
ENGLISH FOR THE COMPUTER

Frederick B

California Institu
Pasadena,

What about English as a programming language?
Few would question that this is a desirable goal. On
the other hand, I dare say every one of us has rather
deep reservations both about its feasibility and about
a number of problems that it entails.1 This paper
presents a point of view which gives some clarity to
the relationship between English and programming
languages. This point of view has found substance
in an experimental system called DEACON. The
second paper in this session will describe the specific
DEACON system and its capabilities.

There is one source of these reservations that we
should recognize, and that is the fact that we have
no adequate notion of the nature of natural language
and no precise description of its vagaries. It is for
this reason that most of those working on language
problems have concentrated on programming lan­
guages or confined themselves to syntax. However,
the semantics of natural language pose important
problems. These remarks are related to those
problems.

The excellent work that has been done on pro­
gramming languages, in particular on syntax-directed
compiling and its associated semantics, and work in
the area of symbolic logic have cast much light on
the natural language problem as well. It has illumi­
nated some very real difficulties. It has also illumi­
nated some aspects which can be exploited to good
ends. And more important, it has allowed the sepa-

. Thompson

•te of Technology
California

ration of the deep difficulties of dealing with natural
language from some of these exploitative opportuni­
ties. We shall build upon this work as well as on
recent work in linguistics.

What can be said about English as a computer
language? There are certain aspects of a very difficult
nature that are involved in a full-blown natural
language, namely the fact that it is self-referent. In
English, we can speak of English; we are doing so
at this very minute. We can say such things as:
"John believes Mary lies." Worse, we can say: "This
sentence lies." And we are all aware of the implica­
tions of this fact as discussed by Tarski,2 Godel, and
Turing.3 When we think of the possible uses of
English as a computer language, we realize that little
will be lost if we abandon those parts of English
which are self-referent or involve indirect discourse.
Let us do so.

Much of the world's knowledge is in written form.
Computers are being applied to the processing of
such documentary information and are being pro­
grammed to do some of the more routine functions
of the research librarian. To this end they must
indeed have a certain understanding of English.
Good work is being done in this direction, for ex­
ample, the work of Robert Simmons.4-5 However,
the use of computers to intelligently service docu­
mentary material is quite distinct from the use of
English as a computer language.

350 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

Thus I would like to focus our attention on the
use of English to:

1. input information into a computer,
2. instruct the computer to process the

information that it has stored away,
and

3. query the computer concerning the in­
formation it has stored away, and
which results from processing.

These are the functions that programming languages
perform.

Usually when we think of English, we are tempted
to include the traditional patterns of syntactic analy­
sis. But the parts of speech—noun, adjective, verb—
are not a part of English, but rather a method that
grammarians imposed long ago in their attempts to
understand the regularities of structure that are ap­
parent in language. Modern linguists, in their study
of syntax, have ramified, redefined, and modified
these traditional categories, well aware that they are,
at best, an imperfect tool for understanding the
structure of language. We shall feel free, therefore,
to choose our syntactic categories in whatever way
is useful in our analysis, and shall feel no compunc­
tion to stick to the traditional parts of speech.

In programming languages, we also find syntactic
categories: operator, label, subscripted integer varia­
ble, etc. In the formal expression of the syntax of a
programming language these categories are used in a
fashion parallel to the use of parts of speech in a
phrase structure grammar for English.

Typical phrase structure rule for English:

<Verb phrase>:: = < V e r b > < N o u n phrase>

Typical phrase structure rule for a programming
language:

<real expression>:: = <add op> <real factor >

However, there is a striking difference. The parts of
speech of traditional linguistics do not have semantic
implications beyond that made explicit by the rules
of grammar. They can be fully characterized as non­
terminal symbols which are used in expressing the
recursive relationships of English structure. In times
past, loose attempts to define these parts of speech in
terms of meaning have been made. However, since
Bloomfield such attempts have fallen into disrepute.

In sharp contrast, the syntactic categories used in
the description of programming languages have clear

semantic implications. An integer variable and a real
variable designate two quite distinct entities, inde­
pendent of how these variables are used syntac­
tically in program statements. In FORTRAN, for
example, to say that an expression is a doubly sub­
scripted variable implies a good deal about the
associated material in memory, namely that it is a
two-dimensional array stored column after column
contiguously. The part of speech of a word used in
a programming language carries clear structural im­
plications for the way the corresponding material is
stored in memory.

The work of Irons,6 and of those that have
followed him in the development of syntax-directed
compiling, has exploited this relationship and indeed
has gone much further. With each rule of grammar
there is associated a corresponding segment of code
which expresses the operations on memory structures
implied by a grammatical phrase to which the rule
applies. The syntactic analysis of a program state­
ment in terms of these rules of grammar provides the
necessary directions for compiling these segments of
code into a computer program which expresses the
semantic context of the statement. One of the most
elegant formulations of this point of view has been
given by Wirth and Weber in their paper: "EULER:
A Generalization of ALGOL, and its Formal
Definition."7

The following definitions of a formal language are
a straightforward generalization of these develop­
ments, for example, of the definitions given in the
Wirth-Weber paper.

A syntax is an ordered quadruple (V, <£,
B, s) where V is a vocabulary; <E> is a finite
set of syntactic rules <j>i (these rules may
be assumed to be of the form x -» y, where
x and y are strings from V); B designates
the terminal symbols, a subset of V; and s
is an element of V—B (which can be
thought of as the part of speech "sen­
tence").

The rule x -» y is to be read "the substring x may
be rewritten as y." Thus it permits a string w x z
to be rewritten as w y z. If a string u can be trans­
formed into a string v by successive rewritings of
substrings according to the syntax rules, then u is

said to produce v; in symbols, u -> v. In a derivation
*

such as u -» v, a sequence (<f>i, <j>2, . . ., </>w) of

ENGLISH FOR THE COMPUTER 351

syntax rules is applied. The inverted sequence (<f>m,
^TO-a, . . ., fa) is called a parse of v from u. A string

x is a sentence if s -» x, and all of its symbols are
in B, i.e., are terminal symbols.

If all the rules are of the form x -> y, and x is
always a single element of V, the syntax is called a
context-free phrase structure syntax. Although con­
text-free phrase structure grammars are convenient
to work with, it is known that they are not adequate
to describe current programming languages, nor do
they appear at all adequate for description of natural
language. On the other hand, it is known that any
language whose sentences are recursively enumerable
has a syntax as defined above, i.e., has a Post pro­
duction grammar8; thus our definition is as general
as one would desire. In practice, one may wish a
more complex form of syntactic rule—one that
specifies more completely the character of the strings
x for which a substitution may be made. Such rules
will be discussed at length below.

The terminal symbols B can be divided into two
parts: B = FUR. R, the referent symbols, are those
which refer to specific values. Typically, variables and
constants are referent or English words such as
"house" and "red." F, the function symbols, are
exemplified by delimiters or by the English words
"and" and "all." They play a quite different role
from referent words, as will be seen below.

The referent words of a language are differentiated
by the type of objects they may denote. In program­
ming languages, referent symbols include integer
variable, real two-dimensional array variable, list
name, function name, etc. Moreover, phrases (deri­
vations from referent symbols) may also be differ­
entiated by the types of objects they denote. Thus
in FORTRAN, not only do / and / denote integers,
but so also does / + /; in LISP, not only are A and
B list names but so is (A B). When we examine the
rules of syntax for a programming language, we find
that the nonterminal symbols appearing in these
rules are names for these categories of objects which
the corresponding referent symbols or phrases may
denote. They may also contain certain syntactic in­
formation (for example, the difference between a
term and a factor), but there is indeed a relationship
which relates each nonterminal symbol to a category
or group of categories of objects which the referent
symbols and phrases may denote. These categories
are the environment for the language.

An environment E is a finite set (Cl5 C2,
. . . , C„) of categories of memory struc­
tures. The Ci need not be disjoint.

For example, the environment for FORTRAN is
the set of integer and floating point scalars, one-,
two-, and three-dimensional arrays, and Boolean
elements.

An interpretation rule $ defines an action
(or sequence of actions) involving the
objects of an environment E. This formal­
izes a semantic counterpart of syntax.

A formal language L is a septuple (V, $,
F, R, s, ^ , E), where

a. (V, $, FUR, s) is a syntax, and
b. E is an environment.
c. There is a correspondence (possibly

many-many) between the symbols
of V—(FUR) and the categories
of E.

d. There is a correspondence between
R and objects of the categories of E,
thus establishing the initial values of
referent symbols.

e. * is a set of interpretation rules such
that a one-one mapping exists be­
tween elements of * and <£, and E
is the environment for elements of Ŝ .

To be complete, somewhat more than this must
be said about the relationship between syntax rules
and interpretation rules. We illustrate this with an
example:

Rule: fa. axazaz -» b^bjbjoi
Suppose: bi corresponds to Ci E E

«i corresponds to C\ e E
<}> corresponds to the interpretation rule ^.

Then $ is on d X C2 X C3 X C4 to C\ X C\
X C"3. In this example, we have assumed neither
side of the rule <£ contains function words. Function
words, being nonreferent, do not enter into the de­
termination of the arguments or values of $.

We are now in a position to define the
meaning of a sentence of L. The meaning
M (x) of a sentence x of L is the effect of
the execution of the sequence of intepreta-
tion rules fa, f 2, . . . , ipm on the environ­
ment E, where fa, . . . , <f>m is a parse of
the sentence x into the symbol s, and if/i
corresponds to fa for all /.

352 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

I should like to rephrase certain of these notions
in diagrammatic form to make clear certain of their
interrelationships. Let the environment E consist of
the categories Cx, C2, . . . , Ck. Then the relationship
between a referent word or phrase x and its value X
can be shown by the following commuting diagram,
where p e V — (FUR) is the part of speech of x
and C e E is the category associated with p.

x -» p

lie
Consider now the case of a context-free phrase struc­
ture rule of grammar <f>: q -» pxp2 . . . pn. Suppose
we have a string xx . . . xn where each Xi is a string
of terminal symbols and has previously been parsed

to pi, i.e., pi -» xi. According to the above defini­
tions, there is an interpretation rule x[/ corresponding
to <f> such that the following diagram commutes.

Xt x2 . . . xn > (<£: q-+px p2 ... pn)

MXi,X2,...,Xn) = Y-+(r- CV-C\XC2X ... X C„)

where Xi is the value denoted by Xi and Xi, as a
memory structure (such as an array or list), is in
the category d. The top half of the diagram shows
that the string JCX . . . x„. can be further parsed by <£,

*
i.e., q -> Xt . . . xn. Correspondingly, the value de­
noted by Xi . . . xn is Y = $ (Xx, . . . , Xn), The
interpretation rule if/ is shown as a functor that maps
the Cartesian product of the categories G , . . . , Cn

into the category C.

A more general diagram for a noncontext-free,
Post production rule is shown as follows:

What conditions must be placed on the inter­
pretation rule \pl Considering the matter from the
point of view of syntax-directed compiling, it cer­
tainly must be the case that the definition of ^ is
independent of the particular values Xi and depends
solely on the character of the categories d of
memory structures to which it applies. For example,
the code compiled for an arithmetic expression / +
/ , where / and / are integer variables, depends only
on this fact that they are integer variables and not
upon their particular values. The ^ must be defined

in terms of the structural aspects of the categories
alone. Further, ^ should be constructive, i.e., there
should be an algorithm for computing ^ (Xx, X2,. . . ,
Xn) whenever Xx, X2, . . . are in the appropriate
categories. A general definition of "interpretation
rule" can be given satisfying these two requirements,
along either the programming line following Mc­
Carthy9 or constructive set theory following Godel10;
the details however would take us too far afield here.
We shall simply speak of an interpretation rule ip
as being structural and constructive.

Now we come to the point of the matter. The
above two diagrams show that the domain of defini­
tion of iff is the whole of the Cartesian product
Ci X C2 X . . . X Cn. There is no particular need for
this stringent a requirement. Its domain of definition
may be some appropriate subset K C^ Cx X C2 X . . .
X C„. However, just as ^ itself must be defined in
terms of the structural aspects of the C, alone, so
also must this subset be identified by restrictions of
a similar character. A particular important class
of such restrictions are those which refer not only
to the parts of speech Pi and their associated cate­
gories Ci but also to the existence of certain parsings
of the strings JCi and the categories associated there­
with. Such rules are of particular importance be­
cause the restriction on their domain of application
can be stated in terms of parsings of the constituent
Xi strings and thus stated in purely syntactic terms.
Such rules of grammar for natural languages have
been identified by Chomsky and Harris who have
correctly stressed their importance.11-13 These are
the transformation rules. The importance Chomsky
gives to the concomitant transformation of the

phrase marker (roughly: parsing tree), as well as
his condition of the substitutability of strings in ele­
mentary transformations, can be seen in the above
terminology to insure that the restriction on the
domain of ^ is indeed dependent only on ques­
tions concerning categories and not on particular
values involved (see in particular pp. 300-3 of
Ref. 12). Such a condition, we have seen, is exactly
the one necessary to insure compilable code in a
syntax directed compiler.

i i
^(Xlf X2

i i
qm -> Pi

i i
Pn)

i
, Xn) = (Y„ . . . , Ym) -> U: C\ X . . . X Cm <- Cx X . . . X CB)

ENGLISH FOR THE COMPUTER 353

An example at this point may be in order. Con­
sider the situation where one wishes to analyze the
sentence "John saw Mary and Joan" into the two
sentences: "John saw Mary, John saw Joan."
Notice that the rule: NVN.NVN.^-NVN and N. is
not adequate, for it does not signal the condition
that the first and fifth constituents (namely "John,"
and "John" in the example sentence) must be iden­
tical. This extra condition cannot be simply stated
in phrase structure form but is easily and correctly
stated as a transformational rule. The passive trans­
formation, N1VN2->N1i aux V by Nl3 is another
example where an extra condition is necessary to
correctly identify the switched positions of subject
and object. Indeed, in the formation of many trans­
formation rules, it is desirable that the rule be ap­
plied to the entire sentence where the restriction of
the domain of the transformation is stated in terms
of an analysis of the structure of the sentence. In
this case, the phrase structure aspect of the rule
takes on the trivial form s^s (Ref. 12, pp. 300-
303). It is interesting to conjecture that the use of
such rules in defining programming languages might
well permit the statement of rules covering paren­
theses conventions in arithmetic expressions without
the introduction of superfluous parts of speech as
is now done. The compiling time such complex rules
entail would, of course, not warrant the change.

The final diagram, encompassing transformational
rules, can thus be shown:

The explanatory power of the approach presented
here can be seen to greater advantage by starting
with the semantic aspects rather than the syntax.
Let us focus our attention for a moment on the
memory of the computer. Considering it indepen­
dently from any particular program or programming
language, it is difficult to say whether it contains
any fixed point variables, arrays or list structures.
But it unmistakably has a complex, interknotted web
of structure. Now consider a structural, construc­
tive interpretation rule ^, say taking n arguments
(where each of its arguments may be considered
as an address in memory). We note that the value
ty (Xx, X2, . . . , Xn) obtained by application of the
rule ijr depends on the structure of memory "local"
to Xx, X2, . . . , Xn. This statement follows from the

structural and constructive nature of ty. In fact,
using the particular definition of $, we can char­
acterize certain structural categories Cl5 C2, . . . Cn.
If Xi e Ci, i — 1, . . . , n, that is if the structures
in memory which can locally be reached from the
Xi have the determined characteristics, then we can
determine from the definition of $ precisely what
the value $ (Xi, . . . , Xn) will be, independent of
the rest of memory. (On arguments which do not
have these structuarl characteristics, i.e., Xi e Ci is
not true, we can not predict what $ will do; thus if a
program applies a list processing operation to a
"non-list" address, the resulting indeterminacy is
characterized as a bug).

Suppose we start with a finite number of inter­
pretation rules ^i, ^2, • • ., <Am- From there we can
determine as above a finite number of structural
categories CUC2, . . . Ck such that the domains of
the ipi are subdirect products of the C/s, that is,
the domain of ^ is not only a subset of Cix X
Ci2 X . . . X Cin., but can be characterized struc­
turally in terms of relationships among elements
identified in the definitions of the Ci/s.

Suppose further that certain arguments XX,X2,
. . . , Xf are initially given. We now ask what argu­
ments can be reached from the Xi by application
and composition of the functions $p. What is com­
putable? We shall answer this question by relating
interpretation rules, categories and initial arguments
to our previous discussion.

Correspond to each of the X-x a referent word, or
formative; this will be our referent vocabulary R.
The categories d will constitute the vocabulary V —
(R U F). If the domain of a rule ^ is a subdirect
product of Cn X . . . X Cini we will adopt a trans­
formational rule of grammar establishing "CnCi2

. . . Cin" as a grammatical phrase subject to the
structural side condition.

Composition of interpretation rules applied to
appropriate arguments can now be seen to have as
an exact counterpart the parsing of the corresponding
string of formatives. For example (in the case of
context-free rules where it is easiest to see):

$X(XX, $2(X2, X3), ip3(X4, X5))

XX X2 .

i I
$(XX, X-2, . .

• . xn

i
• > Xn) =: (Yx, . .

i >

. , Ym) -+

(<£: qx . . . qm^> Pi • • . p«)

with side condition
if: C\ X . . . X C'm <- K C Cx X . . . X C„)

354 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

corresponds to the parsing tree

X.\ JC2 -^3 ^ 4 -^5

where Xi is the referent word corresponding to X{.
Thus those arguments in memory which can be
reached starting with the X* by using functional
composition of the interpretation rules are exactly
those which can be defined in the corresponding
formal language.

It is the underlying structural, constructive inter­
pretation rules on memory which are at the heart
of language. From these, the rest including syntax
can all be reconstructed. The expressiveness of a
formal language reduces to what can be reached
from the references of its words by functional com­
position of its interpretation rules.

Before going on, let us pause to consider the role
of function words. According to the definition of
meaning given above, a sentence may have multiple
meanings, i.e., be semantically ambiguous. This may
arise when a sentence has two parsings (though this
by itself does not necessarily imply semantic am­
biguity) . A typical case of ambiguity would occur if
parentheses were dropped from all arithmetical ex­
pressions. Consider, for example, the expression
/ + / X K. By convention we assume the multipli­
cation is to precede the addition. If the addition were
to be done first, delimiters would be inserted:
(/ + /) X K. It has been shown by David Benson
that any syntax can be made unambiguous through
appropriate augmentation by function words, and
this in such a way that no possible meaning (in the
above sense) will be lost. Thus function words are
seen as a device for reducing or eliminating syntactic
ambiguity. English sentences are replete with func­
tion words, including all sorts of suffixes, prefixes and
auxiliary words. Many words play dual roles in this
regard, both as pointers which help to establish
meaning, and as delimiters; for example, prepositions
and determiners.

The above definition of a formal language has
been developed in such a way as to show its clear
relationship to the notions of syntax directed com­
pilers and programming languages, and to current
investigations of the syntax of natural languages.
An equally close relationship exists between this

definition and the formal languages of symbolic
logic. Rather than formally show this correspondence
here, let us see whether we can use the above mecha­
nism to identify the "logic" of a programming
language.

The semantic studies which lie at the root of
modern logic and metamathematics are based upon
an adequate definition of the notion of truth. The
fundamental problem can be stated as the problem
of determining for a sentence those environments
where it is satisfied. To this end, let us choose s,
the preferred symbol of our formal language, to be
a Boolean variable. In this case, we see that for any
sentence x, the meaning M(x) of x will be either
"true" or "false." The interpretation rules become
the counterpart of Tarski's definition of satisfaction
for languages of symbolic logic.14 A sentence x is
logically true, or a tautology, if M(x) is "true" for
every initial assignment of values to the referent
symbols in JR. By this simple means, the notions and
results of mathematical semantics can be extended
to the generalized notion of formal language given
by the above definition.

But what about English? Recall that our interest
in this paper is English as a programming language.
If we are to develop a syntax-directed interpreter for
English, we must first determine what structural
categories are to make up its environment E. This
question is in some sense a priori to the question of
English, for English presumably does not prejudice
the structural relationships that exist among the ele­
ments of a universe of discourse. On the other hand,
the decision as to the memory structures the com­
puter is to use in storing its data is a crucial one.
The efficiencies of a programming language depend
strongly on policies concerning memory management
and structuring. If the universe of discourse is weakly
structured with few cross-relationships one would
expect any language, English or not, dealing with
such subject matter to be inefficient to use and of
very limited expressiveness.

The first major issue, then, in using English as a
programming language is the same as that for any
other programming language, the policy concerning
memory management and structuring. When using
English, we take for granted a richly connected web
of implicit relationships, which we must now make
explicit in computer memory. In the current DEA­
CON work, data is organized into ring structures.
These structures are similar in many respects to the
plex structures defined by Ross15 and used by

ENGLISH FOR THE COMPUTER 355

Sutherland in Sketchpad,16 and are an extension of
the notion of list structure.

Once the structural categories of the environment
have been chosen, the central issue can be imme­
diately clarified. Each of the referent words and
phrases of the language have, as their denotational
values, elements which are members of these cate­
gories. These categories correspond therefore to parts
of speech. Can a syntax for English be developed,
using these new parts of speech, which accounts for
all of its richness of grammatical structure? A second
way to put the same question is this: if the subject
matter of English is limited to material whose inter­
relationships are specifiable in a limited number of
precisely structured categories, does English essen­
tially become a formal language as defined above? I
believe that the DEACON work to date constitutes
a confirmation of this hypothesis.

DEACON makes use of transformational rules as
discussed above. It does this in a rather clear way
by dividing the syntactic aspect of the grammar
rule into two parts. The first is a straightforward
phrase structure rule (not necessarily context-free).
The second part can be considered as essentially
determining whether the constituents fall within the
subspace on which the interpretation rule is defined.

In their discussions of transformational grammars,
both Harris and Chomsky have pointed out that it
is possible through transformations to reduce a com­
plex sentence to a series of interrelated sentences of
simple type. Quite independently, we found it most
expeditious to use what we refer to as a Verb Table
for analysis of a sentence in the DEACON System.
The columns in this table correspond quite directly
to kernel sentences. The various columns are cross-
linked from right to left showing the role of one
kernel sentence in defining a constituent of a prior
one in the table. The Verb Table is a rudimentary
realization of the notion of the deep structure of a
sentence. It is interesting to note that the Baseball
English language query system by Green et al17 pro­
duces a spec list as an intervening table between
syntactic and semantic analysis, which can also be
viewed as a realization of the notion of deep struc­
ture when applied to the segment of English used in
that system.

It is the central thesis of this paper that, when the
subject matter of English is limited to material whose
interrelationships are specifiable in a limited number
of precisely structured categories, English essentially
becomes a formal language as defined above. This

hypothesis has far-reaching consequences. It implies
that the complexities of natural language arise
neither from vagaries of syntax nor from the variety
of its subject matter, but rather from the immense
complexities of the intervening memory structures
which mediate between stimulus and verbal response.
The words of the language are keys to the specific
structures in memory which carry the referenced in­
formation. The relationships established among a
particular set of words by a particular sentence are
keys to the structural transformations, the interpre­
tation rules, that develop the meaning of the sen­
tence from the structures keyed to its constituent
words. If we artificially limit these structural forms,
English reduces homomorphically to a formal lan­
guage.

I should like to make a few remarks on certain
issues concerned with the efficacy of English as a
programming language. First, it can be said that cer­
tain other existent programming languages are Eng­
lish-like in their sentence formats, for example
COBOL. What is the essential difference between
such languages and extended versions of DEACON?
COBOL and other similar languages have chosen a
restricted set of formats for their statements which
are, to be sure, English-like. However the number of
such phrase formats is very limited and any di­
vergence from these formats is excluded. In develop­
ing these languages there appears to have been a
hesitancy to allow the great plurality of forms which
one finds in everyday English, possibly because of a
fear that unacceptable levels of ambiguity might
arise, possibly because of the acknowledged comput­
ing time required by a more elaborate parsing
algorithm. In particular little has been done to capi­
talize on the rich variety of function words which
one finds in English. In the DEACON work the bull
was taken by the horns, so to speak. It has been
found that a wide variety of forms can be accom­
modated in a reasonable number of rules. Although
computing time due to parsing is still a critical prob­
lem, even here times are achieved which make the
result feasible for a number of applications.

What about ambiguity? It is well known that sys­
tems for the syntactic analysis of natural languages
produce an unacceptably high number of ambiguous
syntactic analyses for a given sentence. This is to
some extent true in the DEACON syntactic analysis
as well. However, systems built along lines described
herein go beyond syntactic analysis. It is found in
practice that the semantic analysis aspects of the

356 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1966

system resolve many of these syntactic ambiguities.
In many cases, several parsings will yield a single
meaning. More often, the interpretive rules, when
applied to a parsing, will indicate it to be seman-
tically vacuous, thereby reducing the number of
meaningful analyses.

However, ambiguities remain. In some areas of
computing, areas indeed which currently account for
the great bulk of computations, a single program will
be used to make a large number of calculations, and
speed of processing and precision of statement are
prime requirements. In this case, an algebraic lan­
guage allowing no ambiguities, with an optimizing
compiler to produce an efficient object program, is
certainly called for. Even here the question of am­
biguities at the problem definition level, before the
programmer begins his translation, cannot be wholly
overlooked.

When the ultimate user is less clear concerning his
problem and the computer enters into the creative
feedback loop, there is great advantage in providing
the means for communication directly with the com­
puter in a language he finds natural and which has
greater flexibility. Further, there is a vast area where
the computer can be of great value to ongoing oper­
ations, where military and management staffs need
effective access to data in forms responsive to their
immediate needs. The expression of these data ma­
nipulating requirements to the computer differs only
by degree from programming as the computer spe­
cialist knows it. It is in these latter categories of
programming that the programming language should
be English. The conversational mode provides the
means for immediately resolving ambiguities. The
advantages of the interpretive mode for immediate
response are not over balanced by the need for op­
timized code. And the naturalness of the language
frees the user for concentration on the problem at
hand rather than on its translation.

REFERENCES

1. For recent comment on the problem and pros­
pects of "English as a Programming Language" see
the discussion between Jean Sammett, R. W. Floyd
et al in Comm. ACM, vol. 9, pp. 228-30 (1966).

2. A. Tarski, "Der Wahrheitsbergriff in den for-
malisierten Sprachen," Studia Philosophica, vol. 1,
pp. 261-405 (1936); English translation in Logic,
Semantics, Metamathematics, Oxford University
Press, New York, 1956, pp. 152-278.

3. See papers of Turing and Godel in M. Davis
(ed.), The Undecidable, Raven, New York, 1956.

4. R. F. Simmons and K. L. McConlogue, "Maxi­
mum-Depth Indexing for Computer Retrieval of
English Language Data," Amer. Documentation, vol.
14, pp. 68-73 (1963).

5. , S. Klein, and K. L. McConlogue, "In­
dexing and Dependency Logic for Answering English
Questions," ibid, vol. 15, pp. 196-204 (1964).

6. E. Irons, "A Syntax Directed Compiler for
ALGOL 60," Comm. ACM, vol. 4, pp. 51-55
(1961).

7. N. Wirth and H. Weber, "EULER: A Gen­
eralization of ALGOL, and its Formal Definition,"
ibid, vol. 9, pp. 13-25, 89-99 (1966).

8. E. L. Post, "Formal Reductions of the General
Decision Problem," Am. J. of Math., vol. 65, pp.
197-215 (1943).

9. J. McCarthy, "A Basis for a Mathematical
Theory of Computation," in P. Braffort and D.
Hirschberg, Computer Programming and Formal
Systems, North Holland, Amsterdam, 1963, pp.
33-70.

10. K. Godel, The Consistency of the Axiom of
Choice and of the Generalized Continuum-Hypoth­
esis, Princeton University Press, 1940.

11. N. Chomsky, "Three Models for the Descrip­
tion of Language," IRE Transactions on Information
Theory, IT-2(3), pp. 36-45 (1956).

12. , and G. A. Miller, "Introduction to the
Formal Analysis of Natural Languages," in R. D.
Luce, R. Bush, and E. Galanter (eds.), Handbook
of Mathematical Psychology, vol. II, Wiley, New
York, 1963, pp. 269-322.

13. Z. S. Harris, "Transformational Theory,"
Language, vol. 41, pp. 363^101 (1965).

14. A. Tarski, "The Semantic Conception of
Truth and the Foundations of Semantics," Phil, and
Phenomenological Research, vol. 4, pp. 341—76
(1944); reprinted in H. Feigl and W. Sellars (eds.),
Readings in Philosophical Analysis, New York,
1949.

15. D. T. Ross and J. E. Rodriguez, "Theoretical
Foundations for the Computer-Aided Design Sys­
tem," Proc. of Spring Joint Computer Conference,
1963, pp. 305-22.

16. J. E. Sutherland, "Sketchpad: A Man-Ma­
chine Graphical Communication System," ibid, pp.
329-346.

17. B. F. Green, Jr., et al, "Baseball: An Auto­
matic Question Answerer," Proc. of Western Joint
Computer Conference, 1961, pp. 219-24.

