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We describe the joint application of the density matrix renormalization group and canonical
transformation theory to multireference quantum chemistry. The density matrix renormalization
group provides the ability to describe static correlation in large active spaces, while the canonical
transformation theory provides a high-order description of the dynamic correlation effects. We
demonstrate the joint theory in two benchmark systems designed to test the dynamic and static
correlation capabilities of the methods, namely, �i� total correlation energies in long polyenes and
�ii� the isomerization curve of the �Cu2O2�2+ core. The largest complete active spaces and atomic
orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a �24e ,24o�
active space and 268 atomic orbitals in the polyenes and a �28e ,32o� active space and 278 atomic
orbitals in �Cu2O2�2+. © 2010 American Institute of Physics. �doi:10.1063/1.3275806�

I. INTRODUCTION

Multireference quantum chemical systems, that is, mol-
ecules where the wave function is not qualitatively described
by a single determinant, remain a major challenge for quan-
tum chemistry. These problems arise in transition metal
chemistry, excited states, and at stretched regions of the po-
tential energy surface. Traditional quantum chemical meth-
ods for multireference problems start by describing the wave
function qualitatively in an active space, a selected set of
orbitals exhibiting variable occupancy which is correlated
exactly at the full configuration interaction level. The elec-
tron correlation in the active space is termed static correla-
tion. Quantitative corrections to the active space wave func-
tion arise from correlations between active space orbitals and
the remaining external �core and virtual� orbitals. These ef-
fects are termed dynamic correlation and their description
�on top of the static correlation� is usually obtained with a
lower level theory, such as configuration interaction singles
and doubles, coupled pair functionals,1,2 second-order pertur-
bation theory,3,4 or density functional theory.5,6

The standard approach outlined above, while successful
for small molecules, suffers from a number of drawbacks for
larger molecules both in the treatment of static correlation
and in the treatment of dynamic correlation. In the case of
static correlation, the obvious problem is the exponential de-
pendence of the full configuration interaction theory on the
size of the active space. For this reason, many groups have
explored approximate nonexponential cost theories of static
correlation, including restricted active space configuration
interaction,7,8 perfect pairing and other valence-bond and
geminal type theories,9–14 high-order active-space coupled
cluster methods,15,16 and variational density matrix
methods.17,18 In the treatment of the remaining dynamic cor-
relation, while traditional low-order corrections based on

multireference configuration interaction and perturbation
theory are formally polynomial in cost, they do not possess
the same satisfactory combination of utility, accuracy, and
formal correctness �e.g., size-extensivity� as the standard
coupled cluster method in single reference problems. Conse-
quently, much effort has been devoted to finding suitable
extensions of coupled cluster theory to treat residual dy-
namic correlation in multireference problems.19

We have been implementing a program of research to
tackle the aforementioned twin challenges of static and dy-
namic correlation in the multireference quantum chemistry
of larger molecules. For the static correlation problem, we
have been exploring the density matrix renormalization
group �DMRG�.20–22 While the DMRG is not yet a black-box
method, our investigations,23–34 as well as those of many
others,22,35–45 indicate that the DMRG provides a promising
approach to static correlation. In particular, very accurate
DMRG descriptions of active space energies and energy
differences—considerably beyond the requirements of
chemical accuracy—can be obtained for active space sizes
ranging at 30–40 active orbitals in compact molecules24,26,34

to more than 100 active orbitals in the optimal case of long
chains.28,29,31 For the remaining dynamic correlation prob-
lem, we have been developing the canonical transformation
�CT� theory.46–48 In common with coupled cluster methods,
CT theory is based on an exponential ansatz, but it uses
operator decompositions to avoid the high computational
cost that is typical of multireference versions of coupled
cluster theories. CT theory exhibits an accuracy on par with
the best multireference configuration interaction approaches,
but shares the same favorable sixth-power computational
scaling as the single-reference coupled cluster theory.

In the current work we describe the joint application of
the DMRG and CT theories to large multireference quantum
chemical problems. While the combination of a DMRG
treatment of static correlation and an exponential based treat-a�Electronic mail: gc238@cornell.edu.
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ment of dynamic correlation can be found already in White’s
work on canonical diagonalization49 �the predecessor of CT
theory� our particular realization of this strategy for large
multireference quantum chemical problems relies on several
additional contributions. In the case of the DMRG, such rel-
evant recent developments include orbital optimization and
algorithms to obtain reduced density matrices as developed
by Zgid and Nooijen in Refs. 44 and 45 and by our group in
Ref. 31, as well as efficient parallel quantum chemical
DMRG algorithms for larger active spaces.25,34 In the case of
the CT theory, we employ a systematic operator decomposi-
tion derived from the generalized normal ordering of
Mukherjee and Kutzelnigg,50–52 as well as the cumulant de-
composition of density matrices,53–56 to formulate the CT
equations. On the algorithmic front, the large CT calculations
described here have used a parallelized implementation to
handle large numbers of basis functions, and better tech-
niques �including the use of strong contraction as introduced
in Ref. 57 to reduce the variational degrees of freedom in the
excitation basis� to converge the CT equations. Details of the
parallelized algorithm and the strongly contracted formula-
tion of the CT theory will be presented elsewhere,58,59 al-
though the former builds off the parallelization strategy es-
tablished for orbital optimization in Ref. 31, and the latter
grows out of our experiences with cumulant approximated
strongly contracted n-electron valence perturbation
theory.57,60,61 We cannot here list completely also the numer-
ous connections to other earlier works on internally con-
tracted multireference configuration interaction,62–64 pertur-
bation theory,3,65 coupled cluster theory,52,66–69 and
irreducible or anti-Hermitian contracted Schrödinger equa-
tion density matrix methods.70–72

This paper now proceeds as follows. In Sec. II we recall
key elements of the DMRG and CT theory. Here, we focus in
particular on the ideas and quantities that specify a joint
DMRG-CT calculation. From there we proceed to applica-
tions to two systems to understand the capabilities of the
theory. The first is a calculation of the total correlation ener-
gies of long polyenes for which the accurate reproduction is
a test of the dynamic correlation component of the theory.
The second is a calculation of the isomerization curve of the
�Cu2O2�2+ cluster that forms a simple model of the tyrosinase
core. This has previously been identified as requiring a very
large active space for a balanced multireference
description42,73,74 and is a test of the static correlation com-
ponent of the theory. We finish then with our summary and
conclusions.

II. THEORY

A. Density matrix renormalization group

The DMRG is based on a matrix product state wave
function. It may be viewed as working with a direct factor-
ization of the wave function expressed in an occupation
number �Fock-space� representation. A more complete intro-
duction to the DMRG wave function can be found in Ref.
75; see also the general review article.76

The form of the DMRG wave function is

��� = �
�n	

An1An2
¯ Ank�n1n2 ¯ nk� , �1�

where �n1n2¯nk� denotes a determinant in occupation num-
ber representation, �n	= ��vac� , ��� , ��� , ����	, and the vari-
ous An are matrices, i.e., the elements are Aij

n with indices i , j
ranging from 1 to a maximum of M. The matrix dimension
M controls the accuracy of the DMRG wave function; the
wave function becomes exact as M approaches the square
root of the full Hilbert space dimension. An1 and Ank are row
and column vectors, respectively, thus the product of An in
Eq. �1� produces a single scalar coefficient �n1n2¯nk. This
coefficient multiplies the determinant �n1n2¯nk� in a com-
plete determinantal expansion of the wave function. We see
that the DMRG assumes a factorized form for the full-
configuration interaction amplitudes, as indexed in the occu-
pation number form.

Note that the DMRG wave function makes no reference
to a Hartree–Fock �HF� state and supports nonvanishing co-
efficients for all determinants in the space �n1¯nk	. This
property together with the compactness of the ansatz is what
allows the DMRG to capture a wide variety of multirefer-
ence correlations in a balanced and efficient way. Further-
more, the product structure of the wave function allows the
DMRG to be exactly size-consistent, at least in a local basis.

For reasons of numerical stability, it is convenient to
choose a canonical form of the DMRG wave function, where
all matrices but one satisfies an orthogonality property. In
this form, the DMRG wave function is written as

��� = �
�n	

Ln1
¯ Lnp−1CnpRnp+1

¯ Rnk�n1 ¯ nk� , �2�

where Ln and Rn satisfy orthogonality conditions

�
n

Ln†Ln = 1 , �3�

�
n

RnRn† = 1 . �4�

Formally, the string of Ln and Rn, respectively, define sets of
many-particle basis states �l	, �r	, and Cnp gives the coeffi-
cients of the wave function in the product basis �l	 � �np	
� �r	. Thus the determinant expansion �2� is equivalent to an
expansion in the smaller orthonormal renormalized basis

��� = �
lnr

Clr
np�lnpr� . �5�

The energy of the DMRG wave function is obtained by
variationally minimizing with respect to each of the compo-
nents Ln, Rn, and Cn in Eq. �2� one at a time. This is known
as the DMRG sweep algorithm. The component-wise opti-
mization resembles Hartree’s self-consistent algorithm for
HF theory where one orbital is updated at a time. Many other
useful parallels with HF theory can be drawn, for example,
Eq. �5� is a kind of Fock equation in the DMRG.33 During
the optimization care must be taken to avoid spurious local
minima by applying a gradually decreasing perturbative
“noise.” This has recently been discussed in detail by Zgid
and Nooijen.45
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1. Orbital ordering

The DMRG wave function is expressed as a product of
matrices, each associated with a given orbital �1�. Since ma-
trices do not generally commute, a DMRG calculation re-
quires a specified ordering of the orbitals. Formally we view
this as mapping the orbitals 1¯k to a fictitious one-
dimensional �1D� lattice. The DMRG wave function supports
a limited amount of correlation between orbitals that are
widely separated on this 1D lattice, and it is important to
choose an ordering which minimizes such separations. For
long chains �such as the polyene molecules studied later�
there is a natural ordering in a basis that is localized in real-
space. For compact molecules �such as the Cu2O2 core stud-
ied later� it is sometimes better to use a basis that is more
localized in the energy domain. In this case, it can be advan-
tageous to place bonding and antibonding orbitals adjacent to
each other on the lattice.

2. Orbital optimization and reduced density matrices

The shape of the active orbitals used in static correlation
must often be adapted to the molecular environment. Orbital
optimization of the active space is the basis of the fully op-
timized reaction space77 and complete active space self-
consistent field �CASSCF� �Ref. 78� models. Orbital optimi-
zation of the DMRG active space was introduced by Zgid
and Nooijen44 followed by Ghosh et al.,31 giving, respec-
tively, the DMRG-SCF/DMRG-CASSCF models. In each
case orbital optimization is based on calculating the DMRG
active space one- and two-body density matrices. Note that
the one- and two-body DMRG density matrices form the
input into the subsequent CT theory treatment of dynamic
correlation in a joint DMRG-CT calculation.

Unlike more sophisticated orbital optimization algo-
rithms used in modern CASSCF implementations, current
DMRG orbital optimization implementations decouple the
optimization of the orbital parameters and the wave function
coefficients in Eq. �2�. Acceleration of this two-step proce-
dure can be achieved through direct inversion in the iterative
subspace techniques.44,79

B. Canonical transformation theory

The CT theory was developed in Refs. 46–48 as a way
to incorporate dynamical correlation on top of a general mul-
tiference wave function. It uses a canonical �i.e., unitary�
exponential ansatz together with an operator decomposition
based on Mukherjee–Kutzelnigg normal ordering50–52 and
density matrix cumulant decompositions55,56 to achieve a
high-order, size-consistent treatment of dynamic correlation
in a computationally efficient way. Starting from a reference
��0�, the CT ansatz for ��� is

��� = exp Â��0� , �6�

where Â is an anti-Hermitian operator, and exp Â is a unitary
transformation. The orbital space is partitioned into core
�a ,b , . . .�, active �p ,q , . . .�, and virtual spaces �v ,w , . . .� such
that the reference ��0� consists of doubly occupied orbitals
in the core space, arbitrary occupancy in the active space,

and zero occupancy in the virtual space. Â is a linear com-

bination of operators Ô� which excite into or out of the
active space, with the general anti-Hermitian form

Â = �
�

A��Ô� − Ô�
† � . �7�

At the singles and doubles �CTSD� level of theory, the

operators Ô create one or two holes or particles in the core or
virtual spaces, i.e.,

Â = Â1 + Â2, �8�

Â1 = �
ap

Aa
p�aa

p − ap
a� + �

av
Aa

v�aa
v − av

a� + �
pv

Ap
v�ap

v − av
p� ,

�9�

Â2 = �
pqab

Apq
ab�apq

ab − aab
pq� + �

pqra

Apq
ra �ara

pq − apq
ra �

�active-core� ,

+ �
pqvw

Apq
vw�apq

vw − avw
pq � + �

pqrv
Apq

rv�apq
rv − arv

pq�

�active-virtual� ,

+ �
pqva

Apa
qv�apa

qv − aqv
pa� + �

pvwa

Apa
vw�apa

vw − avw
pa �

+ �
pvab

Aab
pv�aab

pv − apv
ab� �active-core-virtual� ,

+ �
abvw

Aab
vw�avw

ab − aab
vw� �core-virtual� . �10�

The CT ansatz in Eqs. �6� and �8�–�10� is the same as
that used in an internally contracted unitary multireference
coupled cluster theory. The distinction between the CT
theory and such a coupled cluster theory lies in how the CT
effective Hamiltonian, energy, and amplitudes are defined.
The exact effective Hamiltonian corresponding to the ansatz
�6� �as would be used in a coupled cluster theory� is formally

H̄ = exp�− Â�Ĥ exp�Â� = Ĥ + �Ĥ,Â� + 1
2 ��Ĥ,Â�,Â� + ¯ .

�11�

Equation �11� is impractical due to the increasing complexity

of the commutators, i.e., �Ĥ , Â� gives rise to three-body op-

erators, ��Ĥ , Â� , Â� to four-body operators, and so on. To
eliminate this complexity CT theory defines a modified ex-
pansion of the effective Hamiltonian

H̄1,2 = Ĥ + �Ĥ,A�1,2 + 1
2 ��Ĥ,Â�1,2,Â�1,2 + ¯ , �12�

where 1,2 denotes that the commutator is replaced by its
operator approximation in terms of one- and two-body op-
erators only, using the generalized normal ordering of
Mukherjee and Kutzelnigg.47,48,52 From the recursive appli-
cation of this decomposition in Eq. �12� it is possible to

obtain the full effective CT Hamiltonian H̄1,2 in terms of only
one- and two-body operators.
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Note that there is some freedom in when to apply the
recursive operator decomposition. For example, the qua-
dratic term in Eq. �12� could be approximated applying the

decomposition once 1
2 ��Ĥ , Â� , Â�1,2 rather than applying it

twice 1
2 ��Ĥ , Â�1,2 , Â�1,2. The relative merits of such different

approximations were explored in Ref. 48. In practice, the
decomposition in Eq. �12�, referred to in our earlier work47,48

as L-CT �“linear” CT, since the recursive decomposition is
applied immediately after the linear commutator� provides
good accuracy with the least computational effort, and we
consider this to be the standard form of the CT approxima-
tion. Note that this use of the word “linear” is quite different
from the linearization procedure sometimes used in coupled
cluster theories! To avoid this conceptual confusion, and also
to reflect that this is the standard definition of the CT theory,
we will henceforth refer to the CT theory defined from Eq.

�11� with the singles and doubles form of Â as simply CTSD.
The CT energy follows from the CT effective Hamil-

tonian as

E = 
�0�H̄1,2��0� , �13�

and the amplitudes in the CT theory are determined from,
e.g.,


�0��H̄1,2,apq
vw�1,2��0� = 0. �14�

The CTSD amplitudes and energies may be obtained with
O�nact

2 next
4 � cost where nact denotes the size of the active space

and next the size of the external space �though an additional
one-time O�nact

9 � cost is required if the optional overlap trun-
cation procedure is used, see later�.

Note that the energy and amplitudes are defined using
only the one- and two-body active-space density matrices of
the reference wave function. There are thus connections to
work on reduced density matrix theories. Indeed the CT am-
plitude equations correspond �after a simple transformation�
to the Brillouin conditions of the irreducible contracted
Schrödinger equation of Mukherjee and Kutzelnigg in Ref.
70. The combination of Brillouin conditions, unitary param-
etrization, and cumulant approximations found in CT theory
has also recently been used by Mazziotti in the anti-
Hermitian contracted Schrödinger equation,71 and conse-
quently that theory has a structure that closely resembles CT
theory.

Our CT calculations in this work use a new parallelized
implementation of the CTSD equations. The details of the
parallelization are presented elsewhere.59

1. Convergence stabilization

When ��0� has multireference character, nontrivial con-
vergence issues can arise when solving the CT amplitude
equations. While these issues are of a technical nature, the
elimination of such problems is necessary for practical CT
calculations. The origins of the convergence issues are two-
fold.

�1� Internally contracted dynamical correlation methods
�including internally contracted multireference CI, per-
turbation theory, and coupled cluster theory� generally

suffer from near linear-dependencies in the first-order

interacting basis �Ô���0�	, since, e.g., apq
vw��0� is not

necessarily orthogonal to ap�q�
vw ��0�.3,64

�2� When solving the nonlinear CT amplitude equation


�0��H̄1,2 , �Ô�− Ô�
† ��1,2��0� �where Ô� is the generic

excitation operator in Eq. �7��, the exact Jacobian to use
in a Newton–Raphson algorithm is defined by

J�� =
�

�A�


�0��H̄1,2,�Ô� − Ô�
† ��1,2��0� . �15�

The Jacobian matrix can have spuriously small eigen-
values of a nonphysical nature �arising from the opera-
tor decompositions� leading to failure of the Newton–
Raphson scheme.58

In recent CT calculations �Refs. 47 and 48� a scheme
based on overlap truncation, detailed in Ref. 47, has been
used to stabilize the convergence and remove spuriously
small eigenvalues of the Jacobian �15�. This relies on there
being some alignment between the �near� null spaces of the

first-order interacting basis overlap matrix S��= 
Ô�
† Ô�� and

the approximate Jacobian, i.e., that S−1J is well-conditioned.
In this scheme, the overlap matrix of the first-order interact-
ing basis is computed from the one-, two- and three-body
density matrices of the reference wave function and the ex-

citation operators Ô� are transformed to generate orthogonal
excitations in the first-order interacting space. All operators
generating excitations that correspond to eigenvalues of the
overlap matrix below a certain threshold ��1 for singles and
semi-internal excitations, �2 for double excitations� are trun-
cated.

Since computing the three-body density matrix of the
reference wave function is impractical for the large active
space problems targeted by this work, here we perform over-
lap truncation constructing the first-order interacting basis
overlap matrix using the one-, two- and cumulant approxi-
mated three-body density matrices of the reference wave
function. Compared with the exact overlap truncation
scheme, higher truncation thresholds �1 ,�2 are necessary
with this approximate scheme to ensure convergence of the
CT equations.

2. Strongly contracted canonical transformation
theory

The overlap truncation method described above formally
involves diagonalizing the overlap matrix of the first-order
interacting basis, which requires O�nact

9 � cost. This is not a
problem for smaller active spaces, but becomes a bottleneck
in larger systems that we are targeting with the joint
DMRG-CT theory.

An alternative approach to enforce orthogonality of the
excitation basis is to use strongly contracted excitation op-
erators as introduced in n-electron valence perturbation
theory.57,60,61 This leads to a so-called strongly contracted CT
theory. The details of this theory are presented in the accom-
panying paper �Ref. 58�. Here we present only the essential
ideas.
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In strong contraction, rather than allowing many differ-
ent kinds of excitations from the active space to a set of
external orbitals, e.g., apq

vw ,ap�q�
vw , only a single linear combi-

nation of active space states is allowed to excite to a given
set of external orbitals, e.g., for the external orbitals vw an

excitation of the form Ôvw=�pqXpq
vwapq

vw is used, where the
contraction coefficients Xpq

vw are determined a priori from the
electronic integrals. �For the spin-orbital form see, e.g., Ref.
61, the spin-free form used here is given in the accompany-
ing paper, Ref. 58.�

While the energy denominators in perturbation theory
normally depend on both the active space and external labels
of the excitation, strong contraction makes the assumption
that the energy denominators vary only with the external
orbitals, there being some average energy associated with
removing electrons from the active space. In this way, strong
contraction defines a very significant reduction in the total
number of excitation operators. Most importantly, because
there is only one excitation operator to each or each pair of
external orbitals, the first-order interacting space in the
strongly contracted theory is orthogonal by construction and
we do not need the O�nact

9 � diagonalization cost for the sta-
bilization of the CT equations. The resulting strongly con-
tracted CT theory �SC-CT� is instead stabilized on the basis
of the matrix elements of the Dyall Hamiltonian that is the
zeroth order Hamiltonian used in NEVPT2,57,60,61 and which
is diagonal in the strongly contracted first-order interacting
space. This scheme requires a single truncation threshold �
with units of energy, corresponding to the smallest out-of-
active-space excitation energy in the Dyall Hamiltonian. For
further details on strongly contracted CT theory, we refer to
Ref. 58.

Finally, we note that while both the overlap truncation
and the energy truncation in strong contraction formally
break the size consistency of the CT theory, in practice we
have observed negligible size-consistency errors �below
0.01mEh�.59

C. Combining DMRG and CT

Let us summarize the key ingredients that make up a
joint DMRG and CT calculation. We assume the one- and
two-electron integrals in an orthogonal basis �such as the
canonical or localized HF molecular orbitals� are available
and that a partitioning into core, active, and external spaces
has been decided.

�1� For the DMRG calculation we specify the ordering of
the active-space orbitals and the number of states M
�the dimension of the matrices in the wave function
�2��. We also specify a level of perturbative noise �that
is gradually reduced� to bypass local minima in the
DMRG sweeps.

�2� The DMRG sweeps with orbital optimization are con-
verged producing one- and two-body density matrices
in the active space.

�3� We choose a stabilization strategy for the CT equations:
either overlap truncation �requiring thresholds �1 for
the singles and semi-internal singles and �2 for the ex-

ternal doubles�, or strong contraction together with
truncation according to the Dyall Hamiltonian �a single
threshold � with units of energy�.

�4� The CTSD or SC-CTSD amplitude equations are con-
verged using the active-space one- and two-body den-
sity matrices of the DMRG calculation.

III. RESULTS

A. Benchmark correlation energies of polyenes

The performance of the CT method together with a tra-
ditional CASSCF description of static correlation �which can
be regarded as producing results identical to the joint
DMRG-CT theory� has previously been assessed.46–48 Here
we focus on evaluating the joint DMRG-CT theory in prob-
lems where the complete valence active space is not acces-
sible to traditional CASSCF, but instead must be treated us-
ing DMRG-SCF. The natural question then arises as to what
is a suitable benchmark. In such larger systems accurate ref-
erence correlation energies are only available for single-
reference electronic structure �where we can compare to re-
sults from coupled cluster theory�. This limit is, however, an
important test of a multireference theory. If we use a com-
plete valence active space approach to study a chemical
transformation that changes between multireference and
single-reference electronic structure, an accurate treatment of
the single-reference limit is essential. �Note that the single-
reference limit here refers to the description of a single-
reference type problem within a complete valence active
space multireference method�.

As a benchmark model to assess the joint DMRG-CT
theory we have therefore performed single-point energy cal-
culations on all-trans polyenes, CnHn+2 �n=4,8 , . . . ,24�
with the 6-31G �Ref. 80� basis set. The ground-state of the
neutral polyenes is considered to be accurately described by
the single-reference CCSD�T� method, so we will regard the
CCSD�T� correlation energies as a reliable benchmark for
comparison.

The geometries were first optimized using the B3LYP
method with the 6-31G basis set. Restricted HF calculations
were then carried out in the 6-31G basis to determine a start-
ing set of orbitals. DMRG-SCF calculations were carried out
in the complete � valence space �corresponding to an n elec-
tron, n orbital ��n�e , �n�o� CAS� using up to M =700 states.
�In Ref. 28, we showed that in these systems, this number of
states was sufficient for the DMRG to obtain near-exact �be-
yond 0.1 mEh� active-space correlation energies.� Subse-
quent CT calculations were performed using the overlap
truncation method with �1=0.5, �2=0.1 using only one- and
two-body density matrix information.

For comparison, traditional single-reference coupled
cluster CCSD�T� and multireference complete active space
perturbation theory �CASPT2�3,65 and multireference aver-
aged coupled pair functional �MRACPF� �Ref. 2� calcula-
tions were also performed, using the MOLPRO package.81 The
multireference calculations used a full � valence space opti-
mized CAS reference. Because of the exponential blow-up of
the CAS space, the largest polyene that could be studied with
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CASPT2 and MRACPF using the full � valence space was
C8H10, corresponding to a CAS�8e ,8o� reference.

Table I shows the correlation energies �i.e., the differ-
ence from the restricted HF energy� obtained with the 6-31G
basis, using the DMRG-SCF and DMRG-CTSD methods, as
well as the comparison methods. We observe that DMRG-
CTSD correlation energies are very close to those of the
reference CCSD�T� results, and MRACPF similarly repro-
duces the CCSD�T� correlation energies well. CASPT2 ap-
pears to underestimate the correlation energies due to its low
order treatment of dynamic correlation. Unlike in the case of
CASPT2/MRACPF, the joint DMRG-CT theory allows us to
continue to use the full �-valence space for the larger poly-
enes, including the �24e ,24o� active space for the C24H26

molecule. In these longer systems, the DMRG-CT correla-
tion energies continue to closely track the CCSD�T� correla-
tion energies. �Interestingly, although the CCSD�T� energies
are always lower than the DMRG-CTSD energies, we have
previously shown that CCSD�T� provides a slight overesti-
mate of the correlation energy in these systems, at least in a
minimal basis28�. The maximum percentage error of the
DMRG-CTSD correlation energy compared with the
CCSD�T� correlation energy was about 0.7% �as compared
to 1.8% and 12.1% for MRACPF and CASPT2, respec-
tively�. In addition to demonstrating the quality of the CT
treatment of the dynamic correlation, this also illustrates the
scalability and size-extensivity of the DMRG-CT theory in
larger problems.

B. Isomerization of †Cu2O2‡
2+

Transition metal chemistry is a natural area of applica-
tion for the joint DMRG-CT theory, due to the large active
spaces typically involved. Here, we apply the DMRG-CT
theory to the �Cu2O2�2+ molecule, whose derivatives have
been extensively studied as model catalysts, and which form
the active site of certain enzymes that perform O2

activation.82,83 One of the primary postulated reaction path-
ways utilized by �Cu2O2�2+ cores is an isomerization be-
tween the bis��-oxo� and �-�2 :�2 peroxo isomers, shown
schematically in Fig. 1. One can construct a simple reaction
coordinate for this isomerization that linearly interpolates be-
tween the two structures.73 From a theoretical point of view,
the resulting isomerization curve has been considered quite
challenging. This is because the state is very sensitive to the

balance between static and dynamic correlation.83 Conse-
quently, any complete active space treatment is likely to fail
unless a very large active space is used. For example, while
it is argued that there is no minimum along the isomerization
coordinate,73,83 previous CASPT2 studies that used a moder-
ate active space �e.g., 16e and 14o� uniformly produced such
a minimum!73,84,85 Only a very recent RASPT2 study74 with
a large �24e ,28o� active space gave a reasonable isomeriza-
tion profile without an unphysical minimum.

The joint DMRG-CT theory is a natural candidate to
treat the static and dynamic correlation associated with the
large active spaces in these kinds of problems. Marti et al.42

studied relative energy differences of the �Cu2O2�2+ core us-
ing the DMRG, although unfortunately their calculations
were not fully converged. In an earlier study, two of us34

obtained a qualitatively correct isomerization curve using the
DMRG alone in a very large �32e ,62o� active space. This
active space was sufficiently large to describe some dynamic
correlation effects in addition to the static correlation. None-
theless, a full account of the dynamic correlation requires a
still much larger correlated space which cannot be efficiently
treated through only using the DMRG. The efficient separate
description of static and dynamic correlation in the joint
DMRG-CT method allows us to re-examine the isomeriza-
tion of �Cu2O2�2+ with a proper account of the dynamic cor-
relation using large basis sets and correlation spaces.

For our calculations, geometries along the isomerization
coordinate were taken from the study of Cramer.73 Note that
the isomerization is parametrized by a single variable F that
corresponds to the degree of isomerization, i.e., F=0.0 and
F=1.0 represent the bis��-oxo� and the �-�2 :�2 peroxo iso-
mers, respectively.

Two different basis sets were used. In the small basis
�BS1�, we used the Stuttgart pseudopotential along with the
associated basis functions86 for the Cu atoms, and the atomic
natural orbital �ANO� basis set87 for O, corresponding to
Cu�8s7p6d /6s5p3d� + ECP and O: �14s9p4d /4s3p2d� con-

TABLE I. Correlation energies Eh of neutral polyenes �CnHn+2 , n=4,8 , . . . ,24� as obtained from CCSD�T�,
DMRG-SCF, DMRG-CTSD, CASPT2, and MRACPF calculations using a 6-31G basis. Total energies Eh of the
uncorrelated restricted HF calculations are included. The multireference calculations employ full � valence
references corresponding to ��n�e , �n�o� complete active spaces.

Correlation energy

HF total energy �uncorrelated�CCSD�T� DMRG-SCF DMRG-CTSD CASPT2 MRACPF

C4H6 	0.40957 	0.06029 	0.40965 	0.35989 	0.40333 	154.86348
C8H10 	0.80641 	0.11963 	0.80348 	0.71768 	0.79158 	308.58396
C12H14 	1.20393 	0.17919 	1.19831 	462.30442
C16H18 	1.60176 	0.23893 	1.59218 	616.02462
C20H22 	1.99975 	0.29878 	1.98750 	769.74462
C24H26 	2.39778 	0.35868 	2.38252 	923.46451

Cu

O

O

CuCu

O

Cu

O

FIG. 1. Left: bis��-oxo�. Right: �-�2 :�2-peroxo forms of �Cu2O2�2+.
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tractions. This basis was the same as that used in earlier
CASPT2/RASPT2 studies.73,74 In the large basis �BS2�,
we used an ANO basis set87,88 corresponding to
Cu: �21s15p10d6f4g /8s7p5d3f2g� and
O: �14s9p4d3f /5s4p3d2f� contractions.

The DMRG-SCF calculations were performed in a
�28e ,32o� active space consisting of all the molecular orbit-
als originating from the relevant valence and second-
correlating shell Cu:3d, 4d and O:2p, 3p orbitals. The mo-
lecular orbitals were ordered on the DMRG 1D lattice sites
grouped by symmetry �ag, b1u, b2u, b3g, b3u, b2g, b1g, and au	
and by orbital energy within each symmetry block, where the
D2h labels correspond to setting the molecule in the yz-plane
with the two Cu atoms on the z-axis. The RASSCF calcula-
tions were also performed in the same active space but all
configurations with more than four excited electrons relative
to the HF configuration were neglected. �This RAS model,
which corresponds essentially to a CISDTQ calculation in
the RAS1/RAS2/RAS3 spaces, follows the choice made by
Malmqvist et al. in Ref. 74.� To evaluate the dynamic corre-
lation, strongly contracted CT calculations ��=0.1Eh� were
carried out on top of the DMRG-SCF reference wave func-
tion. The correlations of the inactive orbitals Cu:4s and
O:2s were included in the CT calculations, and the other
inactive orbitals were defined as frozen core orbitals.

To assess the quality of our DMRG calculations and the
consequent description of the static correlation in the active
space, we examined the convergence of our DMRG-SCF cal-
culations as a function of the DMRG number of states M.
Table II shows DMRG-SCF energies �Eh� for the bis��-oxo�
and �-�2 :�2 peroxo isomers using BS1 with various number
of states �M�. The energy at the infinite M �untruncated�

limit was evaluated by a linear extrapolation from the
DMRG-SCF energies and total discarded weights.24 The
DMRG-SCF energies with M =512, 1024, and 2048 were
above the extrapolated infinite M limit energy by 10.8, 4.7,
and 1.8mEh for the bis��-oxo� isomer and 8.1, 3.9, and
2.0mEh for the �-�2 :�2 peroxo isomer, respectively. As
compared to the total energies, the relative energies were
even more rapidly converged due to the well balanced nature
of the DMRG wave function for the different isomers, and
are within chemical accuracy �0.5 kcal mol−1 error� even
with M =1024. By contrast, since the RASSCF wave func-
tion neglects a large number of excited configurations in the
CAS�28e , 32o� space, the RASSCF energies were much
higher than the estimated exact CASSCF energies �corre-
sponding to the large M limit of the DMRG-SCF� by 32.6
and 16.3mEh for the bis��-oxo� and �-�2 :�2 peroxo isomer,
respectively, and the relative energy of the isomers showed a
large error �10.2 kcal mol−1� as compared with the DMRG-
SCF results.

Table III and Fig. 2 show the relative energies computed
by various methods, using the small basis BS1, for the
isomerization coordinate that linearly connects the

TABLE II. DMRG energies and energy differences �Eh� for the bis��-oxo�
�F=0.0� and �-�2 :�2 peroxo �F=1.0� isomers in the BS1 basis set with
various number of states �M�.

M bis��-oxo� �F=0.0� �-�2 :�2 peroxo �F=1.0�

E

�kcal mol−1�

512 	541.757 548 	541.801 050 27.3
1024 	541.763 670 	541.805 239 26.1
2048 	541.766 586 	541.807 191 25.5
� a 	541.768 414 	541.809 226 25.6
RASSCF 	541.735 787 	541.792 831 35.8

aThe large M limit energies are estimated by the extrapolation procedure in
Ref. 34.

TABLE III. �Cu2O2�2+ energies along the isomerization coordinate using basis set BS1. All energies �in
kcal mol−1� are measured relative to that of the �-�2 :�2 peroxo isomer. The isomerization coordinate linearly
connects the bis��-oxo� �F=0.0� and �-�2 :�2 peroxo �F=1.0� isomers.

F= 0.0 0.2 0.4 0.6 0.8 1.0

DMRG-CI 	17.1 	23.9 	23.6 	18.2 	10.6 0.0
DMRG-SCF 26.1 18.0 11.7 5.9 1.7 0.0
DMRG-SC-CTSD 27.1 18.6 11.0 3.9 0.2 0.0
CR-CCSD�TQ�L

a 33.8 24.2 15.9 8.2 1.8 0.0
RASPT2b 28.6 21.2 15.1 7.1 0.8 0.0

aReference 73, supporting information, computed as CR-CCSD�T�L+ �CR-CCSD�TQ�-CR-CCSD�T��.
bReference 74.

0 0.2 0.4 0.6 0.8 1
F: isomerization coordinate
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FIG. 2. �Cu2O2�2+ energies along the isomerization coordinate using basis
set BS1. All energies �in kcal mol−1� are measured relative to that of the
�-�2 :�2 peroxo isomer. The isomerization coordinate linearly connects the
bis��-oxo� �F=0.0� and �-�2 :�2 peroxo �F=1.0� isomers. Geometries and
CASPT2, CR-CC energies taken from Ref. 73. RASPT2 energies taken
from Ref. 74.

024105-7 Multireference QC with DMRG and CT J. Chem. Phys. 132, 024105 �2010�



bis��-oxo� and �-�2 :�2 peroxo isomers. We used M =1024
for all these DMRG calculations. Comparing the DMRG cal-
culation without orbital optimization �denoted DMRG-CI�
and the DMRG-SCF results, we see that orbital optimization
drastically shifts the relative energies, resulting in a mono-
tonically decreasing curve as the isomerization progresses
and a most stable structure at F=1.0. As we have described
earlier, this is believed to be the physically correct isomer-
ization profile. As compared with the joint DMRG-SC-CT
calculations, the CR-CC and RASPT2 calculations as re-
ported in Ref. 73 and 74 appear to slightly overestimate the
stability of the �-�2 :�2 peroxo isomers. We note that in
basis BS1 the dynamic correlation treatment through the CT
theory only very slightly changes the relative energies from
the DMRG-SCF treatment �less than 2 kcal mol−1�. The
small contribution of dynamic correlation here is due to the
small size of the basis.

In Table IV we show the relative energies computed us-
ing the large basis BS2, which allows for a more complete
description of dynamic correlation. Here we see that incor-
porating dynamic correlation through CT theory increases
the stability of the �-�2 :�2 peroxo isomers by a remarkable
10 kcal mol−1. Overall, this illustrates, as always, the impor-
tance of coupling a high-order treatment of dynamic correla-
tion to large basis sets. We see also that the CCSD�T� energy
gap between the two isomers and the DMRG-SC-CT energy
gap is in this case in close agreement. We argue that this is
because the particular multireference nature �predominantly
biradical� of this molecule is sometimes correctly captured
within the CCSD�T� formalism. However, previous studies
on ligated �Cu2O2�2+ species indicate that these related sys-
tems present multireference character for which CCSD�T�
gives unphysical results.73 It is naturally to these and more
difficult challenges that we look to in the future with the joint
DMRG-CT theory.

IV. CONCLUSIONS

In this work we described the joint application of the
DMRG and CT theory to obtain an accurate description of
both static and dynamic correlation in multireference prob-
lems. The combined DMRG-CT theory represents the logical
culmination of ideas contained in earlier works on the
DMRG and CT. As we have demonstrated, the combination
of the DMRG and CT methods achieves a good description
in both problems that require a high-order treatment of the
dynamic correlation �accurate total correlation energies of
long polyenes� as well as those that require the ability to treat
large active spaces �isomerization of the �Cu2O2�2+ core�.

Further investigations using the joint DMRG-CT theory into
more challenging systems are currently underway.
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