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Single-mode dispersive waves and soliton
microcomb dynamics
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Dissipative Kerr solitons are self-sustaining optical wavepackets in resonators. They use the

Kerr nonlinearity to both compensate dispersion and offset optical loss. Besides providing

insights into nonlinear resonator physics, they can be applied in frequency metrology,

precision clocks, and spectroscopy. Like other optical solitons, the dissipative Kerr soliton

can radiate power as a dispersive wave through a process that is the optical analogue of

Cherenkov radiation. Dispersive waves typically consist of an ensemble of optical modes.

Here, a limiting case is studied in which the dispersive wave is concentrated into a single

cavity mode. In this limit, its interaction with the soliton induces hysteresis behaviour

in the soliton’s spectral and temporal properties. Also, an operating point of enhanced

repetition-rate stability occurs through balance of dispersive-wave recoil and Raman-induced

soliton-self-frequency shift. The single-mode dispersive wave can therefore provide quiet

states of soliton comb operation useful in many applications.
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A
new dissipative soliton1 has recently been observed in

optical resonators. These dissipative Kerr solitons (DKS)
have been demonstrated in fibre resonators2 and in

various microcavity systems3–7. In microcomb research8,9 soliton
formation produces phase-locked spectra with reproducible
envelopes, as required in frequency comb applications10–14.
Moreover, their unusual properties and interactions create a rich
landscape for research in nonlinear optical phenomena5,15–24.
Two such phenomena, the Raman-induced soliton-self-
frequency-shift (SSFS) and dispersive-wave generation, are
important to this work.

The Raman SSFS causes a spectral red shift of the soliton. In
optical fibre systems, this shift continuously increases with
propagation distance25,26, however, in microresonators the shift
is fixed and depends upon soliton power17,18,27,28. Dispersive
waves also occur in optical fibre systems29 where they are an
important process in continuum generation30 and have been used
to study general nonlinear phenomena31. They are formed when
a soliton radiates into a spectral region of normal dispersion and
can be understood as the optical analog of Cherenkov radiation32.
In microcavities, dispersive waves provide a powerful way to
spectrally broaden a soliton within a microresonator as a
precursor to self referencing12,33. Their formation also induces
soliton recoil32 which, similar to SSFS, causes a frequency shift in
the spectral centre of the soliton5,17. Dispersive waves normally
consist of an ensemble of modes that are phase matched to a
soliton. This phase matching can be assisted by avoided mode
crossings in microcavities19,34. Avoided mode crossings can also
produce zero group velocity effects35,36, enable microcombs to
form in regions of normal dispersion37, and provide a way to
induce dark solitons16.

In this work, an avoided-mode crossing is used to excite a
dispersive wave consisting of a single cavity mode. The coupling
of this single-mode dispersive wave to the soliton is strongly
influenced by the total soliton frequency shift produced by the
combined Raman-induced SSFS and the dispersive-wave recoil.
The combination is shown to induce hysteresis behaviour in
soliton properties. Included in this behaviour, there is an
operating point of improved pulse-rate stability (a quiet point)
where the coupling of repetition rate and cavity-pump detuning is
greatly reduced. Pulse-rate stability is centrally important in
many frequency comb applications10,13,38. Coupling of pulse rate
and cavity-pump detuning through avoided-mode-crossing recoil
effects has been observed in crystalline resonators39. Also, the
fundamental contributions to phase noise in the pulse train have
been considered theoretically40. However, technical noise
mechanisms are also present. For example, DKS generation
using on-chip silica resonators exhibits phase noise that tracks in
spectral profile the phase noise of the optical pump4. The quiet
operation point is shown to reduce technical noise contributions
to the soliton pulse repetition rate. Both this regime of operation
and the hysteresis behaviour are measured and modelled
theoretically.

Results
Mode family dispersion. A silica whispering-gallery resonator41

is used for soliton generation. The devices feature a free-spectral-
range (FSR) of B22 GHz (3 mm diameter resonator) and have
intrinsic Q-factors around 250 million. Specific details on soliton
formation in these resonators are given elsewhere4,42. The
resonators support multiple, transverse mode families. It is
essential that the soliton-forming mode family feature dispersion
that is primarily second-order and anomalous43. To characterize
the frequency spectrum of the resonator, mode frequencies were
measured from 190.95 THz (1,570 nm) to 195.94 THz (1,530 nm)

using an external-cavity diode laser calibrated by a fibre Mach–
Zehnder interferometer4. This provides a set of mode frequencies
{om,s} for each spatial mode family ‘s’ with m as the mode index.

The mode family frequency data are presented in Fig. 1a by
plotting the relative-mode-frequency, Dom,s�om,s�o0�mD1

versus mode index m where o0 and D1 are specific to the
soliton-forming mode family. o0 is the frequency of the mode
(set to have index m¼ 0) that is optically pumped to produce the
soliton, and D1 is the FSR of the soliton-forming mode family at
m¼ 0 (note: m is a relative and not an absolute mode index). By
plotting the data in this way the second- and higher-order
dispersion of the soliton-forming mode family become manifest.
To illustrate, the relative-mode-frequency of the soliton-mode
family is fit with a green, dashed parabolic curve of positive
curvature in Fig. 1a showing that it features anomalous second-
order dispersion over a wide range of mode numbers.

A second mode family also appears in Fig. 1a and causes an
avoided-mode-crossing near m¼ 72. Hybridization of this ‘cross-
ing-mode’ family with the soliton-mode family occurs near the
avoided crossing19,44. The relative-mode-frequencies of the
unperturbed soliton-forming mode family and crossing-mode
family are denoted as DomA and DomB. Over the range of mode
indices measured DomA¼ 1

2D2m2 where D2 is the second-order
dispersion at m¼ 0. The lower (upper) branch of the hybrid mode
family is denoted by Dom� (Domþ ). The spatial modes
associated with the soliton and crossing mode families are
identified in the Supplementary Note 3. Avoided mode crossing
behaviour has been intensively studied in the context of DKS
formation and can interfere with soliton generation by creation of
distortions in the dispersion spectrum43,45,46. In the present
system, the avoided mode-crossing induces only minimal
distortion in the otherwise parabolic shape of the soliton-
forming mode family. Soliton spectra produced on this mode
family by pumping at m¼ 0 are shown in Fig. 1b along with
theoretical sech2 spectral envelopes predicted for DKSs. As an
aside, the horizontal scales in Fig. 1a,b are identical and the
location of the m¼ 0 pumping mode is indicated by a vertical
dashed line in Fig. 1b.

Single-mode dispersive-wave formation. Also shown in Fig. 1a
are the comb frequencies associated with a hypothetical soliton
spectrum plotted in the relative frequency frame. This comb line
is given by,

Dom;comb ¼ om;comb�o0�D1m ¼ orep�D1
� �

m� do; ð1Þ

where om,comb ¼ morepþop is the frequency of mth comb line,
orep is the soliton repetition frequency, op is the pump frequency,
and do�o0�op is the cavity-pump detuning frequency. It is
necessary to distinguish between relative frequencies for the soliton
comb and the resonator modes because the frequency components
of the soliton comb are strongly red-detuned relative to the cold-
cavity mode frequencies by the Kerr nonlinearity. Indeed, dis-
persive waves typically form when a set of modes break this rule
and become resonant with a set of comb lines. A limiting case of
this condition is shown in Fig. 1a, where the occurrence of an
isolated resonance between a hybrid mode with relative frequency
Dor� and a comb line at Dor,comb is illustrated. The equation of
motion for the hybrid mode field amplitude hr� is shown in the
Methods to have the following form,

dhr�
dt
¼ � iDor� �

kr�
2

h i
hr� þ fre

� iDor;combt ð2Þ

where kr� is its loss rate and fr is an effective pumping term
associated with the soliton comb line. The pumping term is given
by fr¼ iG(DorA�Dor,comb)ar, where G is the fraction of the family
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A mode in the hybrid mode, and ar is the field amplitude of the
unperturbed soliton hyperbolic solution at m¼ r. Also, the Kerr-
effect shift of hr� is of order 10 kHz and is therefore negligible in
comparison to kr� .

Because the damping rate kr� is low (that is, the mode has a
high optical Q-factor) slight shifts in the slope of the comb
frequency line (equivalently, shifts of Dor,comb relative to Dor� )
will cause large changes in the power coupled to the hybrid
mode. These changes are observable in Fig. 1b where a
strong spectral line appears in the case of the blue soliton
spectrum. Note that scattering from the soliton into the spectral
line is strong enough so that the power in the line is greater than
the comb line power near the spectral centre of the soliton, itself.
The strong spectral line can be understood as a single-mode
dispersive wave and it induces a recoil in the spectral centre of
the soliton. This recoil contribution is indicated for the blue
soliton spectrum in the figure. In the case of the red soliton
spectrum, the operating point was changed and the resonance
between the soliton and the mode is diminished. Accordingly,
most of the spectral shift in this case results from the Raman
SSFS.

Soliton recoil and hysteresis. A change in the slope of the soliton
comb line will occur when the soliton repetition frequency, orep,
is changed (equation (1)). On account of second-order dispersion
orep depends linearly on the frequency offset, O, of the
soliton spectral maximum relative to the pump frequency19,40.
This frequency offset has contributions from both the Raman
SSFS, ORaman, and the dispersive-wave recoil, ORecoil (that is,
O¼ORamanþORecoil). Accordingly, the soliton repetition

rate is given by,

orep ¼ D1þ
D2

D1
ORamanþORecoilð Þ ð3Þ

where D2 (the second-order dispersion of soliton-forming mode
family at m¼ 0) is measured to be 17 kHz from Fig. 1a.
Substituting for the repetition rate in the comb line expression
(equation (1)) gives,

Dom;comb ¼
mD2

D1
ORamanþORecoilð Þ� do ð4Þ

It is shown in the Methods (equation (25)) that the soliton recoil
frequency has a linear dependence on the hybrid mode power,

ORecoil ¼ g hr�j j2¼ � r
kBD1

kAE
hr�j j2 ð5Þ

where kA and kB denote the power loss rates of the family A and
family B modes, respectively; and E is the circulating soliton
energy.

Solving equation (2) for the steady-state power in the hybrid
mode at the soliton comb line frequency and using equations
(4 and 5) gives the following result,

hr�j j2¼ frj j2

Dor� þ do� rD2
D1

ORamanþ g hr�j j2
� �� �2

þ k2
r�
4

ð6Þ

Equation (6) suggests that a bistable state and hysteresis
behaviour in the dispersive-wave power is possible when varying
the soliton operating point. Consistent with this possibility, it is
noted that the two soliton spectra in Fig. 1b (blue and red), which
show very different dispersive-wave powers, were produced at
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Figure 1 | Soliton hysteretic behaviour induced by mode interaction. (a) Measured relative mode frequencies are shown as blue points4. The green and

yellow dashed lines represent the fitted relative mode frequencies (DomA and DomB) of the unperturbed soliton-forming mode family A and crossing mode

family B, respectively. Relative mode frequencies for upper and lower branch hybrid-modes are Domþ and Dom� . The red line illustrates the frequencies of

a hypothetical soliton frequency comb. A non-zero slope on this line arises from the repetition rate change relative to the FSR at mode m¼0. (b) Measured

optical spectra at soliton operating points I and II, corresponding to closely matched cavity-pump detuning frequencies, do. A strong single-mode

dispersive wave at m¼ 72 is observed for operating point II and causes a soliton recoil frequency shift. This frequency shift adds to the shift resulting from

the Raman-induced SSFS. (c,d) Dispersive-wave power and soliton spectral centre frequency shift versus cavity-pump detuning. Operating points I and II of

b are indicated. Inset in c: Measured (blue dots) and theoretical (red line) recoil frequency versus the dispersive wave power.
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nearly identical detuning frequencies, do. A more detailed survey
of the dispersive-wave power behaviour is provided in Fig. 1c and
is again consistent with a hysteresis behaviour versus detuning.
Moreover, since the total spectral shift of the soliton is given by
O¼ORamanþORecoil¼ORamanþ g|hr� |2, a corresponding beha-
viour is observed in the overall soliton spectral shift (Fig. 1d).
Theoretical fits are provided in Fig. 1c,d using equation (6).
The fitting procedure and parameter values are provided in the
Methods.

In plotting the data, the detuning frequency, do/2p, was
determined from the measured total soliton spectral shift (O) and
pulse width (ts) using the relation do¼ (D2/2D2

1)(1/t2
s þO2).

This expression is a generalization of a relationship derived
elsewhere18. The generalization extends the shift O to include
both the SSFS and the recoil and is derived as equation (33) in the
Methods. As an aside, the pulse width is determined by fitting the
soliton optical spectrum4.

Likewise, the recoil frequency, ORecoil, can also be extracted
from the data as O�ORaman by first using the soliton pulse width
to determine the Raman shift using ORaman¼ � 8tRD2/15kAD2

1t
4
s .

A plot of the recoil shift determined this way versus the
dispersive-wave power is given as the inset in Fig. 1c and verifies
the linear dependence (equation (5)). Equation (5) is also plotted
for comparison using parameters given in the Methods. As an
aside, the Raman shift formula noted above is also a general-
ization of a result proven elsewhere18. Curiously, as shown in the
Methods, this formula maintains its previous form in the
presence of the dispersive wave.

Within narrow detuning frequency bands in the vicinity of the
hysteresis both measurements and calculations show that the total
cavity power (soliton and dispersive-wave contributions) can
decrease with increasing cavity-pump detuning as opposed to
increasing with detuning as is typical for a soliton. Under these
special conditions, the pump-cavity detuning will no longer be
dynamically stable on account of the thermal nonlinearity47.
Evidence of this was observable in the current work as it was not
possible to completely map out the theoretically predicted
hysteresis curves.

While the present results are produced using a dispersive wave
that is blue-detuned relative to the soliton spectral maximum, the
hysteresis behaviour is also predicted to occur for a red-detuned
dispersive wave. However, in the red-detuned case, the orienta-
tion of the curve in Fig. 1c is reversed with respect to the detuning
frequency. The essential feature for appearance of the hysteresis is
that the recoil advances and retreats versus detuning. As a result,
the existence of hysteresis behaviour predicted in equation (6) is
not limited to microresonator materials having a strong Raman
SSFS. It is also predicted to occur, for example, in crystalline
resonators given an appropriate avoided-mode crossing. The
requirements imposed on the device and mode crossing for this
to occur are discussed further below.

Numerical simulation. To further investigate the single-mode
dispersive-wave phenomena, we perform numerical simulations
based on the coupled Lugiato-Lefever equations34,48–51 involving
the soliton-forming mode family (family A) and the crossing-
mode family (family B). Additional information including
parameter values is provided in the Methods, but is outlined
here. The two mode families are coupled using a model studied
elsewhere19. The coupling is characterized by a rate constant G
and is designed to induce an avoided-mode-crossing around
mode index m¼ 72, similar to the experimental mode family
dispersion. Figure 2 shows the results of the numerical simulation
including 2,048 modes. The hysteresis behaviour in the soliton
total frequency shift and the dispersive-wave power resembles the

experimental observation and is also in agreement with the
analytical model (Fig. 2a,b). As predicted by equation (5) (and
observed in the Fig. 1c, inset), the recoil is numerically predicted
to vary linearly with the dispersive-wave power (Fig. 2b, inset).

Frequency and time domain features of the soliton (blue) and
dispersive wave (red) are also studied in Fig. 2c,d in units of
intracavity power. They show that the dispersive-wave emerges
on mode family B and consists primarily of a single mode. The
single-mode dispersive wave leads to a modulated background
field in the resonator with a period determined by the beating
between the pump and the dispersive wave. This modulation is
observable in Fig. 2d. Spectral recoil of the soliton is also
observable in the numerical spectra. The combined power of
mode A and B spectra in Fig. 2c is the total intracavity power.

Soliton repetition rate quiet point. The nonlinear behaviour
associated with soliton coupling to the single-mode dispersive
wave can be used to suppress soliton repetition rate noise pro-
duced by coupling of pump-laser frequency noise. This noise
source is suspected to be a significant contributor to repetition-
rate noise in certain frequency-offset regimes4. From equation (3)
the repetition frequency depends linearly on the total soliton
spectral-centre frequency shift, O. However, this total shift
frequency versus cavity-pump detuning has a stationary point
on the upper hysteresis branch (Fig. 1d). As expected from the
simple dependence in equation (3), this same stationary point is
observed in measurements of the repetition frequency versus
detuning (Fig. 3a). To measure the repetition frequency the
soliton pulse train is directly detected and an electrical spectrum
analyser is used to observe the pulse train spectrum. The
theoretical prediction using analysis from the Methods is also
provided for comparison.

The coupling of pump-laser frequency noise into the soliton
repetition rate is expected to be minimal at the stationary point.
To verify this prediction, the phase noise of the detected soliton
pulse train is measured at different soliton operating points on
the upper and lower branches in Fig. 3a using a phase noise
analyser. Phase noise spectra corresponding to operating points I,
II and III in Fig. 3a are plotted in Fig. 3b. Operating points I and
II correspond to nearly identical cavity-pump detuning, but lie on
different branches. As expected, operating point II in the upper
branch has a lower phase noise level compared to operating point
I on account of its reduced slope. Operating point III is close to
the zero-slope detuning point in the upper branch. This quiet
point has the lowest phase noise among the recorded phase noise
spectra. At higher offset frequencies, the phase noise is shot noise
limited, while at lower offset frequencies the phase noise indicates
40 dBc Hz� 1 and is mainly contributed by frequency drift of the
repetition rate.

For comparison, the phase noise associated with the detuning
frequency do was also measured. For this measurement, the error
signal of a Pound–Drever–Hall feedback control system is
operated open-loop and recorded using an oscilloscope. Its
power spectral density is converted into phase noise in Fig. 3b
(Supplementary Note 1). The relatively high noise floor in this
measurement is caused by the oscilloscope sensitivity. None-
theless, a noise bump at 25 kHz offset frequency originates from
the laser and provides a laser-noise reference point against which
comparison to the soliton phase noise is possible. The soliton
phase noise at 25 kHz offset frequency noise is plotted versus
detuning in Fig. 3c. The soliton phase noise is calculated in the
Methods and the results are presented for comparison using
the cavity-pump detuning noise level at 25 kHz offset. The dip of
the phase noise occurs at the quiet point. One outlier point (red
branch) is believed to have resulted from loss of lock of the phase
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noise analyser. For lower offset frequencies, the contributions to
noise are believed to originate from thermal contributions within
the resonator and are under investigation. Nonetheless, the
measured noise contributions at these frequencies show a trend of
reduction for operation at the quiet point.

An analytical study comparing the detuning response of the
Raman and recoil effects was performed to determine conditions
required to observe the quiet point. The quiet point occurs when
the retreating soliton recoil balances the always advancing SSFS.
Accordingly, Fig. 4 is a contour plot of the maximum ratio of
|@ORecoil/@do| to |@ORaman/@do| while varying the coupling
strength between the soliton-mode and crossing-mode families
and the damping rate of the crossing mode (see Methods). The
existence regime for observation of the quiet point corresponds to
the ratio 41 shown in red. Stronger mode interaction and weaker
dissipation are required to operate in this regime. Also, the
impact of these parameters on the detuning range of the
hysteresis is studied in the Supplementary Note 4.

Discussion
Microfabrication control of resonator diameter, oxide thickness
and wedge angle all impact the spectral placement of mode
families. Numerical simulation of these families based on
scanning electron micrograph measurement of resonator cross
sections provides reasonably accurate dispersion maps for
prediction of resonator properties. Also, process control of the
resonator fabrication is sufficient to guarantee fabrication of
mode families exhibiting the features shown in Fig. 1a within the
1,530–1,570 nm band.

In summary, coupling of a dissipative Kerr soliton to a single-
mode dispersive wave has been shown to produce hysteresis
behaviour in both the dispersive-wave power and in the soliton
properties. These properties include the frequency shift of the
soliton spectral centre relative to the pumping frequency and
the soliton repetition frequency. The hysteresis results from the
dependence of the dispersive-wave phase matching condition
upon the dispersive-wave power. The hysteresis behaviour of the
dispersive wave also leads to an operating point wherein coupling
of laser pump frequency noise into the soliton repetition rate is
greatly reduced. This reduction was modelled and measured, and

the requirements for quiet point existence were also studied. The
operating point for quiet soliton operation is of potential use for
ultra-low-noise microwave generation.

Methods
Dynamical equation of hybrid mode. Equation (2) can be derived from coupled
mode equations that include dispersion, mode interaction and the Kerr non-
linearity. The intracavity field of mode m in the soliton-forming mode family A can
be represented by AmðtÞe� iomA tþ imf , where Am(t) is the slowly varying amplitude, t
is the time and f is the azimuthal angle along the resonator. In the rotation frame
of comb frequencies om,comb¼o0� doþ morep, the intracavity field can be

expressed as amðtÞ ¼ AmðtÞe� i omA �o0 þ do�morepð Þt . We denote the intracavity field
in the crossing-mode family B as bm and express it in the same reference frame as
the soliton-forming mode am. It should be noted that the relative mode number m is
referenced to the mode that is being optically pumped, and does not represent the
actual azimuthal index. The intracavity fields can be calculated using the equations
of motion with Kerr nonlinearity terms50,52 and modal-coupling terms44,

dam

dt
¼� kA

2
þ i omA �o0 þ do�morep
� �h i

am þ iGbm

þ ig
X

j;k

ajaka�jþ k� m þ FdðmÞ
ð7Þ

dbm
dt
¼� kB

2
þ i omB�o0 þ do� morep
� �h i

bmþ iGam

þ igB

X
j;k

bjbkb�jþ k�m

ð8Þ

where kA,B¼o0/QA,B is the dissipation rate. g¼:o2
0n2D1/2pn0Aeff represents the

normalized Kerr nonlinear coefficient with Aeff the effective nonlinear mode area.
gB is defined similarly. G is the linear coupling coefficient between the two mode
families19 and F is the normalized coupled laser pump field. Also, to calculate
equation (2) it is not necessary to include Raman coupling terms in equations
(7 and 8) since the leading-order contribution to the forcing term, fr, is from the
Kerr nonlinearity.

Modal coupling causes two branches of hybrid modes to form as shown in
Fig. 1a. The frequencies of the hybrid modes in the upper (þ ) and lower (� )
branches are given by (refs 44,53,54),

om� ¼
omA þomB

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ 1

4
omA �omB
� �2

r
ð9Þ

where the corresponding field amplitude of the hybrid modes is a linear
combination of am and bm. In the far-detuned regime where omA �omB � G, the
field amplitude of the lower branch hybrid mode is approximately given by,

~hm� ¼
Gamþ omA �omB

� �
bmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2 þ omA �omB
� �2

q ð10Þ

In this experiment, only one mode was observed to be near resonance with the
soliton comb and that mode is assigned mode index m¼ r. Consistent with Fig. 1a,
the hybridization of mode r is assumed weak (that is, orA �orBj j � Gj j and
DorAj j � DorBj j) so that br is the dominant contribution to ~hr� . Also, since the

amplitude of bm with mar is small, the Kerr interaction summation term can be
neglected in equation (8) in this calculation.

By taking the time derivative of equation (10) and then substituting using (7)
and (8) the following dynamical equation results for ~hm� ,

d~hr�
dt
¼ � kr�

2
þ i or� �o0 þ do� rorep
� �h i

~hr� þ fr ð11Þ

where fr is the pumping term given by,

fr ¼ iGg
X

j;k

ajaka�jþ k� r ð12Þ

and where G ¼ G=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gj j2 þ omA �omB

		 		2q
is the fraction of the family A mode in

~hm� and kr�EkB is assumed for r when G � 1. When converting equation (11)
into the rotation frame of (o0þ mD1) with ~hr� ¼ hr� eiDor;comb t , the following
expression results,

dhr�
dt
¼ � iDor� �

kr�
2

h i
hr� þ fre� iDor;comb t ð13Þ

where Dor� ¼or� �oo� mD1 is the relative-mode-frequency of hybrid mode
hr� . Equation (13) is identical to equation (2) in the main text.

Effective pumping term. The pumping term in equation (11) can be expressed in
parameters of the resonator and soliton. The soliton field envelope takes the
form3,18

Aðf; tÞ ¼ Bssech f�fcð Þ=D1ts½ �eiO f�fcð Þ=D1 þ ij ð14Þ
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Figure 4 | Existence study for the quiet point. The maximum ratios of

|@ORecoil/@do| to |@ORaman/@do| at varying normalized modal-coupling rate

G (see Methods) and normalized crossing-mode damping rate kB (dashed

curve is unity ratio). The quiet point exists when this ratio is greater than

unity (red region). Parameters correspond to a silica resonator.
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where soliton properties are: amplitude Bs, angular position fc, temporal pulse
width ts, spectral-centre frequency shift (relative to pump) O and phase relative to
the pump laser j. Also, this solution assumes do � kA. By applying the Fourier
transform to A(f, t), am can be expressed in terms of the soliton properties,

Aðf; tÞ ¼
X
m

amðtÞeim f�fcð Þ ð15Þ

am ¼
BstsD1

2
sech

pts

2
D1m�Oð Þ

� �
eij ð16Þ

The pump fr can therefore be derived by inserting equation (16) into equation (12).
The following expression results from simplification of the summation,

fr ¼ iG
D2

4D2
1

D1r�Oð Þ2 þ 1
t2

s


 �
BstsD1sech

pts

2
D1r�Oð Þ

� �
eij ð17Þ

where g has been replaced using equation B2
s t

2
s ¼D2/gD2

1, which holds
for DKSs18,40 and is also verified in a section below. Finally, by using18

do ¼ D2
2D2

1

1
t2

s
þO2

� �
(see derivation below), fr can be further reduced to

fr ¼ iG DorA �Dor;comb
� �

ar ð18Þ

Recoil and soliton self frequency shift. In addition to the Raman SSFS17,18, the
spectral centre of the DKS is also shifted by the single-mode dispersive-wave recoil.
The effect of the recoil and Raman shift can be calculated using the moment
analysis method17,55. Using the Fourier transform, equation (7) is transformed into
the perturbed Lugiato-Lefever equation (LLE)50

@Aðf; tÞ
@t

¼� kA

2
þ ido

� �
Aþ i

D2

2
@2A

@f2 þ Fþ ig Aj j2A

þ igtRD1A
@ Aj j2

@f
þ iGB

ð19Þ

where the Raman shock term has been added17,18 and tR is the Raman time
constant. The moment analysis method treats the soliton as a particle. The energy E
and the spectral centre mode number mc are given by,

E ¼
X
m

am
		 		2¼ 1

2p

Z þp

� p
Aj j2df ¼ B2

s tsD1=p ð20Þ

mc ¼
P

m m am
		 		2

E
¼ � i

4pE

Z þp

� p
A�
@A
@f
�A

@A�

@f

� 
df ð21Þ

Taking the time derivative of equation (21) and substituting @A/@t using
equation (19), the following equation of motion for mc is obtained,

@mc

@t
¼�kAmc �

gtRD1

2pE

Z þ p

�p

@ Aj j2

@f

� 2

df

� 1
2pE

Z þp

� p
G�B�

@A
@f
�GA�

@B
@f

� 
df

ð22Þ

The second term on the right-hand-side corresponds to the Raman-induced
frequency shift and the third term is the frequency shift caused by recoil.

The Raman term can be calculated by substituting equation (14) into the
integral. When calculating the recoil term, B is simplified to B 	 breir f�fcð Þ as the
power in mode B is dominated by the near resonance mode r. In addition, because
the integral of f is over 2p, only areir f�fcð Þ has nonzero contribution.
Furthermore, equation (8) is used to relate Gar to br and finally leads to,

@mc

@t
¼ � 8tRD2

15D3
1t4

s
� rkB

E
brj j2 �kAmc ð23Þ

The steady-state spectral centre mode number is therefore given by,

mc ¼ �
8tRD2

15kAD3
1t4

s
� rkB

kAE 1�G2
� � hr�j j2

¼ 1
D1

ORaman þORecoilð Þ
ð24Þ

where omA �omB

		 		 � kB;Dor� (equivalent to brj j � arj j) is assumed and the
recoil and Raman shifts are,

ORecoil ¼ g hr�j j2¼ � rkBD1

kAE 1�G2
� � hr�j j2; ð25Þ

ORaman ¼ �
8tRD2

15kAD2
1t4

s
ð26Þ

In the main text, G2 � 1 is assumed. Equation (25) is equation (5) in the main
text. The form for the Raman SSFS, ORaman, is identical to the form previously
derived in the absence of the dispersive-wave coupling18.

Soliton parameters with Raman and mode-coupling effects. In the presence of
recoil and Raman, the relations between soliton parameters in equation (14) can be
derived from the Lagrangian approach3,18,40. In addition, the Lagrangian approach
verifies the expression for ORecoil obtained above as well as providing a path for
calculation of the repetition-rate phase noise40. As detailed in previous
literature18,40, the perturbation Lagrangian method is applied to the LLE equation
of A (equation 19). However, now an additional perturbation term is added to
account for the mode coupling to the crossing-mode family. Taking
B 	 breir f�fcð Þ , produces the following equations of motion,

O
D1

@fc

@t
� @j
@t
� do� D2O

2

2D2
1
� D2

6t2
s D2

1
þ 2

3
gB2

s ¼ 0 ð27Þ

O
D1

@fc

@t
� @j
@t
� do� D2O

2

2D2
1
þ D2

6t2
s D2

1
þ 1

3
gB2

s ¼ 0 ð28Þ

@ B2
s tsO

� �
@t

¼ � kAB2
s tsO�

8gtRB4
s

15ts
� kBpr brj j2 ð29Þ

@fc

@t
¼ D2

D1
O ð30Þ

@ B2
s ts

� �
@t

¼ � kAB2
s ts þ f cosjBstspsech Ots

p
2

� �
ð31Þ

where we have assumed the mode r is far from the mode centre mc¼O/D1 and the
coupling coefficient G is smaller than or around the same order of magnitude with
do. Also, higher order terms are neglected (Supplementary Note 2). Subtracting
equation (28) from equation (27) yields

Bsts ¼
ffiffiffiffiffiffiffiffi
D2

gD2
1

s
ð32Þ

This equation was previously verified in the presence of Raman-only interactions18.
An additional relation between do, ts and O is derived for steady state by

substituting equations (30) and (32) into equation (27)

do ¼ D2

2D2
1

1
t2

s
þO2

� 
: ð33Þ

where O can be obtained from (29) and (32),

O ¼ ORaman þORecoil ¼ �
8D2tR

15kAD2
1t4

s
� rkBD1

kAE 1�G2
� � hr�j j2 ð34Þ

This result provides an independent confirmation of equation (24). Also,
equation (33) is identical in form to an expression, which included only the Raman
SSFS18. Significantly, however, equation (33) is more general since O is the total
spectral centre shift provided by the combined effects of Raman SSFS and
dispersive-wave recoil.

Phase noise transfer function. The repetition rate of the soliton can be expressed
as follows19,

orep ¼ D1 þ
@fc

@t
¼ D1 þ

D2

D1
O: ð35Þ

The variation in both D1 and O contribute to fluctuations in the repetition rate.
While D1 is subject to thermorefractive noise and fluctuations from the
environment, a significant contributor to fluctuations in O results from fluctuations
in the pump-laser frequency detuning frequency, do. The noise conversion from
cavity-pump detuning to repetition rate can be calculated by linearizing equations
(27)–(31) using the small-signal approximation40. Accordingly, all soliton
parameters (X) can be expressed as X¼X0þDX, where X0 is the steady-state value
and DX is a small-signal fluctuation. For simplicity, we further denote the Raman
and recoil terms in equation (29) as � 8gtRB4

s /15ts�kBpr|br|2�kAB2
s tsF(do) so

that O¼ F(do) is the function of detuning measured in Fig. 1d (that is, steady-state
O versus do). For simplicity, we assume this steady-state holds in the dynamical
equations below. This can be shown to be true when offset frequencies (see
definition below) are small compared to the cavity decay rate.

In the following derivation, ts in equations (27)–(31) is eliminated using
equation (32). Equation (29) can therefore be expressed as

@BsO
@t
¼ � kABs O� FðdoÞ½ �: ð36Þ

Applying the small-signal approximation and Fourier transform to equation (36)
gives the result,

1þ io=kAð ÞD~OðoÞ ¼ @F
@do

DfdoðoÞ� ioO0

kABs0
D eBsðoÞ; ð37Þ

where D~XðoÞ is the Fourier transform of DX, o is the Fourier frequency (that is,
offset frequency in the phase or frequency-noise spectrum) and where the Fourier
transform of @DX/@t equals ioD~XðoÞ. DfdoðoÞ represents the cavity-pump
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detuning noise. Similarly, the small-signal approximation applied to equation
equation (27) yields,

gBs0D eBsðoÞ ¼ DfdoðoÞ� D2O0

D2
1

D~OðoÞ; ð38Þ

where the contribution from ioD~jðoÞ is neglected as it is of order (o/do) smaller
compared to the leading-order terms.

In the limit of o2=k2
A � 1 and O2t2

so=kA � 1, equations (37 and 38) are
solved for D~OðoÞ in terms of DfdoðoÞ. The result is substituted into the Fourier
transform of equation (35) to give the following result,

DgorepðoÞ ¼
D1

D2
D~OðoÞ ¼ DfdoðoÞ

1þ io=kA

@orep

@do
� io

kA
OD1t2

s

� 
; ð39Þ

where sources of noise associated with D1 in equation (35) are ignored.

The soliton repetition rate noise can be expressed as DgorepðoÞ ¼ aðoÞDfdoðoÞ
where a(o), the noise transfer function, is the coefficient of DfdoðoÞ in
equation (39). Accordingly, the phase noise of repetition rate is
Sf(o)¼ |a(o)|2Sf,do(o).

Typically, for the resonators in this study ookA so that the first term in
equation (39) expresses the trivial result that the slope of the plot in Fig. 3a, acts as
a transfer function of fluctuations in do into repetition-rate fluctutations. However,
when @orep/@do appoaches zero (the quiet point), the first term in equation (39)
vanishes and the noise transfer function reaches a minimum determined by the
second term. The phase noise plots in Fig. 3c were fitted using the same parameters
as in analytical fitting in Figs 1c,d and 3a, and @orep/@do extracted numerically
from the fitting curves in Fig. 3a.

Analytical model fitting and parameters. Measurements are compared with the
analytical model in Figs 1c,d and 3a. Measured parameters used for the analytical
model are: kA/2p¼ 2.12 MHz, D1/2p¼ 22 GHz, D2/2p¼ 17 kHz, G/2p¼ 42.4
MHz. tR¼ 2.49 fs can be extracted from the measured O in the regime without the
mode recoil effect (do/2po30 MHz and do/2p440 MHz). Two free parameters
are used to optimize the fitting in Figs 1 and 3 and they are in reasonable agree-
ment with the measurement: Dor� ¼ � 62.2 MHz (� 75±7 MHz in measure-
ment) and kr� /2p¼ 3.6 MHz (6 MHz in measurement). The procedure for fitting
is as follows: a detuning frequency, do, (horizontal axis in Figs 1c,d and 3a plots) is
selected. By eliminating O in equations (33 and 34) a single condition relating ts

and |hr� |2 results. Likewise, with do selected a second condition relating ts and
|hr� |2 results from equation (6) by replacing ORaman using equation (26). This pair
of equations is solved for ts and |hr� |2 from which O is determined by
equation (34) and orep is determined by equation (3).

Numerical simulations. Numerical simulations based on the coupled Lugiato-
Lefever equation of mode family A and B (equation (19) and Fourier transform of
equation (8)) are implemented to further validate the analytical model. The Raman
term in mode family B is ignored since the power in mode family B is too small to
induce Raman-related effects. Dispersion of third order and higher as well
as the self-steepening effect56 are neglected. The simulations are implemented
with the split-step Fourier method56 where 2,048 modes in the frequency
domain are taken into account. The parameters for two mode families used in
Figs 2 and 4 are kA/2p¼ 2.12 MHz, kB/2p¼ 3.4 MHz, D1/2p¼ 22 GHz for mode A,
D1B/2p¼D1/2pþ 50.9 MHz for mode B, D2/2p ¼ 17 kHz for both mode A and B,
tR¼ 2.489 fs, g¼ gB¼ 9.8
 10� 4 rad s� 1 and G/2p¼ 42.4 MHz.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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