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Abstract— The normal operation of many cyberphysical,
biological, and neural systems fit naturally with robust control,
with key variables like lane positions, voltages, temperatures,
blood pressures, etc maintained within tight bounds despite
diverse uncertainties. However, two challenges in particularly
need further theory that this paper addresses. One is that
control is distributed with communication having limits on
bandwidth and delay. Another is that normal operations can
be disrupted and bounds violated, but it is desirable to make
such acute situations rare and recoverable without crashing.
We take the simplest model that has both normal and acute
modes with bandwidth and delay constraints, and focus on two
relatively extreme but familiar starting points: i) average case
LQG (or H2) and ii) worst case `1 control with `∞ signal
bounds. Both have strengths and weaknesses that we highlight,
and this leads naturally to a win-win hybrid scheme that has
better performance than either alone, with relatively modest
computational costs.

I. INTRODUCTION

Tradeoffs at both system and component levels are ubiq-
uitous in human sensorimotor system, arguably the ultimate
cyberphysical system. At the component level, limitations in
nervous resources impose stringent speed/accuracy tradeoffs
in nerve signaling [1]. At the system level, limitations in
hardware imposes tradeoffs between robust performance and
controller complexity [2]. The tradeoffs at the system and
component level have been studied in isolation in prior
works, but there is no theoretical framework to analyze the
interactions between the system and component tradeoff,
which is crucial to the understanding of the human sen-
sorimotor system. In this paper, we develop control theory
with communication constraints, relevant to neuroscience
and cyberphysical systems. This theory provides insights
into the interaction between the tradeoffs at component and
system level. This paper mainly focuses on the control
theory, while its application in neuroscience is discussed in
[3] [4].

We initially focus on optimal control for simple systems
with communication constraints. The LQ (linear-quadratic)
optimal control and `1 optimal control have been studied ex-
tensively for systems with perfect communications [5][6][7].
We focus on LQ and `∞ because they are extremes, different
in both average and worst case, and different in underlying
norm (`2 and `∞). We’ll use `1 and `∞ interchangeably
depending on whether we’re emphasizing system or signal
norms.

For systems with communication constraints, the stability
conditions have been studied in [8][9], and optimal controller
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structures have been studied in [10][11] for LQ control
and in [12][4] for `∞ control. Although the work [4] has
demonstrated the system level tradeoff between delay cost
and quantization cost in the `∞ system, it was unknown
whether that tradeoff holds universally for other systems
(or norms). In this paper, we derive a performance lower
bound as a function of delay and bandwidth in a LQ system,
from which the system level tradeoff between delay cost and
quantization cost can also be observed.

The optimal LQ controller for delayed and quantized
system satisfies certainty equivalence [10], and is more
demanding than the `∞ system in both computation and
memory requirements. This great increment in controller
complexity was hinted in [12]: any static memoryless coder
cannot reject a disturbance with infinite support. Although
a disturbance that takes large value with small probability
is a good abstraction of an acute mode disturbance, consid-
ering optimality (minimizing LQ cost) leads to designing a
controller with heavy computation and large memory usage,
which we will ultimately show is avoidable with a hybrid
scheme.

Combining the `∞ and LQ controllers, we propose a hy-
brid controller that maintains the advantage of both systems.
This hybrid controller requires minimal computation and
memory most of the time during normal mode, but provides
high disturbance attenuation in a rare acute mode, quickly
returning the system to normal. Such controllers – having
fine normal resolution, but capable of adapting acutely to
a wider range of signals –are also ubiquitous in biological
systems [13]. The hybrid controller has the tradeoff between
system performance and controller complexity, which are
also discuss in this paper.

The contribution of this paper is summarized as follows:
The speed/accuracy tradeoff. We provide analytic formulas

characterizing the impact of signaling delay and bandwidth
on system performance. Both the LQ and `∞ systems have
speed/accuracy tradeoffs that can be optimized in the design
of communication hardware.

The performance/complexity tradeoff. We propose a hybrid
controller that operates with low complexity most of the
time in normal mode, yet is able to reject a disturbance
with unbounded support in the rare acute mode, returning
quickly to normal mode. The design space of the proposed
controller has performance/complexity tradeoffs, and a sweet
spot where both good system performance and low controller
complexity can be achieved.

Robustness under mixed disturbances. When a band-
limited controller needs to stabilize an unstable system that
contains both worst case (bounded) and stochastic distur-
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bances, the optimal `∞ controller cannot guarantee the
stability, and the LQ controller suffers from a degraded
performance. However, the additional design freedom of
the proposed hybrid controller helps achieve a consistently
robust performance with a right blend of LQ and `∞ frame-
work.

The rest of this paper is organized as follows. We describe
the control system model in Section II. The LQ and `∞
systems, their performance, and controller properties are
studied in Section III. The hybrid controller is proposed and
analyzed in Section IV. The discussion about speed/accuracy
tradeoffs, performance/complexity tradeoffs, and robustness
under mixed disturbances are given in Section V. The proofs
of theorems are provided in the technical report [14], and
are omitted due to space constraints.

Notation and preliminaries:: We use lower case letters
to denote sequences, i.e., x = {x0, x1, x2, . . . }, and xtτ
to denote the truncated sequence from τ to t, i.e., xtτ =
{xτ , xτ+1, · · · , xt}. The `∞ norm of a sequence x is defined
as ‖x‖∞ := supt |x(t)|.

We denote a uniform quantizer of rate R (i.e., with 2R

levels) over the interval [−1, 1] as Q : R → SR, where
|SR| = 2R. The output of the map Q(x) is given by the
nearest point to x in SR, i.e., the nearest of the 2R uniformly
distributed points across the interval [−1, 1].

II. MODEL DESCRIPTION

In this section, we briefly introduce a dynamical system
equipped with a feedback controller with communication
constraints in Fig. 1 similarly to [4]. The plant satisfies the
following dynamics:

xt+1 = Axt + ut + wt, (1)

where xt ∈ R is the state, wt ∈ R is the disturbance, and
ut ∈ R is the control action. Let the initial condition be
x0 = 0 and wt = 0 for t < 0. The control action ut is
generated by a controller K with delay d and bandwidth
R, where R is minimum stabilizing R > log2 |A| [8].
The controller K := {(E0, D0), (E1, D1), (E2, D2) · · · } is
parameterized by the encoder Et and decoder Dt at each
time t. We assume the encoder can utilize the information
of It ⊂ {{xτ}τ=0,...,t, {wτ}τ=0,...,t−1}, is defined by the
mapping Et : It → S such that

st = Et({xτ}τ=0,...,t, {wτ}τ=0,...,t−1) ∈ S, (2)

where st ∈ S is the codeword, and S has cardinality at
most 2R. The decoder can utilize the information Jt ∈
{{sτ}τ=0,...,t} with delay d caused by the channel, is defined
by the mapping Dt : Jt−d → R such that

ut = Dt(Jt−d). (3)

We denote K(R, d) to be the space of controllers with delay
d and bandwidth R that has the form above. In addition, we
assume there is a tradeoff between building a feedback loop
with smaller delay d and greater bandwidth R, i.e.,

R = T (d), (4)

where T is an increasing function.
We assume that the plant dynamics (1) and physical

limitations T are given, whereas K, d, R and (It,Jt) are
design variables. The desired properties for the controller is
to achieve a good performance (small state deviation) with
small control effort (low actuation, computation, and memory
usage). We quantify the performance in ‖x‖ for some norm,
low actuation in ‖u‖, computation using algorithm processes,
and memory usage using the information sharing structure
(It,Jt). With a sa abuse of notation, we call the controller
processes K as ‘software’, and the component properties
(d,R, It,Jt) as ‘hardware’. In the following sections, we
explore controllers with different software K and hardware
(d,R, It,Jt) and their performance .

Fig. 1: The system model. A plant is connected to a controller
composed of an encoder, channel, and decoder. The channel
has delay d and bandwidth R.

Remark 1 (The speed/accuracy tradeoffs): The model de-
scribed above can be used to model the human sensorimotor
and potentially cyberphysical systems. In the sensorimotor
system, the body corresponds to the plant, the central nervous
system to the controller having delay and limited bandwidth.
The speed/accuracy tradeoff (4) for spiking neurons is given
by R ∝ d in [4], [1] if we assume the space and energy for
those neurons are fixed.

III. TWO CONTROL PROBLEMS

In this section, we study the optimal performance for
the LQ/`∞ system, and the controllers that achieve the
optimal performance. We also assume an ideal scenario
when the controller has unlimited computational and storage
capabilities, and leave the issue of controller complexity to
Section IV.

A. The Linear-Quadratic System
In this section, we study the robust control problem for

the LQ system with delay and quantization. The disturbance
wt for t ≥ 0 is assumed to be i.i.d. Gaussian noise with zero
mean and variance σ2, i.e. wt

i.i.d.∼ N (0, σ2) for t ≥ 0. Our
goal is to solve the robust control problem:

minimize
K∈K(R,d)

lim
t→∞

E[x′tPxt + u′tQut]

subject to plant dynamics (1)
(5)

for some known matrices P � 0, Q � 0. Then, the lower-
bound of the LQ cost performance is stated in Theorem 1.



Theorem 1: The optimal performance of the robust con-
trol problem (5) is bounded below by

lim
N→∞

E[x′tPxt + u′tQut] (6)

≥ P
d−1∑
i=0

A2iσ2 + P ?A2dσ2 +G?A2d σ2

22R −A2

where the matrices P ?, G? are the unique solutions of

P ? = A′
[
P ? + P − P ?(Q+ P ?)−1P ?

]
A

G? = A′P ?(Q+ P ?)−1P ?A.
(7)

Due to space constraints, we omit its proof from this paper
and refer to the technical report [14]. The performance
limitation in Theorem 1 has a clear interpretation. The first
and second terms in the right side of (6), P

∑d−1
i=0 A

2iσ2 +
P ?A2dσ2, are due to delayed control action, and the third
term G?A2d σ2

22R−A2 is due to limited bandwidth.
The optimal controller for the following finite-horizon

optimal control problem is also stated in Lemma 1.

minimize
K∈K(R,d)

lim
t→∞

E

[
x′NPxN +

N−1∑
t=0

(x′tPxt + u′tQut)

]
subject to plant dynamics (1).

(8)
Lemma 1: Let us consider the finite-horizon optimal con-

trol problem (8). Then, the optimal controller for (8) has the
structure

ut = Lt E[zt|st−d], (9)

where the sequence zt is defined from the recursion

zt+1 = Azt +Adwt−d + ut, z0 = 0 (10)

and the matrices Lt, Pt are defined from the recursion

PN := P

Pt := A′
[
Pt+1 + P − Pt+1(Q+ Pt+1)−1Pt+1

]
A

Lt := −(Q+ Pt+1)−1Pt+1A.

Remark 2 (Certainty equivalence): The definition of cer-
tainty equivalence and its extension to quantized systems
is given in [10] [11]. The optimal controller structure in
Lemma 1 is an extension of certainty equivalence for systems
with delay and quantized, and the sequence {zt} plays an
important role in Section IV.

Remark 3 (MIMO extension): For a MIMO plant in the
state space representation (A,B,C, 0), the optimal controller
structure (9) can be re-defined using
zt+1 = Azt +Adwt−d +But

PN := P

Pt := A′
[
Pt+1 + P − Pt+1B(Q+B′Pt+1B)−1B′Pt+1

]
A

Lt := −(Q+B′Pt+1B)−1B′Pt+1A.

The achievable performance. Based on the optimal con-
troller structure from Lemma 1, we propose a controller in
Algorithm 1, and denote it as the LQ controller. The encoder
and decoder in Algorithm 1 essentially performs a Bayes

filter for a hidden Markov chain. The operation (12) does
the prediction, while the operation (13) does the update. The
Lloyd algorithm [15] is used to design an adaptive quantizer
based on the prior knowledge of zt.

Initialize:
1) Set f(zd|s0) = N (0, σ2).
2) Set zd = 0, u0 = 0.

Encoder: At time t, the encoder performs the following
procedures:

1) Update the auxiliary variable

zt = Azt−1 +Adwt−d−1 + ut−1. (11)

2) Generate the decoder’s prior distribution by

f(zt|st−d−1) =

∫ ∞
−∞

f(zt|zt−1)f(zt−1|st−d−1)dzt

(12)

where the value of f(zt|zt−1) is computed using

f(zt|zt−1) =f(Azt−1 +Adwt−d−1 + ut−1|zt−1).

3) Run the Lloyd algorithm [16] to obtain a quantization
scheme Qt.

4) Send the codeword st−d = Qt(zt) to the decoder.
5) Generate the decoder’s posterior distribution by

f(zt|st−d) ∝ f(st−d|zt)f(zt|st−d−1) (13)

with appropriate scaling.
Decoder: At time t, the decoder receives the codeword

st−d that was generated d sampling intervals before, and
performs the following procedures:

1) Compute the prior information f(zt|st−d−1) using
relation (12).

2) Run the Lloyd algorithm to recover encoder’s quantizer
Qt.

3) Use the delayed codeword st−d to generate the poste-
rior distribution by (13).

4) Calculate the estimate of zt by

ẑt = E[zt|st−d] =

∫ ∞
−∞

ztf(zt|st−d)dzt.

5) Produce the control action:

ut = −(Q+ P ∗)−1P ∗A ẑt. (14)

Algorithm 1: The LQ controller

The gap between the achievable performance and the
fundamental limitation is compared in Fig. 2. It suggests
that Algorithm 1 starts to produce near optimal performance
when the bandwidth is approximately greater than 5. The
derivation of Theorem 1 suggests that the first two terms
in (8), P

∑d−1
i=0 A

2iσ2 + P ?A2dσ2, is tight for any delay
d ∈ N if the controller has the structure (9) (which is the case
for Algorithm 1). Then, the performance gap reduces to the
difference between the empirical value of (zt−ẑt)G∗(zt−ẑt)
and the lower bound of E[(zt − ẑt)G∗(zt − ẑt)].



0 2 4 6 8

Bandwidth (R)

1

1.5

2

2.5

3

T
h
e
L
Q

co
st

Achievable

Lower bound

Fig. 2: Tightness of (6) in Theorem 1. The theoretical lower
bound in (6) and the achievable performance by Algorithm
1 are compared for A = 1, d = 0, and σ2 = 1.

Encoder: qt = Q−1
Ψ(L)(st−d−1)− u∗t−1

zt = Adwt−d−1 + qt

u∗t = −Azt
st−d = QΨ(L)(u

∗
t )

Decoder: ut = Q−1
Ψ(L)(st−d)

Algorithm 2: The `∞ controller

The LQ controller is demanding in both computation and
memory usage. This poses the question whether such a
heavy procedure is indeed necessary. Building an adaptive
quantizer is necessary for stabilizing an unstable system if the
disturbance has an infinite support [17]. This is because, for
any fixed quantizer, there is always a non-zero probability to
observe a disturbance that exceeds the limit of this quantizer.
However, it is not necessary to always use an adaptive
quantizer nor Algorithm 1. We present a much simpler
controller (the solution of optimal `1/`∞ control) in Section
III-B, and combine the two controllers to reduce controller
complexity in Section IV.

B. The `∞ System

We summarize here the existing robust control theory
for `∞ systems with delay and quantization [12][4]. For
disturbance with bounded support ‖w‖∞ ≤ L and stabilizing
bandwidth R > log2 |A|, the optimal performance is

max
‖w‖∞≤L

‖x‖∞ =

{
d∑
i=0

|Ai|+ |Ad+1|
(2R − |A|)−1

}
L. (15)

Let Ψ(L) :=
{
|Ad+2|(2R − |A|)−1 + |Ad+1|

}
L. The op-

timal performance is achieved by the controller shown in
Algorithm 2. We denote this as the `∞ controller.

The advantage of this controller is that it requires little
computation and storage: the encoder only needs to store
the last codeword and perform minimum computation; the
decoder is static and memoryless. In addition, this controller
also requires minimum actuation effort when |A| ≥ 1: the

stabilizing control law that minimizes max‖w‖∞≤1 ‖u‖∞
is identical to the above control law, which minimizes
max‖w‖∞≤1 ‖x‖∞ . However, the low complexity of the `∞
controller does not come for free. For a disturbance with
unbounded support, the fixed quantizer in Algorithm 2 is
not stabilizing because there is always a nonzero probability
that the quantizer saturates. In next section, we combine the
LQ controller with the `∞ to overcome the limitations of
both controllers.

IV. MIXED ROBUST CONTROL PROBLEMS

We have observed in the previous section that the `∞
and LQ controller have contrasting properties: the `∞ con-
troller is simple but incapable of rejecting large disturbance,
whereas the LQ controller is capable of rejecting large
disturbance but heavy in both computation and memory
usage. This motivates us to study the middle ground between
the two controller design frameworks, aiming at designing a
controller that preserves the advantages of both frameworks.
In this section, we propose a controller that has low com-
plexity and high disturbance rejection capability.

A. The Hybrid Controller

The controller that mostly runs Algorithm 2 (`∞ con-
troller) and occasionally Algorithm 1 (LQ controller) has
low complexity (in computation and memory) and is capable
of rejecting occasionally large disturbances. We use this
observation to propose a hybrid controller.

From now on, we assume the LQ cost function has no
control cost, i.e., Q → 0 in (5), yielding the optimal LQ
controller

ut = −Aẑt, (16)

to replace (9) in Algorithm 1. This simplification allows the
sequences zt in both Algorithms 1 and 2 to take the same
value, which lets the `∞ and LQ controller to be considered
in an unified framework.

We allow the proposed controller to have two modes:
normal-mode that runs the `∞ controller (Algorithm 2) and
acute-mode that runs the LQ controller (Algorithm 1). We
first explain the switching policies between the `∞ and LQ
controller using a bridging variable zt and a design parameter
L. Observe that the sequences zt in the `∞ and LQ controller
have identical roles (storing the sum of the quantization
error from past control action and the scaled disturbance
Adwt−d−1), and thus can serve as a bridging variable to
connect the two controllers. We first re-define the sequence
qt by

qt+1 = Aqt + ut +Ad+1wt−d−1, (17)

where wt = 0 for t < 0. The definition (17) does not rely
on a particular realization of the controller, and thus qt are
well-defined in both Algorithms 1 and 2. Using qt, we define
the sequence zt by

zt := Adwt−d−1 + qt, (18)



Initialize: mode← ‘normal′

Ψ(L)← {|Ad+2|(2R − |A|)−1 + |Ad+1|}L
for t ∈ N do

if mode = ‘normal’ then
Perform the `∞ controller (Algorithm 2)
if |zt| > Ψ(L)/A then

mode← ‘acute′

end
else

Perform the LQ controller (Algorithm 1)
if |zt| ≤ Ψ(L)/A then

mode← ‘normal′

end
end

end
Algorithm 3: The hybrid controller

with the initial condition zt = 0 for t ≤ d. zt in Algorithm
2 can be rewritten as

zt+1 = Azt +Adwt−d + ut (19)

= Adwt−d +Aqt + ut +Ad+1wt−d−1 (20)

= Adwt−d + qt+1, (21)

The equality (19) holds by definition (11), the equality (20)
by definition (18), and the equality (21) by definition (17).
Therefore, zt takes the same value in both Algorithms 1 and
2. The proposed controller sets a threshold on the absolute
value of zt to determine whether the `∞ or LQ controller
should be used.

Let the design parameter L ∈ R be the size of the
disturbance up to which the controller stays in normal-mode,
i.e., ‖w‖∞ ≤ L implies normal-mode. Since ‖wt−d−1

0 ‖∞ ≤
L implies |zt| ≤ Ψ(L)/A, equivalently |zt| > Ψ(L)/A
implies |wτ | ≥ L for some τ ≤ t−d−1. Thus, the condition

|zt| > Ψ(L)/A (22)

is a sufficient condition for ‖wt−d−1
0 ‖∞ > L. We use this

sufficient condition to define the switching policy as follows:

mode =

{
‘normal′ |zt| ≤ Ψ(L)/A

‘acute′ |zt| > Ψ(L)/A.
(23)

Now we are ready to present the proposed controller in
Algorithm 3, which is denoted as the Hybrid controller.

The design parameter L impacts the system performance
and controller complexity, and there exists a tradeoff between
the two. We discuss its design guideline and this perfor-
mance/complexity tradeoff in subsequent sections.

B. Switching Behavior of the Hybrid Controller

In this section, we analyze the switching behavior of the
hybrid controller using the switching time from normal to
acute mode and the recovery time from acute to normal
mode. We denote the set of times at which the controller
switches from normal to acute mode as

Ts = {t ∈ N : |zt| > Ψ(L)/A and |zt−1| ≤ Ψ(L)/A},

and the set of time at which the controller switches from
acute to normal mode as

Tr = {t ∈ N : |zt| ≤ Ψ(L)/A and |zt−1| > Ψ(L)/A}

Let tr ∈ {0} ∪ Tr be the beginning of a normal mode, then
the the switching time Ts can be defined by

Ts(tr) = min{t > tr : |zt| > Ψ(L)/A} − tr. (24)

Let ts ∈ Ts be the beginning of an acute mode, then the
recovery time Tr can be similarly defined by

Tr(ts) = min{t > ts : |zt| ≤ Ψ(L)/A} − ts. (25)

Long switching time and short recovery time imply the
controller stays in normal-mode most of the time, and
thus requires less computation and memory. Therefore, the
controller complexity can roughly be characterized by the
frequency of operating in acute-mode.

Let a random variable w be drawn from the same dis-
tribution with the disturbance wt, i.e., w,wt

i.i.d.∼ N (0, σ).
The following theorem characterizes the relation between
the design parameter L and the expected switching time
E[Ts(tr)].

Theorem 2: Let a map T̂s : R→ R+ be defined by

T̂s(tr) =

{
d+ P(|w| > L)−1 tr = 0

P(|w| > L)−1 tr ∈ Tr.

The expected switching time Ts(tr) is lower bounded by

E[Ts(tr)] ≥ T̂s(tr), (26)

where the lower bound becomes tight as R→∞.
The proof of Theorem 2 uses the concept of majorization to
approximate the switching time by geometric distribution.
Due to space constraints, we omit the proof from this paper
and refer to the technical report [14]. Theorem 2 suggests
that the expected switching time can be approximated by
E[Ts(tr)] ≈ T̂s(tr).

Analogously, the expected recovery time Tr(·) can be
approximated by

E[Tr(·)] ≈ P(|w| ≤ L)−1. (27)

We denote this value as T̂r := P(|w| ≤ L)−1. Recall from
(21) that the evolution of zt follows zt+1 = Adwt−d + qt+1

where qt+1 is a function of zt. Assuming the quantizer (de-
fined from the encoder and decoder) is near-optimal, a large
zts at the beginning of the an acute mode is approximately
reduced by rate |A|2−R per unit time, by rate |Aτ |2−τR
during τ times. Thus, for sufficiently large |A|2−R, the term
Adwt−d in (21) dominates. In this situation, observing a
small disturbance, i.e., |wt−d| ≤ L, is enough to lessen the
value of zt below Ψ(L)/A. This explains why the recovery
time can be approximated by a geometric distribution with
success probability P(|wt| ≤ L).

Fig. 4 compares the empirical value of the expected
switching time Ts(0) with the theoretical approximation
T̂s(0), and the empirical value of the expected recovery time
Tr(·) with the theoretical approximation T̂r. It suggests that
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Fig. 3: The switching or recovery time as a function of
L. The figure on the top compares the empirical switching
time Ts(tr) and its theoretical lower bound T̂s(tr) from
Theorem 2. Since the tightness of (26) does not depend on
the beginning of a normal mode tr ∈ {0}∪Tr, we set tr = 0
without loss of generality. The figure on the bottom compares
the empirical recovery time Tr(·) and its approximation T̂r(·)
in (27). We set A = 1, d = 1 and R = 6, and averaged 100
trials when generating the empirical values.

the approximation becomes tight from R ≥ 5 for expected
switching time, and from R ≥ 5 for expected recovery time.

The theoretical approximation suggests that, for suffi-
ciently large bandwidth (|A|2−R � 1), a greater L implies
larger switching time (from Ts(tr) ≈ T̂s(tr) = P(|wt| >
L)−1) and smaller recovery time (from Tr(ts) ≈ T̂r(ts) =
P(|wt| ≤ L)−1). This can also be empirically verified from
Fig. 3. Since the switching time is an increasing and the
recovery time a decreasing function of L, the complexity
of the hybrid controller decreases as L increases. It should
also be noted that decrements in controller complexity come
with cost of degraded performance because large L also
implies a coarser quantizer in Algorithm 2 (and thus larger
quantization error). This tradeoff between performance and
controller complexity is discussed Section V-B.

V. DISCUSSION

In this section, we address two challenges: A) the optimal
system performance under communication constraints, B)
system behaviors when normal operations are disrupted. In
particular, we discuss in Section V-A how the component
level speed/accuracy tradeoff relates to the system level
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Fig. 4: The accuracy of the theoretical approximation in (26)
and (27). The figure on the top shows the convergence speed
of E[Ts(tr)]

R→∞→ T̂s(tr) in Theorem 2 (we set tr = 0
without loss of generality). The figure on the bottom shows
the error in approximating the expected recovery time (27).
We set A = 1, d = 1. The empirical values of Ts, Tr are
first generated by averaging 100 trials for different values of
L ∈ [0.1, 2] and R ∈ {1, 2, · · · , 9}. Then, the approximation
errors |Ts− T̂s|, |Tr− T̂r| are averaged over all L, and their
mean values are plotted for different values of R.

robust performance, in Section V-B why it is advantageous
to use a hybrid controller under computation and memory
constraints, and in Section V-C the system robustness under
mixtures of worst-case and stochastic disturbances.

A. The Speed vs. Accuracy Tradeoffs
Recall from Remark 1 that the nervous system has a

tradeoff between spatial and temporal resolution, R = λd.
Combining this with the LQ cost (8), we can observe a
tradeoff between signaling speed and accuracy on system
performance, analogously to the one in the `∞ system [4].
Larger bandwidth reduces the quantization cost but increases
the delay cost. Consequently, the optimal performance is
achieved near the minimum stabilizing bandwidth in order
to minimize the cost due to delay. Fig. 5 also compares the
delay and quantization cost of the LQ system with the `∞,
suggesting that the impact of delay relative to bandwidth is
greater in the LQ system than in the `∞ system.

B. The Performance vs. Complexity Tradeoffs
In this section, we discuss the constraints on controller

complexity and its impact on system performance. Assuming



0 1 2 3 4 5
0

2

4

6

8

10

T
h
e
L
Q

c
o
st

Delay

Quant

Total

0 1 2 3 4 5

Delay (d)

0

2

4

6

8

10

T
h
e
ℓ
∞

co
st

Fig. 5: The system level tradeoffs between delay cost and
quantization cost. The figure on the top shows the perfor-
mance upper bound for the LQ system from Section III-A
when Q→ 0. Its LQ cost is d+1+(22R−A2)−1 when A = 1
and R = 0.3 d, where the term d + 1 can be interpreted as
the delay cost and (22R − A2)−1 as the quantization cost.
The figure on the bottom shows the optimal performance for
the `∞ system together with its delay and bandwidth cost
(see Section III-B and [4] for more details).

the controller is designed to mostly stay in normal mode,
we quantify the performance using the normal mode state
deviation in `∞ norm. Let t be the time when the controller
is in normal mode. The upper bound of normal mode state
derivation is a linear function of L as follows:

|xt| ≤

(
d∑
i=0

|Ai|+ |Ad+1|(2R − |A|)−1

)
L. (28)

This inequality is implied by (23) (the condition for being
in normal mode), and is a trivial extension of [4].

Fig. 6 shows switching time (26), recovery time (27) as a
function of L. Allowing a small degradation on performance
leads to significant increments in switching time as well as
significant decrements in recovery time (notice that the axes
for switching and recovery time is in log-scale). Recall from
(28) that small L implies better normal mode performance, as
well as shorter switching time and longer recovery time. This
suggests the existence of performance/complexity tradeoffs
discussed below.

Fig. 6 compares system performance (28) and the acute
mode ratio Tr/(Ts + Tr) (approximated by T̂r/(T̂s + T̂r)),
where small acute mode ratio implies low complexity in
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Fig. 6: The tradeoffs between switching/recovery time and
normal mode `∞ cost. The figure on the top compares the
normal mode performance (28) (in `∞ cost) and the lower
bound of the expected switching time (26). The figure on the
bottom compares (28) and the approximation of the expected
recovery time T̂r in (27). We set A = 1 d = {1, 2, 3}, where
the delays are assumed to satisfy a speed/accuracy tradeoff
R = d.

controller. Notice that there exists a sweet spot for the choice
of L at ‖x‖∞ ≈ 6, where the controller operates in normal
mode most of the time, i.e., T̂r/(T̂s + T̂r)� 1.

It also suggests that the systems with different delays
have similar performance/complexity tradeoffs, and thus the
optimal hardware constrained by the speed/accuracy trade-
off and the optimal software constrained by the perfor-
mance/complexity tradeoff have little dependence on each
other. This simplifies the design process as we can first
choose the optimal delay and bandwidth that maximizes the
first term in (28),

∑d
i=0 |Ai|+ |Ad+1|(2R−|A|)−1, and then

design the variable L that so that the controller rarely stay
in acute mode.

C. Robustness under Mixed Disturbances

In this section, we discuss the behavior of the proposed
controllers (Algorithm 1-3) under mixed disturbances. Con-
sider system (1) with a mixture of worst case and stochastic
disturbances, i.e.,

wt = vt + rt (29)

where vt
i.i.d.∼ N (0, σ2

v) and ‖r‖∞ ≤ 1. We additionally
assume that the system is unstable, i.e., |A| ≥ 1. These
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Fig. 7: Behaviors of the hybrid controller. The figure on
the top shows the tradeoff between the normal mode per-
formance (in `∞ cost) and the ratio of normal mode and
acute mode Ts/(Tr + Ts). The system parameters are set to
be A = 1, d = {1, 2, 3}, and R = d. The figure on the
bottom shows the the performance (in LQ cost) when the
disturbance contains two types of signals, wt

i.i.d.∼ N (0, σ2)
and ‖v‖∞ ≤ 1. We set A = 1, d = 1 and R = 3.
When running Algorithm 1 in the LQ controller and hybrid
controller, we first searched for an optimal variance (the
parameter σ2 in Algorithm 1) to approximate the distribution
of wt = vt+rt. Then we obtained the LQ cost for 100 trials
and averaged.

types of disturbances can be commonly observed in various
systems. For example in automated driving, a vehicle expe-
riences bounded disturbances for most of the time, but has
a small probability to experience large disturbances (such as
an extreme gust or a collision of neighboring vehicles). For
a feedback system with perfect communications, the optimal
`∞ controller and LQ controller for the scalar system (1) are
identical (assuming no control cost). However, with commu-
nication constraints, not only the optimal `∞ controller and
LQ controller are radically different, but also the mixture
of disturbances pose great challenges in encoding/decoding
strategies (as the system state cannot be defined by either a
worst-case or a stochastic framework).

The `∞ controllers cannot stabilize such system because
there is a non-zero probability for the fixed quantizer to sat-
urate. Fig. 7 compares the performance of the LQ controller
and the proposed hybrid controller. The LQ controller has

degraded performance when there exists additional distur-
bance r that cannot be well-defined using probability den-
sity function. Despite these difficulties, the proposed hybrid
controller consistently produces robust performance for such
disturbances. By exploiting the additional dimensions in the
controller design space, this right blend of stochastic vs.
worst-case, LQ vs. `∞ enables a robust controller under
communication constraints.
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APPENDIX

In this section, we prove two lemmas, followed by the proof of
Theorem 1. Lemma 1 utilizes the concept of certainty equivalence
[10][11]. Although a naive certainty equivalent control action ut =
E[xt|st−d] is neither stabilizable nor optimal for a delayed system
(see Remark 2), the control action can still have a simple structure
ut = E[zt|st−d] for an auxiliary variable zt.

Proof: (Lemma 1)



We first define the cost-to-go to be:

Jk := E

[
x′NPxN +

N−1∑
t=k

x′tPxt + u′tQut

]
for any k < N and JN = E[x′NPxN ]. Due to the delay in control,
the action ut can only depend on the information of wt−d−1

0 . Thus,
the effect of the disturbance wt−1

t−d would always remain in the state
xt+1. Let et be defined as the sum of those terms in xt, which can
be written as

et := wt−1 +Awt−2 + · · ·+Ad−1wt−d

Consequently, the terms in xt other than et, consisting of wt−d−1
0

and past quantization error, can potentially be controlled given
a communication channel with infinite bandwidth. Let zt−d be
defined as the sum of those terms

zt := xt − et

Equivalently, one can also show that this definition is equivalent
with

zt+1 = Azt +Adwt−d +But (30)

with the initial condition z0 = 0. The term zt is generated by
wt−d−1

0 and the control action in response to it, whereas et is
generated by wt−1

t−d. Thus, zt and et are independent, and we will
repeatedly use this property.

Let {s̄t} be the codewords that would be generated at time t if
the system (1) has zero control ut ≡ 0, and let

z̄t+1 = Az̄t +Adwt−d, z̄0 = 0 (31)

be the the variable zt that would be generated if the system (1) has
zero control ut ≡ 0.

We will show by induction that the optimal cost-to-go can be
written in the following form:

Jt = E
[
z′tPtzt|st−d

]
+ αt (32)

for some Pt and that the value of αt does not depend on the choice
of control action, i.e.,

E
[
αt|st−d

]
= E

[
αt|s̄t−d

]
. (33)

At t = N , the cost to go satisfies

JN := E[x′NPxN |sN−d]
= E[(zN + eN )P (zN + eN )|sN−d]
= E[z′NPzN |sN−d] + E[e′NPeN ],

The last equality holds because zN are independent from eN .
Since sN−d does not depend on wN−1

N−d, we can define αN :=
E[e′NPNeN ]. Thus, the property (32) holds. Assume now that the
property (32) holds for t = k + 1, the optimal cost to go at time
t = k can be derived as follows:

Jk := minukE[x′kPxk + u′kQuk + Jk+1|sk−d]
= minukE[z′k(P +A′Pk+1A)zk + u′k(Q+B′Pk+1B)uk

+u′kB
′Pk+1Azk + z′kA

′Pk+1Buk|sk−d]
+E[e′kPek] + wt−d(A

d)′Pk+1A
dwt−d|sk−d]

+E[αk+1|sk−d],

where the last equality is due to the fact αk+1, e′k, and wt−d
are independent of the control action ut. Define the matrix Pk =
A′
[
Pk+1 + P − Pk+1B(Q+B′Pk+1B)−1B′Pk+1

]
A. The con-

trol action

uk = −(Q+B′Pk+1B)−1B′Pk+1A E[zk|sk−d]

minimizes the term E[z′k(P + A′Pk+1A)zk + u′k(Q +
B′Pk+1B)uk|sk−d]. Substituting this control action uk into
Jk, we obtain the optimal cost-to-go

Jk = E
[
z′kPkzk|sk−d

]
+ αk,

where the term αk satisfies the recursion

αk = E[(zk − E[zk|sk−d])′Gk(zk − E[zk|sk−d])
∣∣sk−d]

+ E[e′kPk+1ek + wt−d(A
d)′Pk+1A

dwt−d
∣∣sk−d]

+ E[αk+1|sk−d]
= E[(z̄k − E[z̄k|s̄k−d])′Gk(z̄k − E[z̄k|s̄k−d])

∣∣s̄k−d]
+ E[e′kPek + wt−d(A

d)′Pk+1A
dwt−d]

+ E[e′kPek] + E[αk+1|s̄k−d]

where Gk := A′Pk+1B(Q + B′Pk+1B)−1B′Pk+1A. The last
equality follows from the assumption that E[αk+1|sk−d] =
E[αk+1|s̄k−d].

Lemma 2: Let the sequence zt be defined in (30), and z̄t be
defined in (31). Recall that the codewords generated by {zt} is
{st}, and the codeword generated by {z̄t} is {s̄t}. Then, the
weighted estimation error covariance given these codewords are
identical, i.e.,

E[(zt − E[zt|st−d])′G(zt − E[zt|st−d])]
= E[(z̄t − E[z̄t|s̄t−d])′G(z̄t − E[z̄t|s̄t−d])].

Proof: (Lemma 2) Observe that E[zt|st−d] = E[z̄t +∑t
k=1A

k−1But−k|st−d] = E[z̄t|st−d] +
∑t
k=1A

k−1But−k =
E[z̄t|s̄t−d] +

∑t
k=1A

k−1But−k. Therefore, we can establish the
following relation:

zt − E[zt|st]

= z̄t +

t∑
k=1

Ak−1But−k −

(
E[z̄t|s̄t] +

t∑
k=1

Ak−1But−k

)
= z̄t − E[z̄t|s̄t−d].

Remark 4: Since the encoder and decoder has memory, the
conditional expectation conditioned on st is equivalent with the
conditional expectation conditioned on (st, ut−1).

Remark 5: Intuitively, the Lemma 2 states that we can negate
all the effects of the control action in order to obtain z̄t because
ut0 is generated from st−d.

Lemma 3: Consider a scalar Gauss Markov sequence {yt} sat-
isfying

yt+1 = ayt + vt.

with the initial condition y0 = 0. Assume vt
iid∼ N (0, σ2). Assume

that we can only communicate R(> log2 |a|) bits per sampling
interval, i.e., the estimate ŷt of yt is generated from the codewords
st, st ∈ |S|, |S| = 2R, and each codeword st is generated from
(yt, st−d). Then, the following inequality holds:

lim
t→∞

1

N
E

[
N∑
t=1

(yt − ŷt)2
]
≥ σ2

22R − a2

Proof: (Lemma 3) Let Dt be the distortion bound at time t,
i.e.,

min
ŷt

E[yt − ŷt|ŷt−1] ≥ Dt

From y1
iid∼ N (0, σ2), we obtain D1 = 2−2Rσ2. Now we will

develop a recursive relation of Dt. Notice that we can rewrite
yt+1 = a(yt− ŷt)+vt+aŷt, where ŷt is known. Since a(yt− ŷt)



and wt are uncorrelated, the term a(yt − ŷt) + wt has variance
greater than a2Dt + σ2. Thus, we obtain

E[yt+1 − ŷt+1| ŷt] ≥ (a2Dt + σ2)2−2R,

yielding Dt+1 = (a2Dt + σ2)2−2R. Since we have assumed
|a|/2R < 1, limt→∞Dt = σ2

22R−a2
Proof: (Theorem 1)

From the previous analysis,

lim
t→∞

E[x′tPxt + u′tQut]

= lim
N→∞

1

N
E

[
x′NPxN +

N−1∑
t=0

x′tPxt + u′tQut

]
= lim

N→∞
J0/N

= lim
N→∞

(E[zd+1Pd+1zd+1] + α0)/N

Now we will find the optimal encoder that minimizes α0. Recall
that Gt = A′Pt+1B(Q + B′Pt+1B)−1B′Pt+1A. The term αt
satisfies the recursive relation

αt = E[(z̄t − E[z̄t|s̄t−d])′Gt(zt − E[z̄t|s̄t−d]) |s̄t−d]
+E[e′tPet + wt−d(A

d)′Pk+1A
dwt−d]

+E[αt+1|s̄t−d].

Recall that the matrices P ? and G? are defined in (7). The matrix
P ? from Riccati difference equation (7) has a unique solution since
the pair of matrices (A,B) is stabilizable. Combining the above
relation with the initial condition αN := E[e′NPNeN ] yields

lim
N→∞

1

N
α0

= lim
N→∞

1

N

N−1∑
t=0

E[(z̄t − E[z̄t|s̄t−d])′Gt(zt − E[z̄t|s̄t−d]) |s̄t−d]

+ P (1 +A2 +A4 + · · ·+A2(d−1))σ2 + P ?A2dσ2

= lim
N→∞

1

N

N−1∑
t=0

E[(z̄t − E[z̄t|s̄t−d])′G?(zt − E[z̄t|s̄t−d]) |s̄t−d]

+ P

d−1∑
i=0

A2iσ2 + P ?A2dσ2.

From Lemma 3, the first term satisfies

E[(z̄t − E[z̄t|s̄t−d])′G?(z̄t − E[z̄t|s̄t−d]) |s̄t−d]

≥ G?A2d σ2

22R −A2

Therefore, we have obtained (8).
Proof: (Theorem 2) We first prove the lower bound for τ = 0.

Let {Ek} be the event that the controller switches at time k, i.e.,

Ek = {|zt| ≤ Ψ(L)/A for all t < k and |zk| > Ψ(L)/A},

Notice that {Ek} a sequence of a mutually exclusive set of events,
and that P(Ek) = 0 for k ≤ d (since zt = 0 for t ≤ d by
definition). Let {Fk} be the event that the disturbance first exceeds
L in amplitude at time k, i.e.,

Fk = {|wt| ≤ L for all t < k and |wk| > L}

The sequences {Ek} are mutually exclusive set of events, and
limτ→∞

∑τ
i=0 P(Ei) = 1. Same conditions also hold for {Fk},

i.e., limτ→∞
∑τ
i=0 P(Fi) = 1. From ∪i≥kEi ⊂ ∪i≥kFi, we

obtain
∞∑

i=k−d−1

P(Fi) ≤
∞∑
i=k

P(Ei) (34)

for any k ∈ N. Using (34), the expected switching time can be
bounded below by

E[Ts(τ)] =

∞∑
k=0

k P(Ek)

=

∞∑
k=0

k P(Ek)−
∞∑
k=0

k P(Ek+d) +

∞∑
k=0

k P(Ek+d)

= d+

∞∑
k=0

k P(Ek+d)

= d+

∞∑
k=1

∞∑
i=k

P(Ei+d)

≥ d+

∞∑
k=1

∞∑
i=k

P(Fi−1)

= d+

∞∑
k=1

k P(Fk−1)

= d+

∞∑
k=1

k
(
1− P(|w| > L)

)k−1P(|w| > L)

= d+ P(|w| > L)−1,

where the last equality can be interpreted as computing the mean
of a geometric distribution with failure probability P(|w| > L).

Next, notice that |zt| ≤ Ψ(L)/A and |wt−d| ≤ L implies
|zt+1| ≤ Ψ(L)/A. Thus, we can apply the argument in τ = 0
to obtain the lower bound for τ ∈ T :

E[Ts(τ)] ≤ P(|w| > L)−1.

Next, we prove the convergence for τ = 0,
i.e., E[Ts(0)]

R→∞→ d + P(|w| > L)−1. Since
d +

∑∞
k=1

∑∞
i=k P(Ei+d) ≥ d +

∑∞
k=1

∑∞
i=k P(Fi−1) is

the only inequality from the above analysis, it is suffice to show
that

∣∣∑∞
k=1

∑∞
i=k P(Ei+d)−

∑∞
k=1

∑∞
i=k P(Fi−1)

∣∣ → 0.
From ‖q‖∞

R→∞→ 0 [4], zt → Adwt−d−1, and thus
P(Ft−d−1)→ P(Et). This implies that∣∣∣∣∣

∞∑
i=k−1

P(Fi−1)−
∞∑
i=k

P(Ei+d)

∣∣∣∣∣
=

∣∣∣∣∣
(

1−
k−2∑
i=0

P(Fi)

)
−

(
1−

k−1∑
i=0

P(Ei+d)

)∣∣∣∣∣
→ 0 as R→∞.

holds for any k ∈ N. Since both
∑∞
k=1

∑∞
i=k P(Ei+d) and∑∞

k=1

∑∞
i=k P(Fi−1) are bounded, for any ε > 0 there exits a

sufficiently large T such that τ > T implies
∞∑
k=τ

∞∑
i=k

P(Ei+d) ≤ ε/4 and
∞∑
k=τ

∞∑
i=k

P(Fi−1) ≤ ε/4,

and sufficiently large R̄ such that R > R̄ implies
τ∑
k=1

∞∑
i=k

P(Ei+d) ≤ ε/4 and
τ∑
k=1

∞∑
i=k

P(Fi−1) ≤ ε/4,

which jointly yields∣∣∣∣∣
∞∑
k=1

∞∑
i=k

P(Ei+d)−
∞∑
k=1

∞∑
i=k

P(Fi−1)

∣∣∣∣∣ ≤ ε. (35)

The case for τ ∈ T also follows the same argument and thus is
omitted due to space constraint.


