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This paper presents partially decentralized path planning algorithms for swarms of
spacecraft composed of hundreds to thousands of agents with each spacecraft having lim-
ited computational capabilities. In our prior work, J2-invariant orbits have been found to
provide collision free motion for hundreds of orbits. This paper develops algorithms for the
swarm recon�guration which involves transferring from one J2-invariant orbit to another
avoiding collisions and minimizing fuel. To perform collision avoidance, it is assumed that
the spacecraft can communicate their trajectories with each other. The algorithm uses
sequential convex programming to solve a series of approximate path planning problems
until the solution converges. Two decentralized methods are developed: a serial method
where the spacecraft take turn updating their trajectories and a parallel method where all
of the spacecraft update their trajectories simultaneously.

Nomenclature

I set of spacecraft that are to be avoided
J2 second harmonic coe�cient of earth
K set of spacecraft that have not converged
L size of trust region for convex optimization
M �nal iteration of sequential convex programming
N number of spacecraft
R minimum distance between spacecraft to avoid a collision
Re radius of the earth
Rsafe secondary collision radius, 1:5R
T number of time steps
U maximum allowable magnitude of the control vector
XL trust region for convex optimization

(X̂; Ŷ ; Ẑ) Earth centered inertial coordinate system
a semimajor axis
e eccentricity
h angular momentum
i orbit inclination
k time step k
kJ2

3
2J2�R

2
e; 2:633� 1010 [km5/s2]

‘ = (x; y; z)T relative position vector in the local vertical, local horizontal coordinate system
_‘ = ( _x; _y; _z)T relative velocity vector in the local vertical, local horizontal coordinate system
r geocentric distance
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rjZ distance from satellite to equator
t time
tf �nal time
�t length of time step
u control vector in local vertical, local horizontal frame
vx radial velocity

x = (‘T ; _‘
T

)T state vector in local vertical, local horizontal frame
�x nominal state vector

 right ascension of the ascending node
�x angular acceleration of coordinate system about x-axis
�y angular acceleration of coordinate system about y-axis
�z angular acceleration of coordinate system about z-axis
� rate at which the size of the trust region decreases
� tolerance of sequential convex programming convergence
� gravitational constant
� true anomaly
� argument of latitude
! argument of perigee
! = (!x; !y; !z)

T vector of rotation rates of the local vertical, local horizontal frame

Subscripts
0 initial condition (t = 0)
d discretized
f �nal condition (t = tf )
i spacecraft i
j spacecraft j

Superscripts
m iteration m

I. Introduction

Spacecraft formation ying has been a major area of research over the past decade. Recently, the idea of
formation ying has been extended to create swarms of spacecraft,1 which contain a large number (hundreds
to thousands) of femtosatellites (100-gram class spacecraft). Due to their small size, the femtosats have
limited sensing, actuation, and computation capabilities, which require the guidance and control algorithms
of the swarm to be both fuel and computationally e�cient.

J2-invariant orbits2 have been shown to provide collision-free motion for hundreds of orbits. The condi-
tions for these orbits are very good at maintaining a desired swarm shape. This paper addresses the problem
of changing the swarm shape so that the spacecraft transfer from one J2-invariant passive relative orbit
(PRO) to another. The goal of this paper is to create fuel and computationally e�cient guidance algorithms
for the recon�guration of swarms of spacecraft in lower Earth orbit (LEO). In addition to being fuel and
computationally e�cient, the algorithms must provide collision-free motion in the highly nonlinear, coupled,
time-varying dynamics seen in relative spacecraft motion in the presence of J2, which is the dominant pertur-
bation in LEO. Between previous work in spacecraft formation ying3,4 and multivehicle control research,5{7

many multivehicle guidance methods have been developed. However, the previous work in formation ying
usually deals with a small number of spacecraft, a dozen at the most. Additionally, the spacecraft are much
larger than femtosats with greater capabilities. The swarm guidance algorithms are di�erent from previous
research because they need to simultaneously address the large number of agents, the limited capabilities of
each individual agent, and the complex dynamic environment.

A purely centralized algorithm can �nd fuel-e�cient trajectories for recon�guration but scales very poorly
with the number of spacecraft.8 On the other hand, a decentralized algorithm can generate trajectories with
computational e�ciency but will need a reactive collision avoidance algorithm,9 where the spacecraft do not
preplan to avoid collisions but rather perform maneuvers once a potential collision is detected, which will
reduce the fuel e�ciency of the recon�guration. Depending on the number of spacecraft and the recon�gured
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state of the swarm, a decentralized approach can be implemented without much loss in fuel e�ciency.9

However, with hundreds to thousands of spacecraft, there is a larger potential for collisions, which will
reduce the fuel e�ciency of a decentralized algorithm.

Many methods have been developed for solving nonlinear optimal control problems. Due to the com-
plicated nonlinear dynamics of swarms of spacecraft, indirect methods become very di�cult to use because
they require the derivation of the �rst-order necessary conditions for optimality.10,11 Therefore, many op-
timization problems are solved using direct methods, which parameterize the control space, and sometimes
the state space, reducing the problem to a nonlinear optimization. Pseudospectral methods12 have been
used for trajectory optimization but this method solves a centralized problem which will scale poorly with
the number of spacecraft due to the coupling of spacecraft in the collision avoidance requirements. Mixed
integer linear programming (MILP) can be used to enforce collision avoidance constraints and has been
implemented in real-time13 as well as used for preplanning trajectories.14,15 However, these algorithms will
also scale poorly as the number of spacecraft increases due to the increase in integer variables caused by the
increase in the number of collision constraints.

Recently, convex optimization16 has been used in multi-vehicle trajectory design and shown that it can be
e�ciently solved to achieve a global optimum. Mattingley et al.17 used convex optimization to implement
a receding horizon controller for a convex problem. Acikmese et al.18 used convex optimization to �nd
trajectories for a formation recon�guration with collision avoidance. However, convexifying the collision
constraints results in an overly conservative approximation of the collision avoidance region. In the present
paper, sequential convex programming (SCP)19 is applied to the swarm recon�guration. SCP uses multiple
iterations to ensure that the convex approximations of nonconvex constraints are accurate resulting in more
fuel-e�cient trajectories. Additionally, the SCP algorithms can be written using freely available software,
such as CVX,20 to solve the convex programming problems at each iteration.

The main contribution of this paper is the method used to decentralize parts of the swarm recon�guration
so that the resulting algorithm can be implemented in real-time and provides collision-free, fuel-e�cient
trajectories. The swarm recon�guration is made more computationally e�cient in two steps. First, the
problem is convexi�ed and discretized using sequential convex programming. To partially decentralize the
problem and improve the way it scales with spacecraft number, the second step is to �x the trajectories
of the other spacecraft using the most up to date, or nominal, trajectory. This process requires that all
spacecraft can communicate their nominal trajectory with all of the others, but that is the only part of the
process which is centralized.

The algorithms developed in Sec. IV.B can run fast enough that it can be used to update the trajectories
in real-time and be used in model predictive control (MPC). This method can be used to update the
trajectories with new state information that may have arisen because of linearization and discretization
error, or unmodeled disturbances.

The paper is organized as follows. In Section II, the swarm recon�guration is discussed and the SCP
method is described. In Section III, the problem of converting to convex form is discussed and SCP is
applied to the problem. In Section IV, the collision avoidance constraints are discussed and the decentralized
optimizations are presented. In Section V, the results of simulations and the e�ectiveness of each algorithm
are discussed.

II. Problem Statement

In this section, the swarm recon�guration is presented as a continuous, �nite horizon optimal control
problem. The swarm recon�guration involves the transfer of hundreds to thousands of spacecraft from one
J2-invariant PRO2 to another while avoiding collisions between spacecraft and minimizing the total fuel used
during the transfer. To properly de�ne the variables and constraints involved in the optimization problem,
two coordinate systems must be de�ned. First, the Earth Centered Inertial (ECI) coordinate system is used
to locate the chief spacecraft or a virtual reference point called the chief orbit (see Fig. 1a). This coordinate
system is inertially �xed and located at the center of the Earth. The X̂ direction points towards the vernal
equinox, the Ẑ direction points towards the north pole, and the Ŷ direction is perpendicular to the other
two and completes the right-handed coordinate system. The second coordinate system is the local vertical,
local horizonal (LVLH) coordinate system. The LVLH frame is centered at the chief spacecraft or chief
orbit. Figure 1a shows the LVLH frame with respect to a chief spacecraft. The x̂, or radial, direction is
always aligned with the position vector and points away from the Earth, the ẑ, or crosstrack, direction is
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aligned with the angular momentum vector, and the ŷ, or alongtrack, direction completes the right-handed
coordinate system. The LVLH frame is a rotating frame with a rotation rate of !x about the radial axis and
!z about the crosstrack axis. The relative state of the deputy spacecraft in the LVLH frame is expressed by
xj = [ xj yj zj _xj _yj _zj ]T .

chief 

deputy 

(a) ECI (X̂; Ŷ ; Ẑ) and LVLH Frames (x̂; ŷ; ẑ)

Concentric PROs

(b) Spacecraft Swarm

Figure 1. A visualization of the relative coordinate system and a spacecraft swarm2

The optimization problem for swarm recon�guration is written using the LVLH coordinates and dynamics.
The equations of motion for spacecraft in the LVLH frame (‘j = (xj ; yj ; zj)

T ) are21

�‘j = �2S(!) _‘j � g(‘j ;�) + uj (1)

where the function g(‘j ;�) 2 R3 is de�ned in the appendix and the matrix S(!) 2 R3�3 is de�ned as

S(!) _‘ = ! � _‘. Additionally, the orbital elements of the chief (reference) orbit � = (r; vx; h; i;
; �)
T are

geocentric distance (r), radial velocity (vx), angular momentum (h), inclination (i), right ascension of the
ascending node (
), and argument of latitude (�). Note that the angular rates of the LVLH frame, ! are
also determined by � (see the appendix). In this paper, it is assumed that these values are known to
each spacecraft by some standard estimation process that might use communicated or measured information
about the actual location of the chief spacecraft and propagation of the following equation of motion

d�

dt
= fchief(�) (2)

where the RHS of this equation is de�ned in the appendix. Note that Eqs. (1) and (2) are hierarchically
combined; Eq. (1) does not a�ect the reference motion given in Eq. (2). Hence, the reference orbital elements
are assumed to be known values in the optimization problem. Therefore, the dynamics constraints are given
by Eq. (1) with known parameters given by Eq. (2). In addition to the dynamics constraints, the following
constraints must be enforced as well.

kuj(t)k � U 8t 2 [0; tf ]; j = 1; : : : ; N (3)

kC[xj(t)� xi(t)]k � R 8t 2 [0; tf ]; i > j; j = 1; : : : ; N � 1 (4)

xj(0) = xj;0 j = 1; : : : ; N (5)

xj(tf ) = xj;f j = 1; : : : ; N (6)

where C = [I3�3 03�3] and xj = (‘T ; _‘
T

)T . Equation (3) represents the limitation on the magnitude of the
control vector with U being the maximum allowable control magnitude, Eq. (4) is the collision avoidance
constraint with R being the minimum allowable distance between two spacecraft, and Eqs. (5)-(6) are the
initial state constraint and the �nal state constraint, respectively. Although any reachable initial and terminal
conditions can be used for Eqs. (5)-(6), the simulations in Sec. V use the J2-invariant conditions developed in
our prior work.2 Given the relative position, ‘j(�), � 2 f0; tfg, and the chief orbit, �(�), the velocity vector

that yields J2-invariant PRO is given by some function _‘j(� ) = Y(‘j(�);�(�)) (see Ref. 2 for details).
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The objective of the swarm recon�guration is to minimize fuel. Therefore, we can de�ne the swarm
recon�guration as follows

Problem 1:

min
uj ;j=1;:::;N

NX
j=1

Z tf

0

kuj(t)kdt subject to f(1); (3)� (6)g (7)

It is important to note that the objective function and the constraints of Eqs. (3), (5), and (6) already
satisfy the requirements for a convex programming problem. Therefore, only the dynamics, Eq. (1), and the
collision avoidance constraints, Eq. (4), need to be converted in order to make Problem 1 convex.

III. Sequential Convex Programming

In this section, conversion to SCP is presented. This is done by converting both the dynamics constraints
and the collision avoidance constraints, Eqs. (1) and (4) respectively, into an acceptable form for convex
programming. For the dynamics, this involves linearizing Eq. (1) and discretizing Problem 1. This results in
a �nite number of linear equality constraints, which are acceptable in a convex programming problem. The
collision avoidance constraints in Eq. (4) are converted to convex inequality constraints so that they are in
convex form as well. Once the problem is converted to convex form, a SCP algorithm is applied to solve the
modi�ed version of the swarm recon�guration.

A. Linearization and Discretization of Dynamics

In order to rewrite the dynamics in Eq. (1) as a constraint that can be used in a convex programming problem,
these equations must �rst be linearized. This is necessary because the rules of convex programming state
that equality constraints must be a�ne. Eq. (1) can be rewritten as

_xj = f(xj ;�) +Buj (8)

where B = [03�3 I3�3]T . Linearizing f(xj ;�) yields

f(xj ;�) � f(�xj ;�) +
@f

@xj

����
�xj

(xj � �xj) = A(�xj ;�)xj + c(�xj ;�) (9)

where �xj is the nominal trajectory about which the equations are linearized. The method for determining
these nominal trajectories will be described in Sec. III.C. Additionally, A(�xj ;�) and c(�xj ;�) are

A(�xj ;�) =

264 03�3 I3

� @g

@xj

����
�xj

�2S(!)

375 ; c(�xj ;�) =

264 03�1

�g(�‘j ;�) +
@g

@xj

����
�xj

�xj

375 (10)

Substituting Eq. (9) into Eq. (8) yields the following linear dynamics equation

_xj = A(�xj ;�)xj +Buj + c(�xj ;�) (11)

The next step in the process of converting Eq. (1) into a constraint that can be used in convex program-
ming is to reduce Eq. (11) to a �nite number of constraints. In order to do this, the problem is discretized
using a zero-order-hold approach such that

uj(t) = uj [k]; t 2 [tk; tk+1); k = 1; : : : ; T � 1; j = 1; : : : ; N (12)

where tf = T�t, t1 = 0, tT = tf , and �t = tk+1 � tk for k = 1; : : : ; T � 1. This method of discretization
reduces Eq. (11) to

xj [k + 1] = Ad(�xj ;�)xj [k] +Bduj [k] + cd(�xj ;�); k = 1; : : : ; T � 1; j = 1; : : : ; N (13)

where xj [k] = xj(tk), uj [k] = uj(tk), �[k] = �(tk), and

Ad(�xj ;�) = eA(�xj ;�)�t; Bd =

Z �t

0

eA(�xj ;�)�B d�; cd = c(�xj ;�)�t (14)
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Now that the nonlinear, continuous time equations of motion from Eq. (1) have been rewritten as lin-
ear, �nite dimensional constraints in Eq. (13), they can be used in a convex programming problem. The
constraints from Eqs. (3)-(6) can be written in discretized form as

kuj [k]k � U k = 1; : : : ; T � 1; j = 1; : : : ; N (15)

kC(xj [k]� xi[k])k � R k = 1; : : : ; T; i > j; j = 1; : : : ; N � 1 (16)

xj [1] = xj;0 j = 1; : : : ; N (17)

xj [T ] = xj;f j = 1; : : : ; N (18)

Note that the only constraint that does not satisfy the rules of convex programming is Eq. (16). This
constraint will be modi�ed in the next section so that it can be used in a convex programming problem.

B. Convexi�cation of Collision Avoidance Constraints

The �nal step in converting the swarm recon�guration into a convex programming problem is converting
the collision avoidance constraints to convex constraints. Since the collision avoidance constraints in their
current form are concave, the best convex approximations will be a�ne constraints. In other words, the
sphere which de�nes the forbidden region is approximated by a plane which is tangent to the sphere and
perpendicular to the line segment connecting the nominal position (�xj) of the spacecraft and the object.
This idea is shown in 2-D using a line and a circle in Fig. 2.

R 
Prohibited Zone 

Collision Free Zone 

Spacecraft: i 

Spacecraft: j 

(a) Nonconvex prohibited zone

R 

Prohibited Zone 

Collision Free Zone 

Spacecraft: i 

Spacecraft: j 

(b) Convex approximation of prohibited
zone

Figure 2. Convexi�cation of the 2-D collision avoidance constraint

Figure 2a shows the prohibited zone for the initial collision avoidance constraint. Figure 2b demonstrates
the convexi�cation of the constraint from Fig. 2a. Based on the positions of the spacecraft in the previous
iteration, a line (or plane in the 3-D version) is de�ned to be tangent to the old prohibited zone and
perpendicular to the line segment connecting the spacecraft. This line de�nes the new prohibited zone. As
can be seen in Fig. 2b, the new prohibited zone includes the old prohibited zone so collision avoidance is still
guaranteed using this convexi�cation method.

Figure 3 shows the collision free zone for a spacecraft surrounded by multiple neighbors. When multiple
neighboring spacecraft (red) are in the vicinity of spacecraft j (blue), the collision free zone will be the
intersection of the half spaces that de�ne the collision free zones between each neighbor and spacecraft j.
This results in a convex polytope around the nominal position of spacecraft j in which it is guaranteed to
be collision free based on the position of the neighboring spacecraft.

Using this idea, a su�cient condition for the collision avoidance constraints to hold from Eq. (16) will be

(�xj [k]� �xi[k])TCTC(xj [k]� xi[k]) � RkC(�xj [k]� �xi[k])k k = 1; : : : ; T; i > j; j = 1; : : : ; N � 1
(19)
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R 

Prohibited Zone 

Collision Free Zone 

R 

R 

R 

R 

Spacecraft: j 

Figure 3. Collision free zone for a spacecraft with 5 neighbors using a�ne collision avoidance constraints

To show su�ciency, it is assumed that the above condition is satis�ed. The following steps are valid for
all i; j; k.

(�xj [k]� �xi[k])TCTC(xj [k]� xi[k]) � RkC(�xj [k]� �xi[k])k
kC(�xj [k]� �xi[k])k kC(xj [k]� xi[k])k cos� � RkC(�xj [k]� �xi[k])k
kC(xj [k]� xi[k])k cos� � R
kC(xj [k]� xi[k])k � kC(xj [k]� xi[k])k cos� � R

This reestablishes Eq. (16) and proves su�ciency. �xi and �xj are the nominal trajectories from the previous
iteration of xi and xj , respectively, and � is the angle between the two vectors. These nominal values are
assumed to be known and are not variables in the optimization. Therefore, the collision avoidance constraints
in Eq. (19) are a�ne and in a form that can be used in a convex programming problem.

C. Sequential Convex Programming Algorithm

Now that all of the constraints in Problem 1 have been written in convex programming form, Problem 1 can
be written as the following convex programming problem:

Problem 2 (SCP):

min
uj ;j=1;:::;N

NX
j=1

T�1X
k=1

kuj [k]k�t subject to f(13); (15); (17); (18); (19)g (20)

where Problem 1 has been discretized and the constraints of Eqs. (1) and (4) have been approximated by
Eqs. (13) and (19), respectively.

The approximations used to get the dynamics and collision avoidance constraints into their convex forms,
Eqs. (13) and (19), require a nominal state �xj [k] for each spacecraft at each time step. Additionally, the
nominal vectors must be close to the actual state vectors in order for the solution to the convex programming
problem to be valid. In order to ensure that the nominal vectors are good estimates of the actual state vectors,
SCP is used. In SCP, �xj [k] = xm�1

j [k] for iteration m, i.e. the calculation of xmj [k]. To enforce the collision
avoidance constraints, each spacecraft communicates its own nominal trajectory to the other spacecraft.

One of the main advantages of using SCP compared to simply solving the convex programming problem
is that the resulting solution is not as dependent on the initial guess. Because of the way that the collision
avoidance constraint must be convexi�ed, the prohibited zone for each collision is a half space, which is overly
conservative. With convex programming, this will prevent the spacecraft from passing through certain areas
that are, in fact, safe. This can potentially lead to non-optimal trajectories if a poor initial guess is provided.
In SCP, the iterations allow the spacecraft to move into an area that was prohibited in the initial convex

7 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
IL

L
IN

O
IS

 o
n 

M
ar

ch
 2

0,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
45

83
 



programming problem. This is illustrated in Fig. 4. In the iteration m+ 1, shown in Fig. 4b, the spacecraft
move into areas that were originally prohibited in iteration m, shown in Fig. 4a. This idea allows SCP to
achieve better trajectories than the convex programming problem.

R 

Spacecraft: i 
Iteration: m-1 

Spacecraft: j 
Iteration: m-1 

Spacecraft: i 
Iteration: m 

Spacecraft: j 
Iteration: m 

R 

(a) Collision free zone for iteration m

R 

Spacecraft: i 
Iteration: m-1 

Spacecraft: j 
Iteration: m-1 

Spacecraft: i 
Iteration: m 

Spacecraft: j 
Iteration: m 

R 

Spacecraft: j 
Iteration: m+1 

Spacecraft: i 
Iteration: m+1 

(b) Collision free zone for iteration m+1

Figure 4. Evolution of the 2-D collision avoidance constraint

SCP is a method for solving nonconvex optimizations using convex programming. In order to use SCP,
the nonconvex problem is approximated by a convex problem as has been done in Subsections III.A & III.B.
Then, the convex problem is solved using an iterative method. In the �rst iteration, an initial guess is
provided for the nominal vector for the dynamics but in the following iterations, the solution to the previous
iteration is used as the nominal vector. This process continues until the solutions to the sequence of convex
problems converges. The process is demonstrated in Algorithm 1. In each iteration, a trust region is de�ned
for the convex problem. The region represents the range of state vectors over which the linearization provides
accurate approximations. It is de�ned as

XLm = fxj j kxj � �xjk � Lmg (21)

where Lm is the size of the trust region during iteration m. Additionally, the trust region in Eq. (21) can
be used to ensure that the SCP algorithm converges. In order to ensure converges, the size of the trust is
updated according to the following equation.

Lm+1 = �Lm (22)

where � 2 (0; 1) is a parameter that determines the worst-case rate of convergence.

Algorithm 1 Centralized SCP Algorithm

1: �xj := 06�1 8j
2: x0

j := solution to Problem 2 without the collision avoidance constraint in Eq. (19)

3: �xj := x0
j

4: x1
j := solution to Problem 2

5: m := 1
6: while kxmj [k]� xm�1

j [k]k > � 8k do
7: m := m+ 1
8: �xj = xm�1

j

9: xmj := the solution to Problem 2
10: end while
11: M := m
12: xMj is the approximate solution to Problem 1

xmj [k] denotes the relative state vector of the jth spacecraft, at the kth time step, after the mth iteration
of the convex program and xmj is the same as xmj [k] except over all time steps. Additionally, M is the �nal
iteration performed in the SCP problem and � is the tolerance of the SCP algorithm.
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The SCP method described in Algorithm 1 is e�ective for small spacecraft formations but does not
scale well because the number of collision avoidance constraints increases quadratically with the number of
spacecraft. Additionally, while this method reduces the problem to convex form in Problem 2, which is much
simpler than the original nonconvex form in Problem 1, it is still a centralized problem where all of the
spacecraft’s trajectories are solved for at the same time. Due to the limited size of the spacecraft in a swarm,
it is unlikely that any of them will have the computational ability to solve the entire swarm recon�guration.
Therefore, decentralizing the swarm recon�guration will make it much more feasible.

IV. Decentralized Methods for Sequential Convex Programming

As mentioned in the preceding section, even in convex form, the centralized swarm recon�guration algo-
rithm will still scale poorly because of the number of collision avoidance constraints. Therefore, the problem
must be partially decentralized so that it can be run using the limited computational capabilities of space-
craft in the swarm. The collision avoidance constraints are the only constraints involving more than one
spacecraft. Therefore, the goal of this section is to rewrite the collision constraints in such a way that each
spacecraft can compute its own trajectory yet the entire swarm is still collision free.

The �rst step to decentralizing Algorithm 1 is noticing that many of the spacecraft do not come close to
each other at any time during the recon�guration. For this reason, it is not necessary to include the collision
avoidance constraints for every pair of spacecraft in the SCP algorithm. By de�ning a second collision
distance as Rsafe = 1:5 R, where R is the distance that must exist between two spacecraft in order to avoid
a collision, and only checking for collisions for spacecraft pairs that violated this distance in a previous
iteration of the SCP, the number of constraints in each iteration of Problem 2 can be greatly reduced.
Another property of Algorithm 1 that can be used to reduce the computational complexity is the fact that
as the number of iterations increases, the di�erence between xmj [k] and xm�1

j [k] decreases. In other words,
the nominal state vectors become better estimates of the actual state vectors as the number of iterations
increases. This fact can be used to decentralize the optimizations by assuming that all other spacecraft are
�xed objects, located at their positions from the preceding iteration, which must be avoided. Using this
assumption, Eq. (19) can be rewritten as

(�xj [k]� �xi[k])TCTC(xj [k]� �xi[k]) � RkC(�xj [k]� �xi[k])k k = 1; : : : ; T; i 2 Ij ; j = 1; : : : ; N � 1
(23)

where
Ij = fij 9 k 2 1; : : : ; T such that kC(xi[k]� xj [k])k � Rsafeg (24)

This allows each spacecraft to solve its own trajectory optimization while still maintaining a collision-free
swarm. The decentralized problem can be written as follows:

Problem 3:

min
uj ;j=1;:::;N

NX
j=1

T�1X
k=1

kuj [k]k�t subject to f(13); (15); (17); (18); (23)g (25)

There are two di�erent types of decentralized algorithms that are described in the following subsections:
a serial method and a parallel method. These algorithms are similar and only di�er on when the spacecraft
communicate their updated position to the rest of the swarm. The serial method provides slightly better fuel
e�ciency and less individual computation time but the spacecraft cannot run their programs simultaneously
so the total elapsed time is longer. On the other hand, the parallel method allows all of the spacecraft to
run their computations simultaneously, which decreases the total time but each spacecraft’s individual run
time will be longer and the fuel e�ciency will be slightly worse.

A. Serial Method

In the serial method, the spacecraft wait to receive the most updated positions from the other spacecraft
before beginning their own computations. This leads to faster convergence of the SCP problem and better
fuel e�ciency. A detailed description of the decentralized serial method is given in Algorithm 2.

In the serial algorithm shown in Algorithm 2, each spacecraft solves an iteration of the SCP problem and
then updates the rest of the spacecraft as to its new trajectory. This provides the spacecraft that follow it
with more up to date information for collision avoidance but it also requires that these spacecraft wait until
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Algorithm 2 Serial Algorithm for Decentralized Problem

1: �xj := 06�1 8j
2: Ij := ; 8j
3: x0

j := the solution to Problem 3

4: �xj := x0
j

5: Update Ij using Eq. (24)
6: K := f1; : : : ; Ng
7: m := 1
8: while K 6= ; do
9: for all j 2 K do

10: xmj :=the solution to Problem 3
11: Ij is updated using Eq. (24)
12: �xj := xmj
13: end for
14: for all j do
15: if kxmj [k]� xm�1

j [k]k < � 8k and kC(xmj [k]� xmi [k])k > R 8k; 8i 6= j then
16: Remove j from K
17: end if
18: end for
19: m = m+ 1
20: end while
21: M := m� 1
22: xMj is the approximate solution to Problem 1

they receive the updated trajectory to perform their own calculations as seen in line 11 of Algorithm 2. For
this reason, the total time required to run the algorithm will be larger than in the parallel method described
in the following subsection. On the other hand, this algorithm has the advantage of converging much faster
and to a slightly more optimal solution than the parallel algorithm. Ultimately, it is necessary to decrease
the total elapsed time of the algorithm, which is why a parallel algorithm is developed in the next subsection.

B. Parallel Method

The parallel method described in Algorithm 3 is very similar to Algorithm 2 but with some small changes
in order to decrease the total run time of the method. The main change is that the nominal values are not
updated until after every spacecraft has completed its computation as seen in line 13 of Algorithm ??. This
allows all of the spacecraft to run the SCP algorithm simultaneously, which greatly reduces the total elapsed
time. Unfortunately, this can cause the SCP algorithm to have trouble converging when trying to avoid
collisions. This occurs because two spacecraft that are trying to avoid each other are now simultaneously
updating their trajectories. Because neither spacecraft knows where the other will be, they may choose
trajectories that are collision free based on the other spacecraft’s previous trajectory but are not collision
free based on the new trajectories. This situation is shown in Fig. 5.

Figure 5a shows spacecraft i (green) moving to a position (solid green circle) that is safe based on the
previous location of spacecraft j (red open circle). However, spacecraft j has updated its position (solid red
circle) and the spacecraft are within each other’s collision radii. Figure 5b shows the following iteration
where the spacecraft are overly conservative because both spacecraft think the other will be closer to them
based on the previous trajectory. It is possible for the spacecraft to oscillate back and forth in this manner,
which prevents the SCP algorithm from converging. In order to avoid this situation, Eq. (24) is rede�ned as

Ij;par = fij 9 k 2 1; : : : ; T such that kC(xi[k]� xj [k])k � Rsafe and i < jg (26)

By adding the constraint i < j, only one of the spacecraft will try to avoid the other one. Using these
modi�cations, the parallel method is shown in Algorithm 3.

By forcing one spacecraft to avoid the other rather than allowing cooperative avoidance, the optimality
can potentially be lower than in the serial method. However, the total run time of the algorithm is greatly
reduced. Additionally, the numbering of the spacecraft is arbitrary so they can be numbered in a way that
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spacecraft: i  
iteration: m-1  

spacecraft: j  
iteration: m  

spacecraft: i 
iteration: m  

spacecraft: j 
iteration: m-1  

Collision Radii 

(a) Update from iteration m-1 to iteration m: collision

spacecraft: i  
iteration: m+1  

spacecraft: j  
iteration: m  

spacecraft: i 
iteration: m  

spacecraft: j 
iteration: m+1  

Collision Radii 

(b) Update from iteration m to iteration m+1: overly conser-
vative

Figure 5. An example of two spacecraft that have di�culty converging. This problem is solved by adding a
second constraint to Eq. (24) as seen in Eq. (26)

Algorithm 3 Parallel Algorithm for Decentralized Problem

1: �xj := 06�1 8j
2: Ij;par := ; 8j
3: x0

j := the solution to Problem 3

4: �xj := x0
j

5: Update Ij;par using Eq. (26)
6: K := f1; : : : ; Ng
7: m := 1
8: while K 6= ; do
9: for all j 2 K do

10: xmj :=the solution to Problem 3
11: end for
12: for all j do
13: Update Ij;par using Eq. (26)
14: �xj := xmj
15: if kxmj [k]� xm�1

j [k]k < � 8k and kC(xmj [k]� xmi [k])k > R 8k; 8i 6= j then
16: Remove j from K
17: end if
18: end for
19: m := m+ 1
20: end while
21: M := m� 1
22: xMj is the approximate solution to Problem 1
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minimizes the disadvantages of using the parallel method. For example, ordering the spacecraft based on
their e�ciency or amount of fuel remaining will ensure that the spacecraft avoiding the collision is better
suited to do so. In this case, the decrease in optimality may not be as signi�cant.

The large decrease in run time between Algorithms 2 and 3 allows Algorithm 3 to be used much more
versatilely. For example, because the run time is now on the order of a time step or two, the algorithm can
be run using MPC by updating the future control commands based on new state information that includes
unmodeled disturbances and other errors. This can provide some robustness improvements compared to
running the algorithm only once at the beginning.

V. Simulations

In this section, simulations of the swarm recon�guration are presented using the algorithms developed in
Sec. IV. A formation recon�guration with 10 spacecraft and a swarm recon�guration with 100 spacecraft are
solved using Algorithm 2-3. The recon�gurations are not solved using the centralized method represented
by Algorithm 1 because the huge number of variables and constraints makes it intractable. The fuel and
computational e�ciencies of the methods are presented and compared.

All of the simulations are run with a reference orbit having the following initial orbital elements:
[a; e; i; 
; !; �] = [6878 km; 0; 45 deg; 60 deg; 0 deg; 0 deg]. Additionally, the length of the transfer,
tf , is 5677 s, or one orbit. The problem is discretized into 60 s intervals and � = 10�3. The number of
spacecraft and the collision radius are varied throughout the simulations. In all the simulations, the initial
and terminal conditions, xj;0 and xj;f , respectively, are determined by randomly generating the positions
and then applying the J2-invariant conditions from out prior work2 to determine the desired velocities. All
of the convex optimizations were performed using CVX.20

The simulation results for the 10 spacecraft formation recon�guration is shown in Table 1. Both the
serial and parallel algorithms were run for collision radii R of 0 m, 150 m, and 200 m. Additionally, the
trajectories resulting from the parallel method with R = 0 m and R = 200 m are shown in Figs. 6-8.
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Reconfiguration of 10 spacecraft with no collision avoidance
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(a) No collision avoidance
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(b) Collision avoidance with R = 200 m

Figure 6. x-y projection of the beginning 1/3 of the recon�guration of 10 spacecraft. Markers fade from empty
to solid as time moves forward.

The collision avoidance maneuver can be seen in Fig. 6-8. The most obvious collision avoidance can
be seen in Fig. 6 as the green square avoids the magenta circle around the time represented by the second
marker. There are other collision avoidance maneuvers but this example is the most dramatic in the x-y
projection.

Table 1 shows that for small formations with only a couple of potential collisions, the parallel method in
Algorithm 3 reduces the run time by a factor between 3 and 5 compared to Algorithm 2 without increasing
the fuel cost. Therefore, the advantages of this method greatly outweigh the disadvantages for this formation.
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(b) Collision avoidance with R = 200 m

Figure 7. x-y projection of the beginning 2/3 of the recon�guration of 10 spacecraft. Markers fade from empty
to solid as time moves forward.
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Figure 8. x-y projection of the entire recon�guration of 10 spacecraft. Markers fade from empty to solid as
time moves forward.
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Table 1. Simulation results for the recon�guration of a 10 spacecraft formation using decentralized SCP
algorithms

Algorithm Performance

Algorithm R [m] Col. Avoided Fuel Cost [m/s] Run Time [s] Serial Run Time [s]

Serial (Algorithm 2)

0 0 21.00 69.98 69.98

150 2 21.01 103.35 103.35

200 3 21.13 107.12 107.12

Parallel (Algorithm 3)

0 0 21.00 16.03 80.13

150 2 21.01 20.63 104.21

200 3 21.13 30.71 104.16

Table 2. Simulation results for the recon�guration of a swarm of 100 spacecraft using decentralized SCP
algorithms

Algorithm Performance

Algorithm R [m] Col. Avoided Fuel Cost [m/s] Run Time [s] Serial Run Time [s]

Serial (Algorithm 2)

0 0 191.50 707.75 707.75

100 31 191.57 927.51 927.51

150 68 192.38 1768.7 1768.7

Parallel (Algorithm 3)

0 0 191.50 19.94 765.25

100 31 191.58 45.48 928.02

150 68 192.39 75.35 1486.6

Table 2 shows the simulation results for recon�guring a swarm of 100 spacecraft. Both the serial and
parallel algorithms were run for collision radii R of 0 m, 100 m, and 150 m. As with the 10 spacecraft
formation, the swarm of 100 spacecraft recon�guration can be completed much faster using the parallel
algorithm (Algorithm 3). In this case, it is more than an order of magnitude faster than the serial method
(Algorithm 2). This indicates that the Algorithm 3 scales well with the number of spacecraft. However, this
algorithm does use slightly more fuel when there are many collisions to be avoided. In this case, the speci�c
requirements of the mission may dictate which algorithm is better, but in cases where the potential collision
probability is low, i.e. the swarm is large relative to the number of spacecraft and the size of the collision
radii, then the parallel method performs better.

Remark 1: There is room for improvement in the convex programming solver used in the SCP algorithms.
Currently, it takes about 2.5s to run the convex solver but only 0.8s to run the semide�nite programming
solver that is called. This means over half of the time is spent converting the convex problem into a
semide�nite programming problem. This work can be done o� line and a signi�cant amount of time can be
saved when running the SCP algorithms.

VI. Conclusion

In this paper, the swarm recon�guration was solved by using SCP and by decentralizing the collision
avoidance constraints. To use SCP, the dynamics and collision avoidance constraints were linearized and the
problem was discretized. The resulting problem was in convex form and Algorithm 1 was developed using
SCP to solve the problem. The drawback to this method was that the problem was still centralized and a
large number of spacecraft caused the algorithm to have di�culty solving the problem due the large number
of constraints.

To reduce the size of the optimization that needed to be solved, the collision avoidance constraints were
decentralized by having each spacecraft treat the other spacecraft trajectories as �xed. This allowed each
spacecraft to run its own SCP algorithm to solve for its optimal trajectory as long as it knew the trajectories
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of the other spacecraft. Two methods resulted from the decentralized SCP algorithm. The �rst method,
Algorithm 2, was run with the computations in series. In this case, one spacecraft ran its algorithm and
then updated the rest of the spacecraft with its new trajectory. Then, the next spacecraft ran its algorithm,
and so on. This method provided good results from a fuel-e�ciency stand point because each spacecraft
was able to converge to an optimal trajectory quickly. However, because only one spacecraft was running
computations at a time, the total algorithm was very long.

The other method, Algorithm 3, had the spacecraft run their computations in parallel. This greatly
decreased the total time of the algorithm but led to some small problems for the individual computations.
Mainly, the spacecraft could not receive updates of the other trajectories so they were using older information.
This caused the spacecraft to have di�culty converging on an optimal solution. For this reason, the spacecraft
were ordered and only the higher ranking spacecraft attempted to avoid the collision. This improved the
convergence rate of the SCP algorithm but potentially led to less optimal solutions. However, the bene�ts
gained in terms of total elapsed time were much more signi�cant than the slight increase in fuel usage. The
bene�t of reducing the run time can be magni�ed by implementing the algorithm in real-time as MPC. This
allows the algorithm to have some robustness with respect to unmodeled errors and disturbances.

Several methods for using SCP to solve the swarm recon�guration were presented in this paper. The
main trade o� seen in these methods was between fuel e�ciency and computational e�ciency. In general,
the decentralized parallel method was much more computationally e�cient and only slightly less fuel e�cient
so it was recommended unless computational e�ciency and the run time of the algorithm are unimportant
for the speci�c mission.

Appendix: Dynamics of Chief and Relative Motion

The translational dynamics of spacecraft in the LVLH frame is described by Eq. (1) with

g(‘;�) =

264�2
j � !2

z ��z !x!z

�z �2
j � !2

z � !2
x ��x

!x!z �x �2
j � !2

x

375 ‘+ (�j � �)

0B@sin i sin �

sin i cos �

cos i

1CA+

0B@r(�2
j � �2)

0

0

1CA (27)

where

� =
2kJ2 sin i sin �

r4
�j =

2kJ2rjZ
r5
j

�2 =
�

r3
+
kJ2

r5
� 5kJ2 sin2 i sin2 �

r5
�2
j =

�

r3
j

+
kJ2

r5
j

�
5kJ2r

2
jZ

r7
j

rj =
q

(r + xj)2 + y2
j + z2

j rjZ = (r + xj) sin i sin � + yj sin i cos � + zj cos i (28)

!x = �kJ2 sin 2i sin �

hr3
!y = 0 !z =

h

r2

�x = �kJ2 sin 2i cos �

r5
+

3vxkJ2 sin 2i sin �

r4h
� 8k2

J2 sin3 i cos i sin2 � cos �

r6h2

�z = �2hvx
r3
� kJ2 sin2 i sin 2�

r5

The orbital parameters of the chief orbit (origin of the LVLH frame) are governed by the following
equation of motion with J2 e�ects

_r = vx _vx = � �
r2

+
h2

r3
� kJ2

r4
(1� 3 sin2 i sin2 �)

_h = �kJ2 sin2 i sin 2�

r3
_
 = �2kJ2 cos i sin2 �

hr3
(29)

_i = �kJ2 sin 2i sin 2�

2hr3
_� =

h

r2
+

2kJ2 cos2 i sin2 �

hr3
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