 25 39 78 24 36 73 13 18 29

accuracy than dOSVMP2, typically less than half. Nonethe-
less both approximations are very compact. The number of
OSVs to reach a given accuracy also becomes independent of
the total molecular size very rapidly. For OSVMP2 the corre-
lation energy is saturated at accuracies of 99.5%, 99.9%, and
99.99%, respectively, with 20, 29, and 47 orbitals for [gly]n

and with 13, 18, and 29 orbitals for (H2O)n . Note that this sat-
uration behavior is expected when the system size becomes
much larger than its correlation length.

Regarding the different residual equations for dOSVMP2
factorization, both yield very similar results. Using the Hyller-
aas residual (dOSVMP2), we need a few more OSVs than
the projected residual (dOSVMP2-P) to recover the same
accuracy in the correlation energy. For example, 109 and
105 OSVs, respectively, yield 99.99% accuracy in the corre-
lation energy for dOSVMP2 and dOSVMP2-P for the largest
peptide [gly]14; for the (H2O)19 cluster we require 78 and
73 OSVs to reach the same accuracy.

Compared to [gly]n and (H2O)n , the polyene molecule
exhibits significant electronic delocalization, and this leads
to longer correlation lengths and more extended orbitals. As
a result, it is more difficult to converge the correlation en-

ergy toward the canonical limit than that in other molecules.
For example, with 40 OSVs the OSVMP2 error increases
from 0.46% to 0.66% (cf. Table II) as the length of polyene
chain increases from C6H8 to C14H16. Note that this de-
crease in accuracy is physical and not a failure of extensiv-
ity of the theory: as the HOMO (highest occupied molecular
orbital)–LUMO (lowest unoccupied molecular orbital) gap of
the polyenes decreases with increasing chain length, the cor-
relation length increases.

B. Reaction energies

Relative energies are the central quantity in chemistry
rather than absolute energies. We have investigated their
accuracy by computing relative energies for some isomeriza-
tion reactions using the different orbital-specific virtual ap-
proximations. These reactions were selected from Ref. 53
for the good agreement between the canonical MP2 isomer-
ization energies with triple-ζ basis sets [cc-pVTZ (Ref. 50)]
and the experimental isomerization energies. Results for other
reactions from the ISO34 test set are given in the supplemen-
tary material.51 The results of dOSVMP2-P and OSVMP2

TABLE II. Comparison of the relative errors of dOSVMP2, dOSVMP2-P, and OSVMP2 correlation energies for polyenes using different numbers of virtual
orbitals (40, 80, 100, and 140). cc-pVTZ basis sets were used. The canonical MP2 reference correlation energies were obtained using the MOLPRO program
package (Ref. 37). Nv is the total number of canonical virtual orbitals. The cartesian coordinates of polyenes are given in Ref. 51.

dOSVMP2 dOSVMP2-P OSVMP2

Polyenes Nv 80 (%) 100 (%) 140 (%) 80 (%) 100 (%) 140 (%) 40 (%) 80 (%)

C6H8 270 0.80 0.39 0.10 0.67 0.31 0.07 0.46 0.02
C8H10 351 0.99 0.52 0.17 0.85 0.42 0.13 0.54 0.03
C10H12 432 1.12 0.61 0.22 0.97 0.51 0.17 0.59 0.03
C12H14 513 1.21 0.68 0.26 1.06 0.57 0.21 0.63 0.03
C14H16 594 1.29 0.73 0.29 1.12 0.62 0.23 0.66 0.04
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TABLE III. Calculated canonical MP2, dOSVMP2-P, and OSVMP2 isomerization reaction energies (kcal/mol). The dOSVMP2-P and OSVMP2 results are
given in the first and second rows for each reaction. The errors given in the parentheses are the deviations relative to canonical MP2 reaction energies. The
Ahlrichs-TZV (Refs. 54, 55) basis sets augmented by the cc-pVTZ polarization functions (2d1f, 2p1d) (Ref. 50) were used based on the frozen-core approxi-
mation. The fraction (%) of the orbital-specific virtual space used in the calculation is indicated in the first row of the table. The reactions and corresponding
molecular geometries were taken from Ref. 53.

Reactions MP2 10% 20% 40% 60%

7 9.26 10.75 (1.49) 11.10 (1.84) 10.06 (0.80) 9.46 (0.20)
10.54 (1.28) 9.76 (0.50) 9.28 (0.02) 9.26 (0.00)

8 22.20 20.63 (−1.57) 21.30 (−0.90) 21.82 (−0.38) 22.10 (−0.10)
21.29 (−0.91) 22.00 (−0.20) 22.19 (−0.01) 22.20 (0.00)

9 6.96 5.17 (−1.79) 5.74 (−1.22) 6.92 (−0.04) 6.94 (−0.02)
6.54 (−0.42) 6.91 (−0.05) 6.96 (0.00) 6.96 (0.00)

12 47.13 37.61 (−9.52) 47.25 (0.12) 47.01 (−0.12) 47.09 (−0.04)
45.76 (−1.37) 47.03 (−0.10) 47.12 (−0.01) 47.12 (0.00)

18 11.52 10.75 (−0.77) 11.13 (−0.39) 11.53 (0.01) 11.52 (0.00)
11.28 (− 0.24) 11.48 (− 0.04) 11.52 (0.00) 11.52 (0.00)

21 1.08 1.27 (0.19) 1.03 (−0.05) 1.11 (0.03) 1.07 (−0.01)
1.15 (−0.07) 1.09 (0.01) 1.08 (0.00) 1.08 (0.00)

24 12.56 13.44 (0.88) 12.85 (0.29) 12.36 (−0.20) 12.48 (−0.08)
12.68 (0.12) 12.52 (−0.04) 12.56 (0.00) 12.56 (0.00)

28 31.12 33.90 (2.78) 33.10 (1.98) 31.74 (0.62) 31.32 (0.20)
32.64 (1.52) 31.45 (0.33) 31.14 (0.02) 31.12 (0.00)

32 7.35 3.04 (−4.31) 5.70 (−1.65) 7.01 (−0.34) 7.29 (−0.06)
6.20 (−1.15) 7.15 (−0.20) 7.35 (0.00) 7.35 (0.00)

34 6.98 7.00 (0.02) 5.52 (−1.46) 6.71 (−0.27) 6.97 (−0.01)
6.62 (−0.36) 6.96 (−0.02) 6.98 (0.00) 6.98 (0.00)

Mean absolute deviations (kcal/mol) 2.33 0.99 0.28 0.07
0.74 0.15 0.01 0.00

mean deviations (kcal/mol) −1.26 −0.14 0.01 0.01
−0.15 0.02 0.00 0.00

maximum deviations (kcal/mol) 9.52 1.98 0.80 0.20
1.52 0.50 0.02 0.00

computations as well as their deviations from the canoni-
cal MP2 values are presented in Table III. The dOSVMP2-P
computation using only 10% of the OSVs gives a mean ab-
solute deviation (MAD) of 2.33 kcal/mol. Using 20% of the
OSVs drops the MAD to 0.99 kcal/mol. The MAD is further
reduced to 0.07 kcal/mol (almost 2 orders of magnitude) when
60% of the OSVs are used.

FIG. 3. MADs of the isomerization energies as a function of the number of
OSVs using dOSVMP2, dOSVMP2-P, and OSVMP2. The MADs are relative
to the canonical MP2 values using the same basis sets.

The MADs of isomerization energies are plotted against
the numbers of OSVs per occupied orbital in Fig. 3 for
OSVMP2, dOSVMP2-P, and dOSVMP2 schemes. Both
dOSVMP2-P and dOSVMP2 display similar accuracies.
However, the complete OSVMP2 gives errors that are sub-
stantially smaller, and, additionally, these errors decay more
rapidly and more smoothly than those of dOSVMP2 and
dOSVMP2-P as the number of OSVs used is increased.
Nonetheless all methods show a rapid decrease in error as the
size of the OSV space is increased.

C. Basis set dependence

We have investigated the orbital-specific virtual orbital
dependence of different basis sets using the dOSVMP2-P and
OSVMP2 approaches. From previous discussions based on
Tables I–III, we expect that the dOSVMP2 model should dis-
play a similar basis set dependence compared to dOSVMP2-
P. For brevity reasons those results will not be presented here.
We have chosen to use a single glycine molecule so that com-
putations with very large basis sets are affordable. As can be
seen from Fig. 4, the size of the OSV space (required for
a given accuracy in the correlation energy) increases much
more slowly than the size of the underlying basis. Moving
from cc-pVDZ to cc-pV5Z,50 the size of the required OSV
space for dOSVMP2-P and OSVMP2 increases by a factor
of 4–5 while the size of the canonical virtual space increases
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FIG. 4. The number of orbital-specific and canonical virtual orbitals using
different basis sets (cc-pVXZ, X = D, T, Q, and 5) for a single glycine
molecule. Comparison is made between canonical MP2 (+), dOSVMP2-P
(unfilled), and OSVMP2 (filled) for accuracies of 99.90% (circle) and
99.99% (square) of the correlation energy.

almost by a factor of 10. In fact the size of the OSV space
needed for a given accuracy appears to increase sublinearly
with the size of the underlying basis. For example, by using
the fitting form f (x) = a + bxc, the power exponents c which
characterize the sublinearities are 0.739 (OSVMP2) and 0.808
(dOSVMP2-P) for 99.99% accuracy in the correlation energy
and 0.554 (OSVMP2) and 0.617 (dOSVMP2-P) for 99.90%
accuracy in the correlation energy. Note that OSVMP2 con-
tains the exchange excitations while the dOSVMP2-P does
not. Consequently, the number of virtual orbitals per occu-
pied orbital needed for OSVMP2 is significantly smaller than
dOSVMP2-P, roughly half.

D. Visualizing the orbital-specific virtual orbitals

We have visualized the Boys-localized occupied
orbitals49 and a few associated OSVs for a single glycine

molecule in Table IV. These local occupied HOMO,
HOMO-4, and HOMO-8 orbitals are chosen to be, respec-
tively, around the N–lone-pair electrons, C–N, and C–C
bonds along the skeleton of glycine. Along each column of
Table IV, each individual OSV exhibits a different shape for
different occupied orbitals. This can be essentially understood
from the definition of the OSVs [cf. Eq. (17)] since each
OSV has to be adjusted to a particular occupied orbital. For
example, the LUMO+4 associated to HOMO, HOMO-4, and
HOMO-8 demonstrates, respectively, orbital locality around
the N-lone-pair, C–N and C–C bonds, where the associating
occupied orbitals are found.

V. COMPARISON WITH THE PULAY–SAEBØ LOCAL
MP2 THEORY

The Pulay–Saebø local PAO correlation scheme is a stan-
dard against which to compare new approaches to local corre-
lation, such as the orbital-specific virtual approximations used
here, we assess both the accuracy and times of the OSVMP2
and dOSVMP2 approximations relative to the Werner–Schütz
formulation of the Pulay–Saebø local MP2 as implemented in
MOLPRO.6, 37 In the following discussions, the size of OSV
virtual space is measured as the number of OSV orbitals per
occupied orbital since each OSV orbital is determined for a
single occupied orbital rather than for a pair. We note that us-
ing the same number of OSVs the whole doubles excitation
space in the OSVMP2 model is almost as twice large as that
in the dOSVMP2 and dOSVMP2-P models due to the excita-
tions crossing two distinct occupied orbitals [cf. Eq. (10)].

A. Potential energy surfaces

Pulay–Saebø local correlation relies on spatial trunca-
tion of virtual orbital domains. Discontinuities on potential
energy surfaces (PESs) can then arise since the virtual or-
bital domain size defined by spatial truncation is not uni-
form as the geometry is varied. One prototypical example is

TABLE IV. Contour plots of a few Boys-localized occupied orbitals (HOMO, HOMO-4, and HOMO-8) and associated OSVs (LUMO, LUMO + 4, and
LUMO + 5) for an isolated single glycine molecule. The cc-pVDZ basis sets were used (Ref. 50). The OSVs are sorted in descending order according to the
singular values [cf. Eq. (18)]. HOMO and LUMO correspond to the orbitals, respectively, that have the highest occupied orbital energy and the largest singular
value. HOMO-4 and HOMO-8 give the fourth and eighth localized occupied orbitals with orbital energies below the HOMO. LUMO + 4 and LUMO + 5 are
the fourth and fifth OSVs with the singular values below the LUMO. The singular values of the selected virtual orbitals are (0.0494, 0.00768, 0.00774) for
HOMO, (0.0582, 0.00924 and 0.00878) for HOMO-4, and (0.0555, 0.0108, 0.0094) for HOMO-8.

Local occupied LUMO LUMO + 4 LUMO + 5

HOMO

HOMO-4

HOMO-8
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the propadienone (CH2CCO) molecule that has been recently
investigated by Russ and Crawford56 using local CCSD
(coupled cluster singles and doubles) and MP2. Multiple
discontinuities occur in the stretching of the central C=C
bond of propadienone, even in the vicinity of the equilib-
rium geometry. The LPNO-CEPA method has been found
to give the smoothness of the C–C bond dissociation PES
of ketene CH2CO.16 Several other attempts have also been
made to recover smooth PES in Pulay–Saebø theory. By tai-
loring and fixing virtual domains,45 the Pulay–Saebø local ap-
proach can avoid these discontinuities. Explicitly correlated
R12/F12 methods57 reduce the magnitude of discontinuities
through the auxiliary excitation space.58, 59 There have also
been efforts to use bump functions to smooth discontinu-
ous amplitudes.60 We now reinvestigate this issue using the
orbital-specific virtual approximations. We believe that the
approach presented here provides a more basic solution.

(a)

(b)

FIG. 5. Potential energy surfaces (correlation energies) resulting from (a)
Pulay-Saebø’s PAO local MP2 [using MOLPRO (Ref. 37)] and (b) OSVMP2,
dOSVMP2, and dOSVMP2-P for the central C=C bond of propadienone
using a cc-pVDZ basis set (Ref. 50). The equilibrium geometry (Ref. 51)
was obtained by optimizing all internal coordinates of propadienone at the
MP2/cc-pVDZ level. The displacement of the central C=C bond was 0.001
Å and other internal coordinates were frozen. The insets magnify the details
at the vicinity of the equilibrium C=C bonds (1.336 Å).

The correlation energy PESs using different numbers of
virtual orbitals (Nv) are presented in Fig. 5 for Pulay–Saebø
PAO MP2, dOSVMP2, dOSVMP2-P, and OSVMP2. All
computations were carried out using the cc-pVDZ basis set50

with 52 canonical virtual orbitals. For PAO local MP2, Nv de-
notes the average size of the pair virtual domain. It can be
seen that the PES of the PAO based local MP2 with Nv = 34
orbitals exhibits three major energy discontinuities in the re-
gions of both short and long C=C bonds as well as around
the equilibrium C=C bond. When using Nv = 39 PAOs, five
smaller discontinuities in the PAO local MP2 theory appear,
ranging from 0.2 to 0.4 m Eh at 1.269, 1.540, 1.752, 1.978, and
2.352 Å. A tiny zigzag structure can still be seen in the vicin-
ity of the equilibrium C=C bond even when using Nv = 52
PAOs [see inset of Fig. 5(a)].

As for the PES using the orbital-specific virtual ap-
proximations, all the dOSVMP2, dOSVMP2-P, and OS-
VMP2 based curves are smooth even when using much
smaller spaces of virtual orbitals. The PES of OSVMP2 dis-
plays no discernible discontinuities when using 17 OSVs
[cf. Fig. 5(b)], and when using 22 OSVs the OSVMP2 based
PES is already close to the curve of canonical MP2 (e.g., er-
rors are around 0.05 and 0.3 m Eh for the stretched and con-
tracted C–C bonds, respectively). In the case of dOSVMP2
and dOSVMP2-P with Nv = 28 OSVs, we see very tiny
breaks (only 0.04 and 0.02 m Eh), respectively, at 1.559 and
1.597 Å. These discontinuities are, nevertheless, 1 order of
magnitude smaller than those of the PAO Nv = 34 result dis-
continuities.

B. Virtual space size and timings

The efficiencies of both the Pulay-Saebø PAO and
orbital-specific virtual approximations depend on the size
of the virtual space needed to obtain good agreement with
the canonical result. Figure 6 gives the comparison of vir-
tual space sizes between PAO local MP2, dOSVMP2-P, and
OSVMP2 needed to recover 99.99% of the correlation energy

FIG. 6. Histograms of virtual orbital numbers for Pulay–Saebø’s PAO local
MP2, dOSVMP2-P, and OSVMP2 schemes needed to obtain 99.99% accu-
racy. In the case of PAO local MP2, this number is obtained from the average
pair domain size.
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TABLE V. CPU times (tsolv, s) to solve the dOSVMP2-P and OSVMP2 residual equations, using different screening thresholds TS for [gly]n chains with
n = 4, 6, 8, 10, 12.103 and 46 OSVs have been used respectively for dOSVMP2-P and OSVMP2 in order to obtain accuracies of 99.99% for all TS = 0.00
computations. �Escrn is the additional relative error in the correlation energy introduced by screening TS > 0.00 as compared to TS = 0.00. The cc-pVDZ
basis set (Ref. 50) (denoted as D) was used for all computations and results with the cc-pVTZ basis set (denoted as T) are also reported for [gly]4 and [gly]6

molecules. With the cc-pVTZ basis set Nv = 235 ([gly]4) and Nv = 243 ([gly]6) were used for dOSVMP2-P while Nv = 92 ([gly]4) and Nv = 94 ([gly]6)
were used for OSVMP2. Calculations were carried out on a 2.00 GHz 64-bit Intel Xeon CPU with 16 GB 667 MHz DDR2 RAM. The dual convergence criteria
were set to 10−10 a.u. for residuals and 10−6 a.u. for correlation energies.

Nv = 103 for dOSVMP2-P Nv = 46 for OSVMP2

PAOa TS = 0.00 TS = 0.20 TS = 0.40 TS = 0.00 TS = 0.07 TS = 0.20

[gly]n tsolv
b tsolv

c tsolv
b tsolv

b �Escrn(%) tsolv
b �Escrn(%) tsolv

b tsolv
b �Escrn(%) tsolv

b �Escrn(%)

4 (D) 417 401 470 378 0.0001 340 0.0002 625 307 0.0001 243 0.008
4 (T) 5311 4819 5375 4041 0.0001 3614 0.0001 4270 1692 0.0005 1415 0.010
6 (D) 1573 1281 1304 833 0.0001 749 0.0004 2104 742 0.0001 569 0.009
6 (T) 16150 12767 16429 10032 0.0002 8873 0.0004 13911 4015 0.0005 3328 0.010
8 (D) 3529 2437 2749 1466 0.0001 1310 0.0004 4739 1304 0.0001 985 0.010

10 (D) 7462 4038 5051 2284 0.0001 2027 0.0005 8982 2024 0.0001 1515 0.011
12 (D) 11621 5147 8249 3271 0.0001 2912 0.0005 15219 2901 0.0001 2154 0.011

aThe averaged pair domain sizes are 192 (454 for T), 217 (520 for T), 227, 232, and 235, respectively, for n = 4, 6, 8, 10, 12.
bAll internal occupied pairs are included.
cDistant and very distant pairs are discarded by default in MOLPRO with the settings rdist = 8 a.u. and rvdist = 15 a.u.

in [gly]n . It is evident that PAO based local MP2 needs sub-
stantially more virtual orbitals (two times) than dOSVMP2-P
and at least four times more than OSVMP2. Furthermore, the
sizes of the orbital-specific virtual spaces for dOSVMP2-P
and OSVMP2 saturate much more rapidly than those of PAO
based MP2 when the molecular size increases. The relative
advantage of the orbital-specific scheme increases as we move
to the large basis. i.e.. from cc-pVDZ to cc-pVTZ.50

Tables V and VI give the central processing unit (CPU)
times to solve the residual equations in the Pulay–Saebø
PAO MP2, dOSVMP2-P, and OSVMP2 approaches for [gly]n

chains and polyenes. In the case of PAO MP2, we report
both the all-pair times (i.e., with no screening of distant
pairs) as well as the times with the default MOLPRO screen-
ing thresholds. We consider the all-pair PAO MP2 times as
the appropriate comparison, since the OSV approaches do
not screen distant pairs. (Note that even when we employ a

screening threshold TS for the N 6 contraction as described in
Sec. III E, the OSV methods are still working within an
all-pair formalism).

We first discuss the results where TS = 0. We find that
the dOSVMP2-P times are generally comparable to or, in
larger systems, faster than the PAO MP2 all-pair times (e.g.,
the TS = 0 dOSVMP2-P calculation takes only 60% of the
time of the PAO MP2 calculation in C14H16). The OSVMP2
times are longer than the PAO MP2 times in the case of
the glycine chains but significantly shorter in the case of the
polyenes.

The OSV methods’ computational efficiency can be
greatly improved by using the screening scheme discussed
earlier. We have reinvestigated the CPU time of solving the
residual equations using screening and the results are also pre-
sented in Tables V and VI. The threshold TS is chosen such
that there is only a very minor error in the correlation energy,

TABLE VI. CPU times (tsolv, s) to solve the dOSVMP2-P and OSVMP2 residual equations, using different screening thresholds TS, for polyenes. The PAO
computation recovers about 99.26% of the correlation energy. 100 and 40 OSVs have been used for dOSVMP2-P and OSVMP2, respectively. �Escrn is the
additional relative error of correlation energy introduced by screening TS > 0.00 as compared to TS = 0.00. For TS = 0.00 the percentage (�Ecorr) of the
canonical MP2 energy recovered is also reported. The cc-pVTZ basis set was used for all computations. Calculations were carried out on a 2.00 GHz 64-bit
Intel Xeon CPU with 16 GB 667 MHz DDR2 RAM. The dual convergence criteria were set to 10−10 a.u. for residuals and 10−6 a.u. for correlation energies.

Nv = 100 for dOSVMP2-P Nv = 40 for OSVMP2

PAOa TS = 0.00 TS = 0.10 TS = 0.20 TS = 0.00 TS = 0.03

Polyenes tsolv
b tsolv

c tsolv
b �Ecorr(%) tsolv

b �Escrn(%) tsolv
b �Escrn(%) tsolv

b �Ecorr(%) tsolv
b �Escrn(%)

C6H8 21 20 26 99.61 24 0.001 23 0.004 15 99.54 11 0.002
C8H10 55 54 50 99.48 43 0.002 40 0.007 33 99.46 20 0.004
C10H12 115 110 86 99.39 69 0.003 63 0.009 63 99.41 32 0.005
C12H14 235 212 135 99.32 99 0.004 90 0.009 103 99.37 44 0.007
C14H16 383 314 224 99.27 137 0.004 123 0.009 164 99.34 62 0.008

aThe averaged pair domain sizes are 140, 156, 167, 175, and 179, respectively, for each polyene.
bAll internal occupied pairs are included.
cDistant and very distant pairs are discarded by default in MOLPRO with the settings rdist=8 a.u. and rvdist=15 a.u.
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e.g., the screening errors are restricted to less than 0.01% of
the correlation energy or only a few tenths of kilocalories per
mole in the present study.

For the longest [gly]12, dOSVMP2-P with TS = 0.20
and OSVMP2 with TS = 0.07 are, respectively, sped up by
a factor of 2–3 and 5 compared to those with TS = 0.00.
As a result, both screened computations for [gly]n (with a
screening error of �Escrn = 0.0001%) are now almost two
times faster than the Pulay–Saebø PAO even without ac-
counting for the distant and very distant pairs. The screened
cc-pVTZ results of dOSVMP2-P and OSVMP2 are shown
for [gly]4 and [gly]6 in Table V. Clearly larger basis sets
increase the efficiency of screened OSVMP2 computations
relative to PAO and dOSVMP2-P. Polyene chains are more
difficult cases, as the correlating orbitals are more extended
along the chain than in [gly]n . However, with a screen-
ing accuracy of �Ecorr ≤ 0.01%, we find that the screened
dOSVMP2-P and OSVMP2 computations are still faster than
the Pulay–Saebø implementation by a factor of 2 and 5, re-
spectively.

VI. CONCLUSIONS

In this work we have described the direct orbital-
specific and full orbital-specific virtual approximations to lo-
cal second-order Møller–Plesset perturbation theory. These
representations of the amplitudes have been expressed in a
general language of tensor factorization that also encom-
passes many other representations used in electronic struc-
ture theory. As we have showed, the orbital-specific virtual
approximation can lead to significant advantages, both in
more formal behavior, such as smoothness of potential en-
ergy curves, as well as in practical times and accuracies, as
compared to efficient implementations of the local Pulay–
Saebø correlation ansatz. As for the direct versus full orbital-
specific virtual approximations, when screening is used, the
full orbital-specific virtual approximation is superior.

There is much to be done along the directions of this
work. For example our algorithms are not linearly scaling for
two reasons: first, we have not investigated efficient represen-
tations of the occupied space and second, an efficient integral
transformation based on DF or RI is necessary for comput-
ing larger molecules. The relative advantages of the orbital-
specific virtual approximation should also be compared nu-
merically to pair natural orbital approaches, with which it
shares some common features. The explicitly correlated ef-
fect such as R12/F12 corrections should be generalized to
the orbital-specific virtual approximations. Finally, we ex-
pect that significant advantages can be had when applying
orbital-specific virtual type approximations to high body ex-
citations. We conclude by recognizing that the space of ten-
sor factorizations is very large, with much remaining to be
explored.
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