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The current understanding is that the non-Newtonian rheology of active matter suspensions is governed
by fluid-mediated hydrodynamic interactions associated with active self-propulsion. Here we discover an
additional contribution to the suspension shear stress that predicts both thickening and thinning behavior,
even when there is no nematic ordering of the microswimmers with the imposed flow. A simple
micromechanical model of active Brownian particles in homogeneous shear flow reveals the existence of
off-diagonal shear components in the swim stress tensor, which are independent of hydrodynamic
interactions and fluid disturbances. Theoretical predictions from our model are consistent with existing
experimental measurements of the shear viscosity of active suspensions, but also suggest new behavior not
predicted by conventional models.
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Shear rheology of suspensions containing self-propelled
bodies at low Reynolds numbers has been studied inten-
sively during the past several years. Conventional models
predict that fluid disturbances induced by active self-
propulsion help to “stretch” or “contract” the fluid along
the extensional axis of shear, resulting in large deviations in
the effective shear viscosity of the suspension relative to
that of the embedding medium [1–3]. In this Letter, we
demonstrate that intrinsic self-propulsion engenders a
“shear swim stress” that affects the rheology of active
systems in previously unreported ways. The swim stress is
a “diffusive” stress generated by self-propulsion and is
distinct from, and in addition to, the hydrodynamic stress
resulting from fluid-mediated hydrodynamic interactions.
Earlier [4,5] we derived a direct relationship between the

translational diffusivity D and the stress generated by a
dilute suspension of particles, σ ¼ −nζD, where n is the
particle number density and ζ is the hydrodynamic drag
coefficient. The effective translational diffusivity of a dilute
active system is Dswim ¼ U2

0τRI=6 for times t > τR, where
U0 and τR are the swimming speed and reorientation time
of the particle, respectively. This gives directly the unique
mechanical swim stress exerted by active particles,
σswim ¼ −nζDswim ¼ −nζU2

0τRI=6, which has been used
to predict the phase behavior of self-assembling active
matter [4,6–8]. The swim stress is analogous to the osmotic
Brownian stress of passive particles.
In shear flow, particle motion in the flow gradient

direction couples to advective drift in the flow direction
(Fig. 1), resulting in nonzero off-diagonal components in
the long-time particle diffusivity, Dxy ≠ 0. This directly
implies the existence of a nonzero shear component in the
swim stress tensor, σswimxy ¼ −nζDswim

xy . In this Letter, we
discover that Dswim

xy > 0 for small shear rates, which gives
σswimxy < 0 and a decrease in the effective shear viscosity of

active suspensions below that of the surrounding solvent
for pusher, puller, and neutral-type microswimmers. As
shown in Fig. 1, diffusion of active particles along the
extensional axis of shear acts to “stretch” the fluid and
reduce the effective shear viscosity, analogous to the effect
of the hydrodynamic stress generated by pusher micro-
organisms. Whereas the swim pressure represents the
mechanical confinement of diffusing active particles [4],
a nonzero shear swim stress represents the mechanical
stress required to prevent shear deformation of the
suspension.
To motivate this new perspective, we consider a single

rigid active particle that swims with a fixed speed U0 in a
direction specified by a body-fixed unit orientation vector
q, which relaxes with a time scale τR due to rotational
Brownian motion (see Fig. 1). The particle is immersed in a
continuous Newtonian solvent with viscosity η0. We
analyze the dynamics of the particle in steady simple shear

FIG. 1. Schematic of active particles with swimming speed U0

and reorientation time τR in simple shear flow with fluid velocity
u∞x ¼ _γy, where _γ is the magnitude of shear rate. The unit vector
qðtÞ specifies the particle’s direction of self-propulsion. Diffusion
of active particles along the extensional axis of shear acts to
“stretch” the fluid and reduce the effective shear viscosity, similar
to the effect that the hydrodynamic stress plays for pusher-type
microorganisms.
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flow u∞ ¼ _γyex, where _γ is the magnitude of shear rate.
The Smoluchowski equation governing the probability
distribution Pðx; q; tÞ is

∂P
∂t þ∇ · jT þ∇q · jR ¼ 0; ð1Þ

where the translational and rotational fluxes are given by,
respectively [9–11],

jT ¼ ðu∞ þ U0qÞP; ð2Þ

jR ¼ _γðq · Λþ BðI − qqÞq∶EÞP −
1

τR
∇qP: ð3Þ

In Eq. (3), the antisymmetric and symmetric velocity-
gradient tensors Λ and E are nondimensionalized by _γ, and
∇q ≡ ∂=∂q is the orientation-space gradient operator. The
dynamics of the particle are controlled by a balance
between shear-induced particle rotations and the particle’s
intrinsic reorientation time, given by a shear Péclet number
Pe≡ _γτR. The constant scalar B ¼ (ða=bÞ2 − 1)=
(ða=bÞ2 þ 1), where a and b are the semimajor and minor
radii of the particle, respectively; B ¼ 0 for a spherical
particle. The terms in Eq. (2) are the advective contributions
from ambient fluid flow and intrinsic self-propulsion of the
swimmer. The Stokes-Einstein-Sutherland translational
diffusivity, D0, is omitted in Eq. (2), since the magnitude
of the self-propulsive contributionDswim ¼ U2

0τR=6may be
Oð103Þ larger (or more) thanD0 for many active swimmers
of interest.
Following established procedures [5,10,12] (see

Supplemental Material [13]), we obtain the steady solution
to Eqs. (1)–(3) for times t > τR and t > _γ−1 when all
orientations have been sampled; the resulting solution gives
the effective translational diffusivity, hydrodynamic stress,
and swim stress. As shown in Fig. 2, fluid shear introduces
anisotropy and nonzero off-diagonal components in the
particle diffusivity. The asymptotic solution at small shear
rates is Dswim=ðU2

0τR=6Þ ¼ I þ Peð1þ BÞE=2þOðPe2Þ.
In the flow direction, Dswim

xx initially increases with a
correction of OðPe2Þ due to increased sampling of fluid
streamlines in the flow gradient direction, but decreases to
zero as Pe → ∞ because the particle simply spins around
with little translational movement. This nonmonotonic
behavior was also seen in the dispersion of active particles
in an external field [5] and sedimentation of noncentro-
symmetric Brownian particles [14]. In the flow gradient
direction, Dswim

yy decreases monotonically with increasing
Pe. In the vorticity direction, Dswim

zz is unaffected by
shearing motion and is constant for all Pe.
Most interestingly, the off-diagonal diffusivity Dswim

xy is
nonzero, OðPeÞ for small Pe, nonmonotonic, and negative
for intermediate values of Pe. Random diffusion in the
gradient direction, Dswim

yy , allows the particle to traverse
across streamlines, which couples to the advective drift in

the flow direction to give a nonmonotonic off-diagonal
shear diffusivity (see schematic in Fig. 1). In an experiment
or computer simulation, calculation of shear-induced dif-
fusivity requires attention because advective drift translates
the particles in the flow direction, resulting in Taylor
dispersion with mean-squared displacements that do not
grow linearly with time [15].
A nonzero off-diagonal swim diffusivity implies the

presence of a shear swim stress from σswimxy ¼ −nζDswim
xy .

From Fig. 2 we see thatDswim
xy > 0 for small Pe, which gives

σswimxy < 0 and the effective shear viscosity of the suspension
decreases below that of the surrounding solvent. In addition
to an indirect calculation of the stress via the diffusivity, we
can also compute it directly using thevirial expression for the
stress. The Langevin equation governing the motion of a
single swimmer in simple shear flow (without translational
Brownian motion) is 0 ¼ −ζðU − u∞Þ þ Fswim, where
u∞ ¼ _γyex, and Fswim ≡ ζU0 is the self-propulsive swim
force of the particle [4].
The swim stress is the first moment of the force,

σswim ≡ −nh½xFswim�symi, where ½·�sym is the symmetric
part of the tensor. The angle brackets denote an average
over all particle configurations, hð·Þi ¼ R ð·ÞPðx; qÞdxdq,
where Pðx; qÞ is the steady solution to Eqs. (1)–(3). It is
important to ensure symmetry in the swim stress because
angular momentum conservation requires the stress to be
symmetric in the absence of body couples. Direct calcu-
lation of the swim stress via the virial definition (see
Supplemental Material [13]) gives results identical to those
obtained from the diffusivity-stress relationship; Brownian
dynamics simulations also corroborate our result. In our
simulations, the particles were evolved following the
Langevin equation given above, in addition to the rotational
dynamics, dq=dt¼ _γ(q·ΛþBðI−qqÞq∶E)þ ffiffiffiffiffiffiffiffiffiffi

2=τR
p

ΓR×q,

FIG. 2. Swim diffusivity as a function of shear Péclet number
for two different values of geometric factor B (B ¼ 0 sphere;
B ¼ 0.8 ellipsoid). Solid and dashed curves are theoretical
solutions, and the symbols are Brownian dynamics (BD) simu-
lation results. Dash-dotted curve for Dxy is the small-Pe solution
for B ¼ 0.8.
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where ΓR is a unit random normal deviate: ΓRðtÞ ¼ 0 and
ΓRðtÞΓRð0Þ ¼ δðtÞI. Results from simulations were aver-
aged over 104 independent particle trajectories for times
long compared to τR and _γ−1.
Until this Letter, only the normal components of the

swim stress (i.e., σswimii where i ¼ x, y, z) have been studied
[4–8,11,16–24], which give the average pressure required
to confine an active body inside of a bounded space. We
discover here that the off-diagonal shear swim stress, σswimxy ,
provides a new physical interpretation of the non-
Newtonian shear rheology of active matter.
From continuum mechanics, we have ∇ · σ ¼ 0 and

∇ · u ¼ 0, where σ is the total stress of the suspension and
u is the suspension-average velocity. The stress can be
written as σ ¼ −pfI þ 2η0 _γð1þ 5ϕ=2ÞEþ σact, where pf
is the fluid pressure, η0 is the viscosity of the continuous
Newtonian solvent, ϕ is the volume fraction of particles
(¼4πa3n=3 for spheres), 5ϕ=2 is the Einstein shear
viscosity correction that is present for all suspensions
(taking the result for spherical particles in this Letter),
and the active stress is the contribution due to self-
propulsion of the particles, σact ¼ σH þ σswim.
Thehydrodynamicstress isσH¼nSH¼nσH0 ðhqqi−I=3Þ,

where SH is the hydrodynamic stresslet associated with the
swimmers’ permanent force dipole, and σH0 is its magnitude
which scales as σH0 ∼ ζU0a (σH0 < 0 for “pushers,” σH0 > 0
for “pullers”) [1,25,26]. For swimmers with an isotropic
orientation distribution, hqqi ¼ I=3, the hydrodynamic
stress makes no contribution to the suspension stress. The
hydrodynamic stress is present in themodel by Saintillan [1]
and is the only contribution that has been considered in the
literature.
The main contribution of this Letter is the identification

and inclusion of an off-diagonal shear component in the
swim stress, σswim ≡ −nh½xFswim�symi. The swim force of
an active Brownian particle is Fswim ≡ ζU0q, so we obtain
σswim ¼ −nζU2

0τRh½x̄q�symi, where nondimensional posi-
tion x̄ ¼ x=ðU0τRÞ.
It is important to distinguish and differentiate the swim

stress from the hydrodynamic stress. First, σswim is an
entropic term because it arises from the random walk
process associated with active swimming and tumbling,
whereas σH comes from fluid-mediated hydrodynamics
and the multipole moments generated by self-propulsion.
Naturally, this leads to a different scaling of the swim stress
σswim ∼ ðnζU0ÞðU0τRÞ compared to the hydrodynamic
stress σH ∼ ðnζU0Þa. The relevant length scale of the swim
stress is the swimmer run length, U0τR, as opposed to the
hydrodynamic stress that scales with the swimmer size a
(see schematic in Fig. 1).
In addition to the two terms above, we know from

passive Brownian suspensions that nonspherical particles
like polymers and liquid crystals can generate a shear stress
from flow-induced particle alignment or stretching [27,28].
Compared with the swim stress, the magnitudes of these

terms are O½kBT=ðksTsÞ�, where ksTs ≡ ζU2
0τR=6 is the

activity scale associated with self-propulsion [6]. For most
microswimmers of interest, kBT=ðksTsÞ ≲Oð10−3Þ, so
these terms are not included in this Letter.
For steady simple shear flow, the shear stress is constant

across every plane, and we obtain σxy ¼ σ ¼ ηeff _γ, where
the effective viscosity of the suspension is

ηeff

η0
¼ 1þ 5

2
ϕþ σHxy þ σswimxy

η0 _γ
; ð4Þ

where σHxy ¼ nσH0 hqxqyi and σswimxy ¼ −nðhxFswim
y iþ

hyFswim
x iÞ=2. For the active Brownian particle model

with swim force Fswim ≡ ζU0q, we obtain σswimxy ¼
−nζU2

0τRðhx̄qyi þ hȳqxiÞ=2, where x̄ and ȳ are nondimen-
sionalized by the run length U0τR.
Active spherical particles that do not establish macro-

scopic orientational order with the imposed flow do not
generate a hydrodynamic stress, σHxy ¼ 0, but can exert a
nonzero swim stress, giving, for all Pe (see Supplemental
Material [13]),

ηeff

η0
¼ 1þ 5

2
ϕ −

3ϕ

16

�
1

PeR

�
2
�

1 − ðPe=4Þ2
½1þ ðPe=4Þ2�2

�
: ð5Þ

The reorientation Péclet number PeR ≡ a=ðU0τRÞ is a ratio
of the particle size a to the swimmer run length U0τR. For
small Pe and PeR, ηeff is smaller than the Newtonian
viscosity of the surrounding solvent, η0. With increasing
Pe, ηeff increases and becomes larger than η0, until a
maximum is reached at intermediate Pe. As Pe → ∞, the
particles spin around in place without taking a step, so ηeff

approaches a constant given by the solvent’s viscosity plus
the Einstein correction. This nonmonotonic behavior has
not been predicted previously because conventional models
do not include the swim stress.
For nonspherical particles, the hydrodynamic drag tensor

varies with the orientation as ζ ¼ ζ∥qqþ ζ⊥ðI − qqÞ,
where ζ∥ and ζ⊥ are the parallel and perpendicular
components, respectively. We assume here that the direc-
tion of self-propulsion is aligned with the body-fixed
axisymmetric polar axis, U0 ¼ U0q, so the swim diffusiv-
ity-stress relationship becomes σswim ¼ −nζ∥Dswim.
Analytical solutions to Eqs. (1)–(3) are not available

for nonspherical particles, so a perturbation analysis for
small Pe gives the swim stress σswim=ðnζ∥U2

0τR=6Þ ¼
−I − Peð1þ BÞE=2þOðPe2Þ, and the hydrodynamic
stress σH=ðnσH0 Þ ¼ BPeE=15þOðPe2Þ. Substituting these
results intoEq. (4),we obtain the effective shear viscosity for
small Pe,
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ηeffðPe → 0Þ
η0

¼ 1þ 5

2
ϕ −

�
−
1

5
BαPeRþ

1þ B
4

�

×
3ϕ

4Pe2R
K

�
a
b

�
; ð6Þ

where α is a parameter associated with the force dipole
magnitude, defined as α≡ σH0 =ðζ∥U0aÞ, K is the shape
factor in the hydrodynamic drag coefficient in the parallel
component ζ∥ ¼ 6πη0bK, anda andb are the semimajor and
minor radii of an ellipsoidal particle, respectively. The
constant scalar B ¼ (ða=bÞ2 − 1)=(ða=bÞ2 þ 1); B ¼ 0
for a spherical particle.
Figure 3 compares the effective shear viscosity from our

micromechanical model [Eq. (4)] with the experiments of
López et al. [29]. Physical properties of the E. coli bacteria
used in our model were taken from their work [29], with
swimming speed U0 ¼ 20 μm=s, reorientation time
τR ¼ 4.8 s, body length 2a ¼ 1.7 μm, and body diameter
2b ¼ 0.5 μm, which give the hydrodynamic drag shape
factorK ¼ 1.5 and geometric coefficient B ¼ 0.88. Particle
reorientations are modeled in Eq. (3) as a diffusive
Brownian process using the run-and-tumble equivalence
[30], so τR is consistent with that reported by López et al.
[29], which is a directional persistence time based on the
bacteria tumble frequency, 1=ω ¼ τR=2 ¼ 2.4 s. The reor-
ientation Péclet number based on the swimmer body length
a yields negative effective shear viscosity predictions, so
we have adopted the length scale associated with the force
dipole strength of the E. coli, ld ¼ 17.7 μm from Lopez
et al. [29], which gives PeR ¼ ld=ðU0τRÞ ≈ 0.18. The force
dipole parameter α≡ σH0 =ðζ∥U0aÞ ≈ −15, which is based
on the reported force dipole strength of the bacteria
[29], σH0 ¼ −3.8� 1.0 × 10−18 Pa · m3.
In the results of Fig. 3, the ratio σswimxy =ðσswimxy þ σHxyÞ ≈

0.5 for small Pe and all bacteria concentrations, which

quantifies the importance of the swim stress. For swimmers
with PeR ≪ 1 such as puller microalgae C. Reinhardtii, the
hydrodynamic stress plays a negligibly small role and the
swim stress dominates. Figure 4 compares our model with
the experimental data of Rafaï et al. [31], who measured the
effective shear viscosity of a suspension containing
C. Reinhardtii. Physical properties of the microalgae used
in our model were taken from their work [31], with
swimming speed U0 ¼ 40 μm=s, reorientation time
τR ¼ 3.5 s, and body radius a ¼ 5 μm, giving PeR≡
a=ðU0τRÞ ≈ 0.035. This motile microorganism has a
spherical body but can align with an imposed flow, perhaps
due to rheotaxis or small asymmetry arising from the two
flagella used for self-propulsion. The solid curve in Fig. 4 is
the analytical theory of Eq. (5) which does not involve the
hydrodynamic stress. We obtain good agreement with
experimental data and Brownian dynamics simulations,
which demonstrates the importance of the shear swim stress
for active systems with small reorientation Péclet numbers.
The results in Fig. 4 suggest new behavior not predicted

by conventional models. Previous studies [1–3,29]
have predicted that puller-type microorganisms like
C. Reinhardtii increase the effective suspension viscosity
above that of the suspending fluid because the hydro-
dynamic stress is positive for pullers, σH0 > 0. However, the
swim stress predicts both thickening and thinning behavior,
an increase and decrease of the effective viscosity, for
pushers, pullers, and even particles that generate no hydro-
dynamic stress. Shear thickening and thinning are seen for
small PeR; they are also present in Fig. 3 but the magnitudes
are too small to see. Because the swim stress is large in
magnitude compared to the hydrodynamic stress for
systems with PeR ≪ 1, the effective shear viscosity

ef
f

FIG. 3. Comparison of our model, Eq. (4), with shear experi-
ments of López et al. [29] with motile E. coli bacteria at different
concentrations. Horizontal dashed lines for small Pe are the
analytical solutions of Eq. (6).

ef
f

FIG. 4. Effective suspension viscosity of spherical active
particles at dilute concentrations and reorientation Péclet number
PeR ≡ a=ðU0τRÞ ¼ 0.035. Filled circles and crosses at large Pe
are experimental data of Rafaï et al. [31] using “puller” micro-
algae C. Reinhardtii. The solid curve is the analytical theory of
Eq. (5), and the open circles are BD simulation results. Inset:
Magnification at large Pe to show agreement with experiments.
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decreases below η0 at small shear rates regardless of the
swimmer shape or hydrodynamic stress. Further experi-
ments with puller microorganisms at small shear rates are
needed to verify if the effective viscosity decreases below
the solvent viscosity.
In Fig. 4, we observe a “negative” effective shear

viscosity for small Pe, which means that a shear stress
must be applied in a direction opposing the flow to
maintain a fixed shear rate. The spontaneous onset of
active diffusion of particles along the extensional axis of
shear can result in a negative effective shear viscosity,
analogous to that of active nematics for “pusher” swimmers
(see Fig. 1). For a constant shear stress experiment, a
reduction in effective viscosity would trigger the shear rate
to increase, so a self-regulating processes would preclude a
negative viscosity. For active suspensions with a larger
concentration of particles, we must include an additional
stress contribution from interparticle interactions between
the swimmers, σP ¼ −nhxijFP

iji. Our simulations reveal
that the interparticle stress has a negligible effect for the
dilute concentrations studied in this Letter. The force
moment for the interparticle stress scales as the particle
size, so its contribution is OðPeRÞ smaller than the swim
stress.
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