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DECENTRALIZED MODEL PREDICTIVE CONTROL OF SWARMS
OF SPACECRAFT USING SEQUENTIAL CONVEX

PROGRAMMING

Daniel Morgan∗, Soon-Jo Chung†, and Fred Y. Hadaegh‡

This paper presents a decentralized, model predictive control algorithm for the
reconfiguration of swarms of spacecraft composed of hundreds to thousands of
agents with limited capabilities. In our prior work, sequential convex program-
ming has been used to determine collision-free, fuel-efficient trajectories for the
reconfiguration of spacecraft swarms. This paper uses a model predictive control
approach to implement the sequential convex programming algorithm in real-time.
By updating the optimal trajectories during the reconfiguration, the model predic-
tive control algorithm results in decentralized computations and communication
between neighboring spacecraft only. Additionally, model predictive control re-
duces the horizon of the convex optimizations, which reduces the run time of the
algorithm.

INTRODUCTION

Spacecraft formation flying has been a major area of research over the past decade. Recently, the
idea of formation flying has been extended to create swarms of spacecraft,1 which contain a large
number (hundreds to thousands) of femtosatellites (100-gram class spacecraft). Due to their small
size, the femtosats have limited sensing, actuation, and computation capabilities, which require the
guidance and control algorithms of the swarm to be both fuel and computationally efficient.

J2-invariant orbits2 have been shown to maintain the swarm shape and provide collision-free mo-
tion for hundreds of orbits. These orbits are very effective at swarm keeping once the swarm is in
a desired formation. However, another important requirement for swarm missions is the guidance
and control of the swarm reconfiguration. The goal of this paper is to develop a fuel and compu-
tationally efficient guidance and control algorithm for the reconfiguration of a swarm of spacecraft
located in low Earth orbit (LEO). This algorithm will transfer the spacecraft from one set of J2-
invariant passive relative orbits (PROs) to another. In addition to being fuel and computationally
efficient, the algorithm should provide collision-free motion in the highly nonlinear dynamics of
relative spacecraft motion in the presence of J2, which is the dominant perturbation in LEO.

Previous work in spacecraft formation flying3, 4 and multivehicle control research5, 6, 7 has devel-
oped many multivehicle guidance methods. However, the previous work in formation flying usually
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deals with a small number of spacecraft, a dozen at the most. Additionally, the spacecraft are much
larger than femtosats with greater capabilities. The swarm guidance algorithms must be different
from previous research because they need to simultaneously address the large number of agents, the
modest capabilities of each individual agent, and the complex dynamic environment. Specifically,
the large number of spacecraft makes collision avoidance a major challenge and the limited compu-
tational capabilities of each agent require that the swarm reconfiguration algorithm is very simple
so that it can be run onboard the femtosats in real time.

The reconfiguration of a swarm of spacecraft can be formulated as a nonlinear optimal control
problem. Many methods have been developed for solving nonlinear optimal control problems. Due
to the complicated nonlinear dynamics of swarms of spacecraft, indirect methods become difficult
to use because they require the derivation of the first-order necessary conditions for optimality.8, 9

Therefore, many optimization problems are solved using direct methods, which parameterize the
control, and sometimes the state, space reducing the problem to a nonlinear optimization. Pseu-
dospectral methods10 have been used for trajectory optimization but this method solves a centralized
problem which will scale poorly with the number of spacecraft due to the coupling of spacecraft in
the collision avoidance constraints. Mixed integer linear programming (MILP) can be used to en-
force collision avoidance constraints and has been implemented in real-time11 as well as used for
preplanning trajectories.12, 13 However, these algorithms will also scale poorly as the number of
spacecraft increases due to the increase in integer variables caused by the increase in the number of
collision constraints.

To find a swarm reconfiguration algorithm that can be run onboard the femtosats, more efficient
optimization algorithms are considered. Convex optimization14 has been used in multi-vehicle
trajectory design and it has been shown to efficiently achieve a global optimum. Mattingley et
al.15 used convex optimization to implement a receding horizon controller for a convex problem.
Acikmese et al.16 used convex optimization to find trajectories for a formation reconfiguration with
collision avoidance. However, convexifying the collision constraints results in an overly conserva-
tive approximation of the collision-free region. In our prior work,17 sequential convex programming
(SCP)18 was applied to the swarm reconfiguration. SCP uses multiple iterations to ensure that the
convex approximations of nonconvex constraints are accurate resulting in more fuel-efficient tra-
jectories. Additionally, the SCP algorithms can be written using freely available software, such as
CVX,19 to solve the convex programming problems at each iteration.

By solving the swarm reconfiguration as an optimization problem, the entire trajectory is gener-
ated for each spacecraft at the initial time. In our prior work,17 it was shown that these trajectories
can be computed onboard the femtosats. However, calculating the entire trajectory, with collision
avoidance, for each spacecraft at the initial time requires each spacecraft to have strong commu-
nication capabilities. In order to relax this assumption, the swarm reconfiguration is formulated
as a model predictive control (MPC), or receding horizon control, problem using SCP to solve the
optimizations.

MPC has been a major research area in recent years.20, 21 The original MPC problem has been
modified to create robust MPC22, 23, 24 and fast MPC.25, 26 Additionally, MPC has been used in ap-
plications similar to swarm guidance, such as vehicle maneuvering22 and spacecraft landing.27 In
all of these variations and applications of MPC, the basic idea remains the same. MPC computes
the control input by solving a finite-horizon optimization subject to control and state constraints
with the current state as the initial state of the optimization. Then, the control input is applied to the
system until a new computation is completed giving an updated control input.
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The goal of this paper is to develop a model predictive control implementation, which provides
collision-free motion for the reconfiguration of swarms of spacecraft and can be implemented on a
femtosat with limited computation and communication capabilities. The MPC algorithm presented
in this paper will build upon our prior work on J2-invariant orbits2 and optimal swarm trajectories.17

The J2-invariant conditions from our prior work2 are used as the boundary conditions for the swarm
reconfiguration. The SCP algorithm17 will be used to compute the optimizations used in the MPC
implementation, which results in a fully decentralized reconfiguration algorithm.

The novelty of the MPC implementation using SCP is that it decentralizes the computations and
communications required for swarm reconfiguration with collision avoidance. This allows the al-
gorithm to handle hundreds to thousands of spacecraft in real time with calculations performed on-
board the femtosats. Additionally, the MPC implementation offers several other advantages. First,
the limited horizon of the MPC implementation greatly reduces the size of the SCP problem and,
therefore, the run time. Additionally, the limited horizon allows the algorithm to include collision
avoidance constraints for only the neighboring spacecraft. This decentralizes the communication
requirements of the SCP algorithm. Finally, by running the SCP algorithm multiple times, any dif-
ferences between the desired and actual trajectories, which can be caused by errors or uncertainties,
are accounted for when computing the future trajectories. This provides some robustness to the
MPC implementation that is not present when the SCP algorithm is run only once at the initial time.

The paper is organized as follows. First, the swarm reconfiguration is discussed and the optimal
control problem is described. Then, the SCP problem is implemented using MPC and the effective-
ness of this algorithm is investigated. Finally, the results of simulations are discussed.

GUIDANCE OF SWARMS OF SPACECRAFT

In this section, the swarm reconfiguration is presented as a continuous, finite horizon optimal
control problem. The swarm reconfiguration involves the transfer of hundreds to thousands of
spacecraft from one J2-invariant PRO2 to another while avoiding collisions between spacecraft and
minimizing the total fuel used during the transfer. To properly define the variables and constraints
involved in the optimization problem, two coordinate systems must be defined. First, the Earth
Centered Inertial (ECI) coordinate system is used to locate the chief spacecraft or a virtual reference
point called the chief orbit (see Figure 1a). This coordinate system is inertially fixed and located
at the center of the Earth. The X̂∗ direction points towards the vernal equinox, the Ẑ direction
points towards the north pole, and the Ŷ direction is perpendicular to the other two and completes
the right-handed coordinate system. The second coordinate system is the Local Vertical, Local
Horizonal (LVLH) coordinate system. The LVLH frame is centered at the chief spacecraft or chief
orbit. Figure 1a shows the LVLH frame with respect to a chief spacecraft. The x̂, or radial, direction
is always aligned with the position vector and points away from the Earth, the ẑ, or crosstrack,
direction is aligned with the angular momentum vector, and the ŷ, or alongtrack, direction completes
the right-handed coordinate system. The LVLH frame is a rotating frame with a rotation rate of ωx
about the radial axis and ωz about the crosstrack axis. The relative state of the deputy spacecraft in
the LVLH frame is expressed by xj = [ xj yj zj ẋj ẏj żj ]T .

The optimization problem for swarm reconfiguration is written using the LVLH coordinates and
dynamics. The equations of motion for spacecraft in the LVLH frame are shown in the Appendix.28

The reference orbit should be defined by either a virtual or passive spacecraft so that the equations

∗A notation section defining the symbols used in this paper is located after the acknowledgement section.
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(a) ECI (X̂, Ŷ , Ẑ) and LVLH Frames (x̂, ŷ, ẑ)

Concentric PROs

(b) Spacecraft Swarm

Figure 1. A visualization of the relative coordinate system and a spacecraft swarm2

of motion can be integrated and the reference orbital elements (œ) can be thought of as known
values in the optimization problem. The dynamics constraints are given in the Appendix. In addition
to the dynamics constraints, the following constraints must be enforced as well.

‖uj(t)‖ ≤ Umax ∀t ∈ [0, tf ], j = 1, . . . , N (1)

‖C[xj(t)− xi(t)]‖ ≥ Rcol ∀t ∈ [0, tf ], i > j, j = 1, . . . , N − 1 (2)

xj(0) = xj,0 j = 1, . . . , N (3)

xj(tf ) = xj,f j = 1, . . . , N (4)

where C = [I3×3 03×3]. Equation (1) represents the limitation on the magnitude of the con-
trol vector with Umax being the maximum allowable control magnitude, Eq. (2) is the collision
avoidance constraint with Rcol being the minimum allowable distance between two spacecraft, and
Eqs. (3)-(4) are the initial state constraint and the final state constraint, respectively. For the simu-
lations, random positions are chosen for the initial and final states and the velocities are determined
using the J2-invariant conditions developed in our prior work.2

The objective of the swarm reconfiguration is to minimize fuel. Therefore, we can define the
swarm reconfiguration as follows

Problem 1: Nonconvex Optimization

min
uj ,j=1,..,N

N∑
j=1

∫ tf

0
‖uj(t)‖dt subject to {(39), (1)− (4)} (5)

It is important to note that the objective function and the constraints of Eqs. (1), (3), and (4)
already satisfy the requirements for a convex programming problem. Therefore, only the dynamics,
Eq. (39), and the collision avoidance constraints, Eq. (2), need to be converted in order to make
Problem 1 (Eq. (5)) convex.

The next step is to express the swarm reconfiguration problem, described in Problem 1, as a
convex program. To convexify Problem 1, the dynamic constraints in Eq. (39) are linearized, the
state and control variables are discretized, and the collision avoidance constraints in Eq. (2) are
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convexified. This convexification process is shown in detail in our prior work.17 The definitions and
derivations of Ad, Bd, and cd are located in the Appendix. The resulting convex program is shown
in Problem 2.

Problem 2: Convexified Optimization

min
uj

T−1∑
k=1

‖uj [k]‖∆t ∀j = 1, . . . , N (6)

subject to

xj [k + 1] = Ad(x̄j ,œ)xj [k] +Bduj [k] + cd(x̄j ,œ), k = 1, . . . , T − 1, j = 1, . . . , N (7)

‖uj [k]‖ ≤ Umax k = 1, . . . , T − 1, j = 1, . . . , N (8)

xj [1] = xj,0 j = 1, . . . , N (9)

xj [T ] = xj,f j = 1, . . . , N (10)

[x̄j [k]− x̄i[k]]TCTC[xj [k]− xi[k]] ≥ Rcol‖C[x̄j [k]− x̄i[k]]‖ (11)

k = 1, . . . , T, i > j, j = 1, . . . , N − 1

In Problem 2, The collision avoidance constraints are converted to convex constraints. Because
the collision avoidance constraints in their original form are the complement of a convex set, the
best convex approximations will be affine constraints. In other words, the sphere which defines
the forbidden region is approximated by a plane which is tangent to the sphere and perpendicular
to the line segment between the two spacecraft. This idea is shown in 2-D using a line and a
circle in Figure 2. Figure 2a shows the prohibited zone for the initial collision avoidance constraint
and Figure 2b demonstrates the convexification of the constraint. Based on the positions of the
spacecraft in the previous iteration of the SCP algorithm, a line (or plane in the 3-D version) is
defined tangent to the nonconvex prohibited zone and perpendicular to the line segment connecting
the spacecraft. This line defines a half space, which is the convex prohibited zone. As can be
seen in Figure 2b, the convex prohibited zone contains the nonconvex prohibited zone so collision
avoidance is still guaranteed using this convexification method.

MODEL PREDICTIVE CONTROL

Problem Formulation

In this section, the convex program described in Problem 2 is converted to a MPC problem. In
order to describe the MPC algorithm, Problem 3 and Problem 4 are defined. Problem 3 is defined
so that the horizon for the optimization does not reach the terminal time for the reconfiguration.
For this reason, the terminal constraint, Eq. (10), in Problem 2 is not enforced in Problem 3. In-
stead, a terminal cost (hj(x[k], k)) is added to the objective to estimate the cost of completing the
reconfiguration from the state and time at the end of the optimization horizon. Problem 3 is used
in the MPC algorithm when the horizon of the optimization does not reach the terminal time of the
reconfiguration. Problem 4 is very similar to Problem 2 with the only difference being the starting
time. Problem 4 is used in the MPC algorithm when the horizon of the optimization goes beyond the
terminal time of the reconfiguration. In both Problem 3 and Problem 4, the spacecraft are assumed
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Figure 2. Convexification of the 2-D collision avoidance constraint17

to have limited communication range. Therefore, they can only communicate with the other space-
craft that are near them. This determines which pairs of spacecraft will have collision constraints.
Problem 3 and Problem 4 are expressed as follows.

Problem 3: Convex Optimization with Terminal Cost for k0 + TH < T

min
uj

k0+TH−1∑
k=k0

‖uj [k]‖∆t+ hj (xj [k0 + TH ], k0 + TH) ∀j = 1, . . . , N (12)

subject to

xj [k+1] = Ad(x̄j ,œ)xj [k]+Bduj [k]+cd(x̄j ,œ), k = k0, . . . , k0+TH−1, j = 1, . . . , N
(13)

(x̄j [k]− x̄i[k])TCTC(xj [k]− x̄i[k]) ≥ Rcol‖C(x̄j [k]− x̄i[k])‖ (14)

k = k0, . . . , k0 + TH , {i, j} : i ∈ Nj , Nj = {i|i > j, ‖xj [k0]− xi[k0]‖ ≤ Rcomm}

‖uj [k]‖ ≤ Umax k = k0, . . . , k0 + TH − 1, j = 1, . . . , N (15)

xj [k0] = xj,MPC j = 1, . . . , N (16)

Problem 4: Convex Optimization with Terminal Constraint for T − TH ≤ k0 < T

min
uj

T−1∑
k=k0

‖uj [k]‖∆t ∀j = 1, . . . , N (17)

subject to (16) and

xj [k + 1] = Ad(x̄j ,œ)xj [k] +Bduj [k] + cd(x̄j ,œ), k = k0, . . . , T − 1, j = 1, . . . , N
(18)
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(b) Trajectory from running the MPC implemen-
tation of the SCP algorithm

Figure 3. Convexification of the 2-D collision avoidance constraint

(x̄j [k]− x̄i[k])TCTC(xj [k]− x̄i[k]) ≥ Rcol‖C(x̄j [k]− x̄i[k])‖ (19)

k = k0, . . . , T, {i, j} : i ∈ Nj , Nj = {i|i > j, ‖xj [k0]− xi[k0]‖ ≤ Rcomm}

‖uj [k]‖ ≤ Umax k = k0, . . . , T − 1, j = 1, . . . , N (20)

xj [T ] = xj,f j = 1, . . . , N (21)

The MPC implementation of the SCP algorithm (MPC-SCP) is performed by reducing the hori-
zon of the SCP problem and then solving this problem repeatedly throughout the reconfiguration.
Initially, the SCP algorithm17 is run for the optimal trajectory up to a finite horizon (TH ). As the
spacecraft approaches this horizon in real time, Problem 3 is solved using SCP for the current time
step (k0) and position (xj,MPC) up to the new horizon (k0 + TH ). It is important to note that k0

is the current time step at the beginning of each MPC iteration and increases with time. xj,MPC

is the real-time position and velocity of the spacecraft when the MPC algorithm is run. This value
represents the initial condition of the MPC algorithm. Once k0 exceeds T−TH , Problem 4 is solved
instead of Problem 3. This process is repeated until the spacecraft reaches the desired position (xj,f )
at the final time step (T ).

The result of the MPC implementation is a fully decentralized reconfiguration algorithm with im-
proved computation times as well as better robustness when sensor and actuator errors are included.
The decentralization of the swarm reconfiguration algorithm greatly reduces the communication and
computation requirements of the femtosats. Additionally, the increased robustness properties of this
algorithm will reduce the fuel requirements for the femtosats. The benefits of the MPC implemen-
tation with respect to robustness and fuel efficiency are shown in Figure 3. Figure 3a shows how an
initial actuator or sensor error can cause the actual final position (blue circle) to have a significant
error with respect to the desired final position (red circle) if the SCP algorithm is only run once.
However, the MPC implementation in Figure 3b can reduce this error by updating the desired tra-
jectory based on the actual position and velocity at various points (small blue circles) throughout the
reconfiguration. In addition to reducing final position errors, the MPC implementation reduces the
computation, communication, and fuel requirements, which is especially important for femtosats
due to their very limited volume and mass.

Stability

The stability of the MPC-SCP algorithm is dependent on the terminal cost function (hj (xj [k], k))
in Eq. (12) of Problem 3. In order to ensure the stability of the MPC algorithm, the terminal cost
function (hj (xj [k], k)) is defined as the solution to the following optimization problem.
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Figure 4. Illustration of the optimization horizon used in the MPC algorithms

Problem 5: Convex Terminal Cost Function

Minimize (17) subject to {(16),(18),(20),(21)}

This terminal cost function evaluates the fuel required to go from the position and time at the end
of the horizon to the terminal position at the terminal time without considering collision avoidance
constraints during this part of the trajectory. There are two reasons not to enforce the collision
avoidance constraints when calculating the terminal cost function. First, the collision avoidance
constraints add complexity to the problem so removing them greatly reduces the time required
for the computation. Second, the spacecraft can only communicate with other spacecraft within a
certain distance of them.

Substituting the terminal cost function that results from Problem 5 into Problem 3 results in the
following optimization problem.

Problem 6: Stable Convex Optimization for k0 + TH < T

Minimize (17) subject to {(14),(16),(18),(20),(21)}

The concept of Problem 6 is shown in Figure 4. This figure shows the various stages of the MPC
algorithm. The first stage is shown by the solid line in Figure 4. This represents the actual trajectory
that the spacecraft has traversed and it occurs between k = 1 and k = k0. k = k0 represents the
current time, and the initial time in the optimization. The next stage occurs between k = k0 and
k = k0 +TH and is shown as a dashed line in the figure. This represents the predicted trajectory and
collision avoidance is considered during this time period. The final stage is illustrated by the dotted
line and extends from k = k0 + TH and k = T . During this time, the predicted trajectory does not
take into account collision avoidance. It is important to note that if the second stage (dashed line)
extends beyond the final time, the final stage does not exist and Problem 4 should be used instead
of Problem 6.

Stable MPC-SCP uses Problem 4 and Problem 6 as the optimization problems. This algorithm
uses the solution to Problem 4 if k0 ≥ T − TH and the solution to Problem 6 if k0 < T − TH .
In either case, the final state is fixed from Eq. (21) in Problem 4 and Problem 6. Therefore the
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trajectory is guaranteed to converge to the desired final state as long as the optimizations described
in Problems 4 and 6 are feasible. The feasibility of the optimizations is discussed in the following
subsection.

Feasibility

In order for the trajectories resulting from using Stable MPC-SCP to converge, the optimizations
must be feasible. Infeasibility of the optimization can result for two reasons: The collision avoidance
constraints cannot all be satisfied or the terminal constraint cannot be satisfied without violating the
limit on the velocity and/or control vectors. The collision avoidance infeasibility arises because
collision avoidance is only considered up to the horizon of the optimization and other spacecraft
can only be detected if they are within the communication radius (Rcomm). Therefore, collisions
that occur after the optimization horizon or with spacecraft outside of the communication radius are
not considered until a later time step. For this reason, several conditions are introduced to ensure
that collision avoidance is guaranteed.

In order to guarantee feasibility, an artificial constraint is imposed on the problem in order to
bound the distance that each spacecraft can move during each time step. This condition is written
as follows.

‖Dxj [k]‖ ≤ Vmax k = k0, . . . , T, j = 1, . . . , N (22)

where D = [03×3 I3×3]. Adding this constraint to Problem 6 and Problem 4 yields Problem 7 and
Problem 8, respectively.

Problem 7: Feasible Convex Optimization for k0 + TH < T

Minimize (17) subject to {(14),(16),(18),(20),(21),(22)}

Problem 8: Feasible Convex Optimization for T − TH ≤ k0 < T

Minimize (17) subject to {(16),(18),(19),(20),(21),(22)}

Feasible MPC-SCP uses Problem 7 and Problem 8 as the optimization problems. This method
uses the solution to Problem 7 if k0 < T − TH and the solution to Problem 8 if k0 ≥ T − TH .
Assuming that the original optimization problem described by Problem 2 is feasible, i.e. the initial
and terminal constraints can be satisfied without violating the collision avoidance constraints, the
following conditions ensure that the MPC-SCP algorithm is feasible :

Proposition 1: Detectable Collisions
All spacecraft that can cause collisions within the current horizon are able to be detected if

Rcomm ≥ max{2VmaxTH∆t, Rcol + 2Vmax∆t} (23)

Proof: This first term on the right hand side guarantees that any spacecraft that could potentially
cause a collision before the end of the MPC horizon is detected and therefore considered in the
optimization. The length of the horizon is the number of time steps (TH ) multiplied by the length
of each time step (∆t). Additionally, the maximum relative velocity between two spacecraft is
2Vmax. Therefore, the maximum change in the relative distance between two spacecraft is given
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by the first term on the right hand side of Eq. (23). Any pair of spacecraft closer than this distance
can potentially collide before the end of the MPC horizon. To ensure that all of these collisions are
detected, the communication radius (Rcomm) must be at least as big as this distance. This establishes
Rcomm ≥ 2VmaxTH∆t.

This second term on the right hand side ensures that the initial position constraints for each opti-
mization do not violate the collision avoidance constraints. To ensure this, every collision must be
detected at least one time step before the collision occurs. As mentioned above, the maximum rel-
ative velocity between two spacecraft is 2Vmax. This means that the change in the relative distance
between two spacecraft in one time step is 2Vmax∆t. This distance must be less than the differ-
ence between the communication radius (Rcomm) and the collision radius (Rcol). This establishes
Rcomm ≥ Rcol + 2Vmax∆t and Eq. (23).

Proposition 2: Computational Feasibility
The new control sequence can be computed before the previous horizon is reached if

trun ≤ TH∆t (24)

Proof: Since collision avoidance is not enforced after the end of the MPC horizon, a new control
sequence must be computed before the current control sequence reaches the end of the horizon.
Otherwise, the control sequence will not necessarily avoid collisions. Therefore, the computation
time of each step of the MPC algorithm (trun) must be less than the length of the MPC horizon
(TH∆t). This results in Eq. (24).

Propositions 1-2 ensure the optimizations in Feasible MPC-SCP have solutions. Since the opti-
mizations performed by this algorithm are feasible, the collision avoidance constraints are satisfied
and there are no collisions at the discrete time steps. However, there is still a possibility that col-
lisions occur in between time steps when the collision avoidance constraints are not enforced. The
following theorem addresses this issue.

Theorem 1: Collision Avoidance between Time Steps
If two spacecraft are collision free during two consecutive time steps k and k+1 and Eqs. (25)–(26)
are satisfied, then the two spacecraft are collision free in the interval t ∈ [k∆t, (k + 1)∆t].

Vmax <
Rcol

∆t
(25)

Rcol ≥


√

(R̄col + a∗∆t2

4 )2 + (Vmax∆t)2 − (a∗∆t2)2

4 if a∗ < min{2Vmax
∆t , amax}√

(R̄col + amax∆t2

4 )2 + (Vmax∆t)2 − (amax∆t2)2

4 else if amax <
2Vmax

∆t

R̄col + Vmax∆t
2 else

(26)

where

a∗ =
2√
3

√
R2

col

∆t4
− V 2

max

∆t2
(27)

Proof: The Feasible MPC-SCP algorithm guarantees that the trajectories are collision free at the
discrete time steps. However, the trajectories must also be collision free in between time steps in
order to guarantee collision-free trajectories. The first step to ensuring that collisions do not occur in
between time steps is to establish a condition which prevents two spacecraft from passing through
each other. Two spacecraft can move by a relative distance of 2Vmax∆t in one time step. This
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Figure 5. Illustration of the worst case scenario for collisions in between time steps

distance must be less than twice the collision radius (Rcol) to prevent the spacecraft from passing
through each other. This establishes Eq. (25).

Now that the spacecraft cannot pass through each other, the minimum possible relative distance
between the spacecraft is established for a given (Vmax, amax) where Vmax is the maximum allow-
able velocity and amax is the maximum allowable acceleration, which includes acceleration due
to both the control and the dynamics. The discretization method uses a constant acceleration in
between time steps. Consider this scenario from the reference frame centered at spacecraft j as
shown in Figure 5. In this figure, the subscript i|j denotes the location of spacecraft i with respect
to j where i ∈ Nj . In the worst case scenario, the distance between the two spacecraft is Rcol at
both time steps and both the relative velocity and acceleration vectors are in the plane defined by
spacecraft j and the initial and final positions of spacecraft i. This scenario is depicted in Figure 5
and the distances in Eqs. (28)–(31) are defined in this figure.

Since the acceleration vector is constant, the minimum distance (R̄col) occurs when the problem
is symmetric as shown in Figure 5.

L = 2Vmax cosφ∆t (28)

b =

√
R2

col − (
L

2
)2 (29)

d = Vmax sinφ∆t− a∆t2

4
(30)

R̄col = b− d (31)

where L is length of the segment connecting the position of spacecraft i relative to spacecraft j at
time steps k and k + 1, b is the minimum distance between this segment and spacecraft j, d is the
distance between the line segment measured by L and the point of closest approach of spacecraft i
relative to spacecraft j, and φ is the angle between the initial velocity vector and the line segment
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measured byL. Since the closest distance occurs at ∆t
2 due to symmetry, the velocity in the direction

of the acceleration vector must be zero at this time.

2Vmax sinφ = a∆t (32)

This equation holds for a ≤ 2Vmax
∆t . Substituting Eq. (32) into Eq. (30) results in

d =
a∆t2

4
(33)

Additionally, solving Eq. (32) for sinφ and substituting it into the identity cos2 φ = 1 − sin2 φ
yields

cos2 φ = 1− a2∆t2

4V 2
max

(34)

Combining Eqs. (28), (29), (31), (33), and (34) results in

R̄col =

√
R2

col − (Vmax∆t)2 +
a2∆t4

4
− a∆t2

4
(35)

To find the closest approach, Eq. (35) is minimized with respect to a. Taking the first and second
derivatives yields

dR̄col

da
= (R2

col − (Vmax∆t)2 +
a2∆t4

4
)−

1
2 (
a∆t4

4
)− ∆t2

4
(36)

d2R̄col

da2
= −(R2

col − (Vmax∆t)2 +
a2∆t4

4
)−

3
2 (
a∆t4

4
)2 + (

∆t4

4
)(R2

col − (Vmax∆t)2 +
a2∆t4

4
)−

1
2

(37)

Setting Eq. (36) equal to zero establishes Eq. (27) and rearranging Eq. (37) shows that d
2R̄col
da2

> 0

if Vmax <
Rcol
∆t . This condition has already been established in Eq. (25). Therefore, a∗ minimizes

R̄col so long as a∗ ≤ min{amax,
2Vmax

∆t }. In fact, the minimizing feasible a is the minimum of a∗,
amax and 2Vmax

∆t . Substituting these three values into Eq. (35) and solving for R̄col establishes the
three conditions in Eq. (26).

In addition to infeasibility caused by collision avoidance constraints, infeasibility can also arise
due to the constraints on maximum velocity and control magnitudes. Once again, assume that the
original optimization described by Problem 2 is feasible. It is possible that the MPC-SCP optimiza-
tions are infeasible even when the original problem is feasible. This occurs because the spacecraft
have a limited communication radius in the MPC formulation and, therefore, cannot detect colli-
sions occurring after the MPC horizon. This infeasibility is much more likely to occur in situations
where the maximum velocity and/or control are achieved in the original problem. Therefore, the
swarm reconfiguration should be strictly feasible with respect to the maximum velocity and control
constraints when solved using Problem 2. Additionally, Vmax is an artificial constraint that was
introduced to guarantee collision avoidance. Therefore, it is an optimization parameter rather than
a value determined by the problem. To reduce the likelihood that the maximum velocity causes
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infeasibility, Vmax should be chosen to be as large as possible while still satisfying Propositions 1-2
and Theorem 1.

These methods will greatly reduce the probability that infeasibility will occur but do not guar-
antee that it cannot happen. If the optimization is infeasible due to maximum velocity or control
constraints, the final time can be extended to make the optimization feasible. This can be done in
a few different ways depending on the swarm reconfiguration. First, the final time can be extended
by a fraction of an orbit without adjusting the final position. This is desirable if the elapsed time of
the reconfiguration is critical. The drawback to this method is that it is not as fuel efficient as other
options since most of the spacecraft will have to adjust their trajectories for the new final time. The
next option is to extend the final time and adjust the final position to the position on the J2-invariant
orbit where the spacecraft would have been if the optimization was completed as planned. This
saves both time and fuel but requires an extra calculation for the updated terminal positions. Fi-
nally, the final time can be extended by a full orbit. This option is fuel efficient compared to the first
one but requires more time. Any of these options will result in a feasible problem but the mission
will dictate which one is the most practical.

Remark 1:

When uncertainties are included in the system, forcing the spacecraft to reach a terminal position
is unrealistic. Therefore, the terminal constraint can be relaxed to the following condition.

‖xj [T ]− xj,f‖ ≤ δ (38)

where δ > 0 is the radius of a ball around xj,f which must contain the terminal position of spacecraft
j.

NUMERICAL SIMULATIONS

In this section, simulations of the swarm reconfiguration are presented using the MPC algorithm
developed in this paper. The MPC algorithm is compared to an open-loop optimization and the
fuel efficiency and accuracy of the trajectories are compared. A formation reconfiguration with
10 spacecraft is solved using Feasible MPC-SCP and the results are compared to an open-loop
optimization.

All of the simulations are run with a reference orbit having the following initial orbital elements:
6878 km semimajor axis, 0 eccentricity, 45 deg inclination, 60 deg right ascension , 0 deg argument
of perigee, and 0 deg true anomaly. Additionally, the length of the transfer, tf , is 5677 s, or one
orbit and the SCP algorithm is considered to be converged for errors less than ε = 10−3. In all
the simulations, the initial and terminal conditions, xj,0 and xj,f , respectively, are determined by
randomly generating the positions and then applying the J2-invariant conditions from out prior
work2 to determine the desired velocities. All of the convex optimizations were performed using
CVX.19

The simulation results for the 10 spacecraft formation reconfiguration are shown in Figure 6 and
Table 1. Both MPC and the open-loop algorithms were run for collision radii (Rcol) of 150 m, a
time step (∆t) of 60 s and an optimization horizon (TH ) of 3 time steps. The x − y projection of
the trajectories resulting from these algorithms are shown in Figure 6.

Figure 6a shows the reconfiguration trajectories for 10 spacecraft using both MPC and open-loop
algorithms. In some cases, such as the green dashed trajectory, the MPC and open-loop methods
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Figure 6. x-y projection of the reconfiguration of 10 spacecraft using MPC and open-loop algorithms

produce different results. This is due to the linearization and discretization errors that arise from
converting the optimization to convex form. In the open-loop case, these errors are not accounted for
and the resulting trajectory may not reach the terminal state. On the other hand, the MPC algorithm
uses real-time positions to calculate the remaining trajectory so the terminal error is much smaller.
These errors are shown for a single spacecraft in Figure 6b. The MPC algorithm (solid line) reaches
a terminal position (circle) that is less than 50 mm from the desired terminal state (star). This is over
two orders of magnitude better than the open-loop trajectory (dotted line), which reaches a terminal
position (square) over 5 m from the desired state. The terminal errors for the other spacecraft, along
with fuel usage are shown in Table 1.

Table 1 shows the terminal position error and fuel usage for each spacecraft for both the MPC and
open-loop trajectories. On average, the terminal error decreases by almost two orders of magnitude
when the MPC algorithm is used instead of the open-loop optimization. However, the fuel usage
required to correct for these errors using MPC is about 7% more than the fuel usage of the open-loop
method. It is important to note, that the increase in fuel consumption is largely due to spacecraft 2.
The reason for this has to do with the decentralized communication in the MPC algorithm. In the
MPC algorithm, spacecraft only consider collisions up to the end of the horizon, which is 3 time
steps in this simulation. In Figure 6, spacecraft 2 (solid red line) performs a large maneuver when
the MPC algorithm is used. This maneuver occurs because a future collision is detected and must
be avoided in less than three time steps. This maneuver requires a large amount of fuel and does not
occur in the open-loop case because the communication is centralized and all collisions are known
at the initial time. Additionally, the MPC algorithm satisfies the collision avoidance constraints
when nonlinear, continuous dynamics are used to simulate the motion. This is not necessarily true
for the open-loop case. While the open-loop trajectories are collision free, the actual trajectories
that result from simulating the open-loop control do not necessarily satisfy the collision avoidance
requirements. Overall, the MPC algorithm greatly improves the accuracy of the terminal state,
decentralizes the communication of the swarm, and guarantees collision avoidance with the only
disadvantage being a small increase in fuel consumption.
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Table 1. Simulation results for the reconfiguration of a 10 spacecraft formation using decentralized
SCP algorithms

Algorithm Performance
Algorithm Spacecraft Fuel Cost (m/s) Terminal Error (m)

Feasible MPC-SCP

1 1.451 0.014
2 2.067 0.013
3 0.415 0.022
4 1.146 0.027
5 3.171 0.050
6 4.047 0.024
7 3.635 0.041
8 2.648 0.036
9 1.081 0.004

10 2.754 0.089
average 2.242 0.032

Open-Loop Optimization17

1 1.4491 0.818
2 0.893 3.577
3 0.410 0.608
4 1.048 2.294
5 3.149 2.741
6 4.009 3.607
7 3.602 5.249
8 2.633 3.376
9 1.076 0.163

10 2.736 0.494
average 2.100 2.293

The previous simulation demonstrated the advantages of the MPC algorithm compared to the
open-loop method. In the next simulation, the conditions in Propositions 1-2 and Theorem 1 are
enforced to ensure that the algorithm is feasible and avoids collisions between time steps. This
simulation has the same parameters as the previous one with the following exceptions: Vmax =
0.005 km/s, Umax = 0.001 km/s2, Rcomm = 2 km, TH = 12, and ∆t = 15 s. The results of this
simulation are shown in Figure 7.

In this simulation, the average fuel use is 2.164 m/s and the average terminal error is 0.003 m.
Both of these values are improvements compared to the previous simulation, which used larger time
steps. With a smaller time step, the spacecraft can execute maneuvers more often. Therefore, it
makes sense that both the accuracy and fuel efficiency are improved. The decrease in time step size
does increase the number of variables in the optimizations, which increases the run time. However,
even with the small time steps, the average computation time is about 12 s, which is on the order of
one time step and much shorter than the horizon length. Therefore, the simulation is computation-
ally feasible and produces better results than the simulation with larger time steps and no guarantees
about feasibility.
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Figure 7. x-y projection of the reconfiguration of 10 spacecraft using MPC with 15 s time steps

CONCLUSION

In this paper, the swarm reconfiguration was solved using a MPC algorithm with a SCP optimiza-
tion. The swarm reconfiguration was first written as a convex optimization problem and then the
problem was formulated with a receding horizon and MPC was applied. Using MPC decreased the
size of the optimizations that needed be solved, which allowed smaller time steps in the optimiza-
tions. By using smaller time steps and shorter horizons, the MPC algorithm restricted the distance
each spacecraft could travel during one optimization. This allowed us to relax the communication
requirements on each spacecraft by considering communication between two spacecraft only if they
were within a certain distance from one another.

In order to ensure that the trajectories resulting from the MPC optimizations converged to the
terminal states, the terminal cost function was converted to a convex optimization problem with a
terminal constraint. This constraint ensured that if the optimization was feasible, it would satisfy the
terminal conditions. Also, an upper bound on the magnitude of the velocity was introduced so that
two propositions could be developed to ensure that each of the spacecraft converged to their desired
terminal positions and to show that the receding horizon optimizations had a solution. Additionally,
a theorem was developed to guarantee that the spacecraft do not collide in between time steps.

These feasibility conditions were then applied to a randomly distributed swarm and the MPC
algorithm was used to compute the optimal trajectories. These results performed well compared
to the trajectories which result from solving a single optimization at the initial time. The MPC
algorithm drove the spacecraft to within several mm of the desired terminal state despite the lin-
earization and discretization errors of the optimization. On the other hand, the single optimization
trajectory missed the desired terminal state by an average of 2 m. Additionally, the time required to
run each optimization of the MPC algorithm was much less than the time required to solve for the
entire trajectory at the initial time.

Swarms of spacecraft can be an extremely useful tool for interferometry and distributed sensing
but in order for these missions to become practical, fuel and computationally efficient guidance and
control algorithms must be developed. The fuel and computationally efficient MPC algorithm de-
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veloped in this paper is a necessary step towards this goal. Due to the orders of magnitude increase
in the number of spacecraft and decrease in the size of the spacecraft, fuel,communication, and com-
putation requirements become very restrictive. The MPC algorithm developed in this paper enables
swarms of spacecraft to change their formation using minimal fuel and computational resources.
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NOTATION

J2 second harmonic coefficient of earth
N number of spacecraft

Rcol minimum distance between spacecraft to avoid a collision in the optimization
R̄col minimum distance between spacecraft to avoid a collision in reality

Rcomm maximum distance a spacecraft can communicate (Rcomm > Rcol)
T total number of time steps
TH number of time steps in the model predictive control horizon

Umax maximum allowable magnitude of the control vector
Vmax maximum allowable magnitude of the relative velocity vector

(X̂, Ŷ , Ẑ) Earth centered inertial coordinate system
a magnitude of the acceleration vector
a∗ acceleration magnitude which minimizes the distance between two spacecraft

amax maximum possible acceleration of a spacecraft
h angular momentum

hj(x[k], k]) cost to transfer a spacecraft from x[k] at time k to xf at T
i orbit inclination
k time step k
k0 time step at the start of the model predictive control horizon
kJ2

3
2J2µR

2
e, 2.633× 1010 [km5/s2]

œ orbital element vector
r geocentric distance

rjZ distance from satellite to equator
t time
tf final time (tf = T∆t)

trun time required to compute the optimization
∆t length of time step
u control vector in local vertical, local horizontal frame
vx radial velocity
x state vector in local vertical, local horizontal frame

x0 state vector at initial time
xf state vector at final time
xj state vector of spacecraft j

xMPC state vector at the start of the model predictive control horizon
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x̄ nominal state vector
(x, y, z) coordinate values in the local vertical, local horizontal coordinate system
(x̂, ŷ, ẑ) unit vectors of the local vertical, local horizontal coordinate system

Ω right ascension of the ascending node
αx angular acceleration of coordinate system about x-axis
αz angular acceleration of coordinate system about z-axis
θ argument of latitude
ωx rotation rate of coordinate system about x-axis
ωy rotation rate of coordinate system about y-axis
ωz rotation rate of coordinate system about z-axis
‖ · ‖ 2-norm of a vector

APPENDIX: LINEARIZATION AND DISCRETIZATION OF RELATIVE DYNAMICS

The equations of motion for spacecraft in the LVLH frame (`j = (xj , yj , zj)
T ) are28

῭
j = −2S(ω) ˙̀

j − g(`j ,œ) + uj (39)

The translational dynamics of spacecraft in the LVLH frame is described by Eq. (39) with

g(`,œ) =

η2
j − ω2

z −αz ωxωz
αz η2

j − ω2
z − ω2

x −αx
ωxωz αx η2

j − ω2
x

 ` + (ζj − ζ)

sin i sin θ
sin i cos θ

cos i

+

r(η2
j − η2)

0
0


(40)

where

ζ =
2kJ2 sin i sin θ

r4
ζj =

2kJ2rjZ
r5
j

η2 =
µ

r3
+
kJ2

r5
− 5kJ2 sin2 i sin2 θ

r5
η2
j =

µ

r3
j

+
kJ2

r5
j

−
5kJ2r

2
jZ

r7
j

rj =
√

(r + xj)2 + y2
j + z2

j rjZ = (r + xj) sin i sin θ + yj sin i cos θ + zj cos i

(41)

ωx = −kJ2 sin 2i sin θ

hr3
ωy = 0 ωz =

h

r2

αx = −kJ2 sin 2i cos θ

r5
+

3vxkJ2 sin 2i sin θ

r4h
−

8k2
J2 sin3 i cos i sin2 θ cos θ

r6h2

αz = −2hvx
r3
− kJ2 sin2 i sin 2θ

r5

The orbital parameters of the chief orbit (origin of the LVLH frame) are governed by the following
equation of motion with J2 effects

ṙ = vx v̇x = − µ
r2

+
h2

r3
− kJ2

r4
(1− 3 sin2 i sin2 θ)

ḣ = −kJ2 sin2 i sin 2θ

r3
Ω̇ = −2kJ2 cos i sin2 θ

hr3
(42)

i̇ = −kJ2 sin 2i sin 2θ

2hr3
θ̇ =

h

r2
+

2kJ2 cos2 i sin2 θ

hr3
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Equation (39) can be written as follows

ẋj = f(xj ,œ) +Buj (43)

where B = [03×3 I3×3]T . Linearizing f(xj ,œ) yields

f(xj ,œ) ≈ f(x̄j ,œ) +
∂f

∂xj

∣∣∣∣
x̄j

(xj − x̄j) = A(x̄j ,œ)xj + c(x̄j ,œ) (44)

with

A(x̄j ,œ) =

 03×3 I3

− ∂g

∂xj

∣∣∣∣
x̄j

−2S(ω)

 , c(x̄j ,œ) =

 03×1

−g(¯̀j ,œ) +
∂g

∂xj

∣∣∣∣
x̄j

x̄j

 (45)

The discretized state space matrices are defined as

Ad(x̄j ,œ) = eA(x̄j ,œ)∆t, Bd =

∫ ∆t

0
eA(x̄j ,œ)τB dτ, cd = c(x̄j ,œ)∆t (46)
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