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Abstract— Robust control theory studies the effect of noise,
disturbances, and other uncertainty on system performance.
Despite growing recognition across science and engineering that
robustness and efficiency tradeoffs dominate the evolution and
design of complex systems, the use of robust control theory
remains limited, partly because the mathematics involved is rel-
atively inaccessible to nonexperts, and the important concepts
have been inexplicable without a fairly rich mathematics back-
ground. This paper aims to begin changing that by presenting
the most essential concepts in robust control using human stick
balancing, a simple case study popular in both the sensorimotor
control literature and extremely familiar to engineers. With
minimal and familiar models and mathematics, we can explore
the impact of unstable poles and zeros, delays, and noise,
which can then be easily verified with simple experiments
using a standard extensible pointer. Despite its simplicity, this
case study has extremes of robustness and fragility that are
initially counter-intuitive but for which simple mathematics and
experiments are clear and compelling. The theory used here has
been well-known for many decades, and the cart-pendulum
example is a standard in undergrad controls courses, yet a
careful reconsidering of both leads to striking new insights that
we argue are of great pedagogical value.

I. INTRODUCTION

A large and growing community in science and engineer-
ing utilizes control theory to study the evolution and design
of complex systems [1]–[10]. Noise and other uncertainties
are ubiquitous in complex systems, and feedback control
is particularly effective in correcting a system that deviates
from a planned trajectory due to noise and uncertainties.

Robust control theory as a powerful tool to investigate
the effect of noise, disturbances, and other uncertainties on
system performance. Despite its many advantages, robust
control theory is minimally used because the mathematics
involved is relatively inaccessible to nonexperts, and the
important concepts have been inexplicable without a fairly
rich mathematics background. This paper aims to begin
changing that by presenting the most essential concepts in
robust control using human stick balancing. This simple case
study is popular in the sensorimotor control literature [1],
[11], [12]. Moreover, we model it as an inverted pendulum
on a moving cart that is extremely familiar to engineers and
scientists [13], [14].

The mathematics here is all standard for undergrad en-
gineers, but not for many scientists and physicians, so an
important next step is simplifying the underlying math,
which is addressed in a related paper [15]. But this paper
should be otherwise read as if aimed at an audience not
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expert in control, and thus will be more pedantic than would
typically be appropriate in a CDC paper.

Robust control theory analyses the amplification of noise
and uncertainty in the closed-loop system. This analysis is
insightful because it breaks down system performance into
noise that is harder to modify and other system parameters
that can be redesigned if necessary. Furthermore, robustness
is an inherent system property that is independent of the
controller design. Hence, one can study the fundamental
limits of a closed-loop system without a priori assuming
a particular controller architecture. This feature is advan-
tageous, especially in biology, because as better biological
control models are developed, the analysis will hold true
as long as the underlying physical setup of the system (i.e.
physiology and anatomy) is the same.

With the minimal and familiar models, we can explore the
impact of unstable poles and zeros, delays, and noise, which
can then be easily verified with simple experiments using a
standard extensible pointer. Poles and zeros are fundamental
quantities in control theory that have observable implications
in human stick balancing. Most interestingly, the zero of a
system, an often abstract concept, manifests itself as a func-
tion of the fixation point of a person during stick balancing.
In addition, emergence of oscillations commonly observed
in many biological systems [5], [16] when changing certain
system parameters may seem cryptic, but it is an unavoidable
side effect of degrading system robustness caused by the
varying parameters. Despite its simplicity, this case study has
extremes of robustness and fragility that are initially counter-
intuitive but for which simple math and experiments are clear
and compelling.

The theory used here has been well-known for many
decades and the cart-pendulum example is a standard in
undergrad controls courses, yet a careful reconsidering of
both leads to striking new insights that we argue are of great
pedagogical value. We hope our approach will help clarify
some of the confusions surrounding observations in biology,
and bridge the gap between the control community and other
research communities.

The rest of the paper is organized as follows: Section II
presents the stick balancing model as an inverted pendulum
on a moving cart. Section III discusses the concept of pole
and zero for a system. The concept of system robustness
is introduced in Section IV including discussions on the
sensitivity function, the Bode’s integral, and the waterbed
effect. Section V highlights some important issues in system
design, and Section VI summarizes the ideas in this paper.
Some proof are provided for completeness, but readers may
skip them and still follow the paper’s discussions.
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II. SIMPLIFIED MODEL

Humans stick balancing is modeled as a one dimensional
inverted pendulum on a moving cart. As a model of real
three dimensional balancing, it is grossly oversimplified, but
will prove to be surprisingly useful for illustrating important
concepts in robust control theory. In fact, one can experimen-
tally observe the theoretical predictions using this extremely
simple and analytically tractable model.

The dynamics of a one dimensional inverted pendulum on
a moving cart (see Fig. 1) is given by

(M +m)ẍ+ml(θ̈ cos θ − θ̇2 sin θ) = u+ r

m(ẍ cos θ + lθ̈ − g sin θ) = 0

z = x+ l0 sin θ y = z + n (1)

where y is the position measurement using the eye of z,
the position of interest, u is the control force, r is the
actuation noise, n is the sensor noise, θ is the pendulum tilt
angle from the vertical, and x is the horizontal displacement
of the arm. M is the effective mass of the cart (arm or
human body), m is the effective mass of the stick, g is the
gravitational acceleration, l0 is the fixation point, and l is
the effective stick length. Sensorimotor control delay due
to signal transmissions and processing is represented as τ
whereby visual processing is the major contributor [17]–[19].

To specify the rigid body motion of a stick and human in
term of the point mass system dynamics in (1), we found the
effective masses m = 3

4m
′ and M = 1

4m
′ +M ′ where M ′

is the human mass and m′ is the stick mass, and the effective
stick length l = 2

3 l
′ where l′ is the actual stick length.

Note that center of mass (COM) is below l. Henceforth, we
refer m, M , and l as stick mass, cart mass, and stick length
respectively.

In stick balancing, the controller represents the human
brain. The controller’s goal is to keep the stick is upright
that is the magnitude of z is desired to be small because
it corresponds to how far the pendulum has drifted away
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Fig. 1. A schematic of balancing an inverted pendulum on
one’s palm.

TABLE I
LINEARIZED AND LAPLACE-TRANSFORMED FORMS OF

THE CART-PENDULUM MODEL.

Linearized* Laplace transformed†

(M +m)ẍ±mlθ̈ = u+ r
[
x̂

θ̂

]
= 1

D(s)

[
ls2 ∓ g
∓s2

]
(û+ r̂)

m(±ẍ+ lθ̈ ∓ gθ) = 0

z = x± l0θ ẑ =
(l−l0)s

2∓g
D(s)

(û+ r̂)

y = z + n ŷ = ẑ + n̂

* The top (bottom) sign in ± or ∓ corresponds to linearization around up
(down) equilibrium.
† D(s) = s2(Mls2 ∓ (M +m)g)

from the desired equilibrium point. Consequently, we focus
on the linearized dynamics of (1) around the equilibrium.
Table I shows the linearization of (1) and the corresponding
Laplace-transformed forms.

III. POLE AND ZERO OF A SYSTEM

The pole and zero of a system provide useful insights
on the system’s behavior. The poles and zeros of the open
loop plant in this case study are given in Table II. Note that
the poles and zeros differ depending on whether the stick is
pointing upright or downward.

A. Poles

Intuitively, stabilizing the stick at the downward position
is trivial, but stabilizing the stick at the upright position is
comparatively more difficult. The differences in difficulty are
captured by the poles. Generally, a pole, represented as a
complex number, quantifies the stability of a system. The real
part of a pole quantifies system stability, while the imaginary
part of a pole represents the resonance frequency.

The pole for the downward position has a zero real part
implying that the system is marginally stable. However, its
imaginary part increases with the stick length l, and thus, the
resonance frequency of the system increases with l.

On the other hand, the pole for the upright position has a
positive real part implying that the system is unstable. Hence,
the upright position is harder to stabilize than the downward

TABLE II
POLES AND ZEROS OF THE CART-PENDULUM MODEL.

Open loop plant: P (s) =
(l−l0)s

2∓g
D(s)

Positions Poles Zeros

±i
√

g
l0−l

if l0 > l

Upright 0, ±
√

(M+m)g
Ml

none if l0 = l

±
√

g
l−l0

if l0 < l

±
√

g
l0−l

if l0 > l

Downward 0, ±i
√

(M+m)g
Ml

none if l0 = l

±i
√

g
l−l0

if l0 < l



position. The positive pole is generally called a right half
plane (RHP) pole. In fact, as the stick length decreases (e.g.
shorter stick), the magnitude of the pole increases, and thus,
the system is more unstable and harder to control. This last
statement may be counter intuitive because a tall object is
usually less stable than a short object. Nonetheless, one could
easily verify that a shorter stick is harder to balance than a
longer stick at home using an extendable stick.

B. Zeros

A more interesting quantity to consider is the zero. A
real positive zero, called a RHP zero, quantifies the effect
of measurement. In this case study, zero is related to the
fixation point or the location on the stick where a person
looks at during stick balancing. When a person look at a
certain point on a stick while balancing the stick, the stick
may sometimes look stationary although it is moving. The
location of this point on the stick defines the zero, and the
magnitude of the zero is the critical stick swing frequency
when this phenomena occurs.

During stick balancing, as a person shifts the fixation point
from l towards the bottom of the stick, the magnitude of zero
decreases from infinity to a small real number. As a result,
the critical stick swing frequency decreases and becomes
closer to the nominal stick balancing frequency. Therefore,
the stick becomes harder to observe and invariably, control.

Henceforth, we focus on the upright position that resem-
bles human stick balancing and exhibits more interesting
behaviors because of the RHP pole and RHP zero. The next
section will further quantify the role of RHP pole, RHP zero
and delay in system performance using the Bode’s integral.

IV. BODE’S INTERGRAL - A MEASURE OF
ROBUSTNESS

Robust control theory studies the effects of uncertainties in
a system, quantifying the system’s fundamental limitations.
In stick balancing, robustness is characterized by a person’s
ability to balance a stick. A robust system is equivalent to
a setup where a person can balance a stick easily because
uncertainties inherited in the human sensorimotor system
affect the stick balancing task minimally. A fragile system
implies otherwise. More precisely, robust control theory
focuses on understanding the amplification of noise, termed
robustness, in a closed-loop system and the impacts of RHP

P

C +
ny

z

u

+
r

𝜏

-

Fig. 2. The linear feedback model of the system.

poles, RHP zeros, and delay on robustness using the H∞
norm and the Bode’s integral [20].

A. Sensitivity Functions

Sensitivity functions are quantities of interest in robust
control theory because they are transfer functions from noise
to the closed-loop system output. Effectively, they quantify
the amplification of noise in a closed-loop system. To obtain
the sensitivity functions, the closed-loop output ẑ (see Fig.
2) is derived from equations in Table I

ẑ =
P (s)

1 + P (s)C(s)e−τs
r̂ − P (s)C(s)e−τs

1 + P (s)C(s)e−τs
n̂. (2)

Define the sensitivity function, S(s), and the complimen-
tary sensitivity function, T (s), [20] as

S(s) =
1

1 + P (s)C(s)e−τs
, T (s) =

P (s)C(s)e−τs

1 + P (s)C(s)e−τs
.

(3)

Then, (2) can be rewrite as

ẑ = P (s)S(s)r̂ − T (s)n̂.

If T (s) and S(s) is small, for any given noises r and n, the
deviation z will also be small. Note that given a RHP pole
p and a RHP zero q,

S(q) = 1 T (p) = 1, (4)

an important fact that is used later.

B. H∞ Norm

In stick balancing, the deviation z of the stick from the
equilibrium point is desired to be small for any given noises r
and n. Hence, define the performance measure of the system
as the infinity norm of the closed-loop transfer functions
T (s) and S(s) from noise sources to z.

Definition 1 (H∞ norm). The infinity (H∞) norm of a
transfer function is defined as

‖G‖∞ = sup
ω
|G(jω)| = sup

Re s>0
|G(s)|

where the last equality is given by the Maximum Modulus
Theorem [20].

By this definition, a system is robust when the infinity norm
of T (s) and S(s) are small (i.e. when the magnitude of the
transfer function at all frequencies is small).

In stick balancing, the impacts of the measurement noise
and the actuation noise (e.g. neural signal noise during
muscle activation) on system robustness are similar, but the
feedback delay will only amplify the measurement noise.
Hence, we assume that the limiting factor is the sensing noise
(see Section V for more details), and the analysis henceforth
will focus on T (s). Nonetheless, similar analysis can be
applied to study the effect of actuation noise. The infinity
norm of T (s) is given as follows.



Theorem 2. The infinity norm of T (s) is bounded by

ln ‖T (s)‖∞ ≥ F ,

{
τp l0 ≥ l

τp+ ln
∣∣∣ p+qp−q

∣∣∣ l0 < l
(5)

p =

√
(M +m)g

Ml
q =

√
g

l − l0
where T (s) is the transfer function from measurement noise
n to output z given in (3), F is the system fragility, p is the
RHP pole, q is the RHP zero, and τ is the total delay in the
control system from measurement to actuation.

Proof. Factor the complimentary sensitivity function as

T (s) = Tmp(s)Tap(s)

where mp is minimum-phase and ap is all-pass.
When l0 < l, there is only one RHP zero,

Tap(s) =
s− q
s+ q

e−τs.

Then, by (4),

Tmp(p) = Tap(p)
−1 =

p+ q

p− q
eτp.

Hence,

‖T (s)‖∞ = sup
Re s>0

|T (s)| = sup
Re s>0

|Tmp(s)| = ‖Tmp(s)‖∞

≥ |Tmp(p)| =
∣∣∣∣p+ q

p− q
eτp
∣∣∣∣ .

When l0 ≥ l, there is no RHP zero,

‖T (s)‖∞ ≥ |Tmp(p)| = eτp.

The H∞ norm quantifies the worst case noise amplifica-
tion, and the lower bound F provides the smallest possible
worst case noise amplification, the fundamental limit of this
system independent of the controller. In engineering, given
this information, system engineers decide on whether this
fundamental limit is acceptable. If not, the system needs to
be redesigned. In sensorimotor control task, the fundamental
limit defines a human’s best performance in the task using
the noisy nervous system regardless of the decision making
process of the brain. Discussions of the bound with respect
to stick balancing will be presented after we introduce the
Bode’s integral and the waterbed effect because this bound
will again present itself.

C. Bode’s Integral

Similar to the H∞ norm, the Bode’s integral places a
hard lower bound on the net achievable robustness of a
control system in the presence of measurement noise. A
small integral implies a less fragile (i.e. more robust) system
is possible, and sensor noise does not necessarily prevent
stabilizing the stick.

Lemma 3. The Bode’s integral is given by

ln |Gmp(s0)| =
1

π

∫ ∞
−∞

ln |G(jω)| σ0
σ2
0 + (ω − ω0)2

dω (6)

where s0 = σ0 + ω0j with σ0 > 0, G(s) is any transfer
function, and Gmp(s) is a minimum phase transfer function
of G(s).

Proof. See [20].

In stick balancing, the Bode’s integral of T (s) is bounded
as follows.

Theorem 4. The Bode’s integral of T (s) is bounded by

1

π

∫ ∞
−∞

ln |T (jω)| p

p2 + ω2
dω ≥ F (7)

where T (s) is the transfer function from measurement noise
n to output z given in (3), F is the system fragility, and p
is the RHP pole. F and p are defined as in (5).

Proof. Similar to the proof of Theorem 2, when l0 < l, there
is only one RHP zero,

Tmp(p) = Tap(p)
−1 =

p+ q

p− q
eτp.

Substitute into (6),

1

π

∫ ∞
−∞

ln |T (jω)| p

p2 + ω2
dω = ln |Tmp(p)|

= τp+ ln

∣∣∣∣p+ q

p− q

∣∣∣∣ .
When l0 ≥ l, there is no RHP zero,

1

π

∫ ∞
−∞

ln |T (jω)| p

p2 + ω2
dω = ln (eτp) = τp.

D. The Waterbed Effect

The Bode’s integral is a conserved quantity that exhibits
the waterbed effect. If T (s) is small for a certain frequency
range, then at some other frequency range, T (s) will neces-
sary be large, similar to a waterbed whereby one side will
rise when you push at the other side. More precisely,

Theorem 5 (Waterbed Effect). Suppose that a plant P (s)
has a RHP pole p. Then, there exist positive constant c1 and
c2, depending only on ω1, ω2, and p, such that

c1 lnM1 + c2 lnM2 ≥ ln | Tap(p) |−1≥ 0 (8)

where [ω1, ω2] defines some frequency range, Tap(s) is the
all-pass complimentary sensitivity function for the plant
P (s), M1 = maxω1≤ω≤ω2

|T (jω)| and M2 = ‖T (s)‖∞.

Proof. Let p = σ0+jω0 and recall that Tmp(p) = Tap(p)
−1.

Then, from Lemma 3,

ln |Tap(p)−1| =
1

π

∫ ∞
−∞

ln |T (jω)| σ0
σ2
0 + (ω − ω0)2

dω

≤ c1 lnM1 + c2 lnM2.

where c1 is the integral of 1
π

σ0

σ2
0+(ω−ω0)2

over the domain
[−ω2,−ω1] ∪ [ω1, ω2] and c2 is the same integral over the
complimentary domain. By Maximum Modulus Theorem,
|Tap(p)−1| ≤ 1. Thus, ln |Tap(p)−1| ≥ 0.
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Fig. 3. Magnitude of T (s) in log scale as a function of
frequency ω for the case study assuming C(s) = 10. Note
s = jω.

Next, we relate Theorem 5 to stick balancing.

Theorem 6. The complimentary sensitivity function T (s)
satisfies

c1 lnM1 + c2 lnM2 ≥ F (9)

where F is the system fragility defined as in (5),
M1 = maxω1≤ω≤ω2

|T (jω)|, [ω1, ω2] defines some fre-
quency range, M2 = ‖T (s)‖∞, and c1 and c2 are constants
that depend only on w1, w2, and p.

Proof. Recall that Tap(p)−1 = p+q
p−q e

τp when there is a RHP
zero q, and Tap(p)−1 = eτp when there is no RHP zero. The
rest follows from simple algebraic manipulations.

In human sensorimotor control, if amplification T (s) is
small for some frequency range. In other words, M1 is small.
Then, by Theorem 6, M2 has to be large, implying that T (s)
is large at some other frequency. Therefore, if F is large, the
system cannot have small T (s) at all frequency. Furthermore,
as the bound F increases, the peak of |T (s)| is likely to
increase at some frequency.

Fig. 3 shows the magnitude of T (s) in log scale as
a function of frequency ω for the case study assuming
C(s) = 10. The peak of T (s) is within the low frequency
range of 1-2 Hz, the stick oscillation frequency observed
in experiments. In a more difficult stick balancing setting
that causes larger F , the stick tends to oscillate at a larger
amplitude. Theorem 6 suggests that the larger oscillation is
an unavoidable because the bound F increases.

E. Understanding the Fragility Bound, F

The fragility bound F is a function of delay, RHP pole,
and RHP zero which are functions of system parameters
including stick length l, fixation point l0, stick mass m, and
cart mass M . To further understand the impacts of these
system parameters on F , F is visualized in Fig. 4, 5 and 6.

Fig. 4. Fragility F is the bound given in (5). Assume
M = 3.25kg, m = 0.1kg, and l = 1m. As the fixation
point increases, the fragility curve shifts upwards. Fragility
does not vary much when the mass ratio is small.

Fig. 4 shows that the fragility is minimally affected by
stick mass if the stick mass is small. When balancing a stick
on one’s hand assuming M = 3.25kg is the arm mass [21],
the mass ratio is so small that the fragility is barely affected
by the stick mass m. In practice, M could be either a function
of the arm mass or the body mass depending on if the person
is allowed to move the body during stick balancing. Either
way, m is hardly one-tenth of the M . In fact, balancing an
extremely heavy stick, for example a 20kg gym bar (m =
15kg), is no more difficult than balancing a light stick. This
heavy stick setup has a mass ratio of m/M = 0.2 if the
person weights 70kg (M = 75kg), suggesting that the stick
is still easy to balance (see Fig. 4). However, in this situation,
the stick becomes strenuous to hold up due to limited muscle
strength and fatigue, effects not modeled by F .

Fig. 5 plots fragility F as a function of fixation point
l0 or stick length l under four different assumptions. The
solid red curve represents F when l is varied, l0 = l, and
delay is 0.3s, a typical value from the literature [17]–[19].
The dashed red curve represents F when fixation point l0 is
varied, l = 1m, and delay is 0.3s. The blue curve represents
F when l is varied, l0 = l, and delay is 0.2s, which is likely
to be unrealistically fast, but illustrates the extreme impact
of small changes in delay. The yellow curve represents F
when l is varied, l0 = l, and delay is 0.5s.

Fig. 5 emphasizes the influences of stick length, fixation
point, and delay. If the stick is short, the fragility increases
(see solid lines in Fig. 5). In other words, a short stick is
harder to balance than a long stick. If the fixation point (while
blocking peripheral visions) is moved from l to a lower
point along the stick, the stick becomes harder to balance
(explained by the dashed red curve in Fig. 5). Theoretically,
as the fixation point decreases, the system zero moves from
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Fig. 5. Fragility F is the bound given in (5). Assume M =
3.25kg, and m = 0.1kg. The solid red curve represents F
when l is varied, l0 = l and delay is 0.3s, the dashed red
curve represents F when l0 is varied, l = 1m, and delay is
0.3s, the blue curve represents F when l0 = l and delay is
0.2s, and the yellow curve represents F when l0 = l and
delay is 0.5s. Fragility decreases when stick center of mass
increases, and fragility increases when delay increases.

infinity towards the pole thus increasing the fragility F .
Interestingly, balancing a stick while focusing at a lower

point is much harder than balancing a shorter stick while
focusing at the tip (compare both red curves in Fig. 5).
This effect is more apparent when performing stick balancing
while wearing a cap. The cap blocks the peripheral vision
from providing information of the stick length l making stick
balancing more difficult when fixation point is below l. This
observation implies that fixation point degrades robustness
even more than stick length.

Lastly, increasing delay, τ , moves the performance curves
in Fig. 5 towards the northeast corner of the plot, and
therefore, delay degrades the fundamental limit of this sys-
tem. This result fits the observation that a trained person
can balance the inverted pendulum better than an untrained
person because generally, a trained person has a shorter delay
in the sensorimotor system [22], [23].

Fig. 6 shows fragility as a function of both l and l0. It
nicely captures the qualitative features of the problem, and
even matches qualitatively what can be observed experimen-
tally. It is easy for a person to try to stabilize an extendable
pointer in various (l, l0) points on the figure, and he/she will
find that leaving the dark blue region makes stabilization
increasingly difficult and ultimately impossible.

V. IMPLICATIONS ON SYSTEM DESIGN

Apart from providing simple intuitions to important con-
cepts in robust control theory, this case study highlights a
few important issues in system design:
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Fig. 6. Fragility F is the bound given in (5). Assume M =
3.25kg, and m = 0.1kg. The color corresponds to fragility.
Low fixation point affects robustness more than short stick
length.

A. There exist a fundamental tradeoff between robustness
and efficiency.

By balancing a long stick and a short stick, one can
easily conclude that a short stick is harder to balance than
a long stick. When the delay is zero and the RHP zero
does not exist, the Bode’s integral bound F is constant and
zero. But, when a delay is considered, the bound explicitly
increases with the RHP pole, which in turn increases as the
stick length, l, decreases. The theoretical analysis show that
given delays, it is impossible to be both robust (balance
despite noise) and efficient (short stick). Robots or other
organisms would face similar tradeoffs, with the absolute
levels determined by controller delay and sensor noise.

B. Delays have an enormous impact on robustness and
efficiency tradeoff.

Delay is fundamental to human sensorimotor control [24]
and large scale engineering systems. In human, delays are
generally on the order of 100ms, longer for visual system
[17]–[19]. The simple analysis in this paper suggests that
sensorimotor control feedback delay has a detrimental effect
on a system as shown by curves in Fig. 5 moving towards
the northeast corner as delay increases.

a) Vision is the limiting factor instead of actuation
because of delay: In this case study, vision and conscious
thought processing are used to stabilize the stick. This task
is not what vision is usually used for, and thus, resulting in
slower responses. Consider this simple visual hand tracking
demonstration: (a) Fix your head and shake your hand in
front of your eyes; (b) Fix your hand and shake your head
looking at your hand. Under same shaking frequency, the
hand looks more blurry in (a) than in (b). The reason is
because in (a), human tracks the hand using vision that has
a large delay, and in (b), human stabilizes the head motion



using the fast vestibulo-ocular reflex with minimal delay. In
both case, the actuators, the eye muscles, are the same. This
simple experiment shows that vision is the main limiting
factor instead of actuation. In addition, it shows the role of
delay in degrading the performance of a feedback system.

b) Distributed architecture results in heterogeneous de-
lays: A particularly important feature of sensorimotor con-
trol and other large scaled systems is that they are distributed,
an issue that few theories address at all. The sensors, pro-
cessing, communications, decision making, and actuation are
distributed throughout the system in modules that commu-
nicate with each other with internal heterogeneous delays.
In this case study, only a single lumped source of delay,
primarily due to vision, is considered. This idealization is
not particularly limiting here, but will be in general.

C. Sensing location has a significant impact on robustness

If the fixation point (while blocking peripheral visions) is
moved from the tip of a stick to a lower point along the stick,
the stick becomes harder to balance. These observations are
consistent with experimental results [1], [25]. Interestingly,
balancing a stick while focusing at a lower point without us-
ing peripheral vision is much harder than balancing a shorter
stick while focusing at l. This observation implies that the
fixation point degrades robustness even more than the stick
length (i.e. RHP zero is more detrimental than RHP pole).
Thus, poorly designed sensing can greatly degrade achievable
robustness beyond what is limited by other tradeoffs.

In fact, beyond stick balancing, researchers recognized
gaze location as an important parameters in performing
sensorimotor control tasks [26]–[30]. The vision is tradi-
tionally passive in that it provides inputs passively to the
brain which then processes the information and sends muscle
commands to the body. Hence, the goal of a vision system
is to obtain images that maximize information relevant to a
task. However, we argue that vision has the potential to be
more involved in shaping the performance of a system. By
choosing the fixation point strategically, one can increase the
robustness of a system against uncertainties, and invariably,
reduces the effect of noise on the performance of a system.
Hence, apart from maximizing information, the vision system
could also aim to maximize robustness of a system.

D. Oscillation is a result of degrading robustness

Many biological systems and “low level” physiological
processes such as temperature regulation, blood oxygenation,
and others, are unstable [5], [6], [16]. These systems are
generally controlled automatically and unconsciously. Under
specific circumstances, they exhibit oscillation that, we ar-
gue, is an inevitable side effect of degrading robustness in
an unstable system.

When the fragility is increased for a set of system pa-
rameters, the amplitude of oscillations tends to increase
as captured mathematically by Theorem 5. Because the
Bode’s integral is conserved, the waterbed effect prevents
the closed-loop system from having minimal oscillations at
all frequencies without fundamentally changing the system

design. Note that the waterbed effect in T (s) only applies
when the system is unstable. Hence, for an unstable system,
oscillation is unavoidable when robustness degrades from
changing system parameters under a given circumstance.

VI. CONCLUSIONS

This paper presents fundamental concepts of robust control
theory including a discussion on the Bode’s integral as a
measure of robustness in term of a simple sensorimotor
control task, human stick balancing. In this case study, the
quantities commonly found in robust control theory and the
effects of different system parameters on robustness is easily
understandable and reproducible by balancing an extendable
stick under a few different settings. Despite its simplicity,
important issues in system design can be highlighted includ-
ing the robustness and efficiency tradeoff, the role of delay,
the importance of sensing location, and the effect of fragility
on oscillations.

Lastly, simple modifications while balancing a stick may
raise interesting questions that can possibly be explored using
robust control theory, such as the effect of peripheral vision,
closing one eye, standing on one leg, moving and walking,
a darker room, and others. We encourage readers, who
are interested in further exploring the limitations of human
sensorimotor control, to try these experiments at home.
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