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Details on the refractive index and absorption change as well as the electroluminescence in the
forward-biased silicon (Si) PIN diodes are described. © 2016 Optical Society of America

http://dx.doi.org/10.1364/optica.3.001274.s001

1. REAL AND IMAGINARY REFRACTIVE
CHANGE IN SI WAVEGUIDE PIN DIODES

INDEX

The modulation of the refractive index in silicon (Si) is typi-
cally through the plasma dispersion effect. The carrier density
changes both the real and imaginary parts of the refractive in-
dex, which can cause, for example, a reduced extinction ratio in
an optical attenuator or modulator, and polarization dependent
loss in a polarization controller. According to [1], the changes
in the refractive index An and absorption Aa of Si near a wave-
length of 1550 nm are

An = — [88 x 10 2AN, +85x 107 ¥(aNy)%¢],  (Sta)

Ax =85 x 107 AN, + 6.0 x 10718AN;,, (S1b)

where AN, and AN;, are changes in the free electron density and
free hole density measured in cm~3. By incorporating both An
and Ax into a mode-solver, the coupled changes in the real and
imaginary parts of the effective index as a function of carrier
density can be modelled.

Experimentally, for the Si waveguide PIN diode with the
cross-section illustrated in Fig. S1(a), which is similar to the one

used in the present work, the measured phase-shift and attenu-
ation as function of the applied forward bias voltage are shown
in Fig. S1(b) and Fig. S1(c), respectively [2]. The length of the Si
PIN diode used for these measurements was 500 ym. The mea-
sured differential phase-shift was about —7.37/(mm-V) and
the corresponding differential absorption change was about 20
dB /(mm-V). These figures have been reproduced from [2].
The Si PIN diodes we have used in the current work had P++
and N++ regions that were 700 nm away from the waveguide
core compared to 800 nm in Fig. S1. The reduced separation
would lead to a slightly lower series resistance.

2. ELECTROLUMINESCENCE FROM SI PIN DIODES

We observed that the Si waveguide PIN diodes in forward bias
could generate weak electroluminescence. Fig. S2(a) shows
the electroluminescence spectrum of a 1000 pm-long PIN diode
at several forward bias voltages. The electroluminescence is
broadband and centered near a wavelength of 1150 nm, close
to the bandgap energy of Si (1.1 eV = 1130 nm). This electrolu-
minescence is not power efficient due to the indirect bandgap
of Si. Fig. S2(b) shows the current vs. voltage relationship of
the diode. Fig. S2(c) shows the total optical power collected
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by a lensed single-mode fiber (matching the edge-coupler) as
a function of the forward bias voltage. The electrical-to-optical
power conversion efficiency is of the order of 10~7%.
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Fig. S1. (a) Cross-section of a Si rib waveguide PIN diode, and
the corresponding (b) phase-shift and (c) attenuation as a func-
tion of the forward bias voltage applied to the Si PIN diode.

L is the length of the Si PIN diode. Figures were reproduced
from [2].
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Fig. S2. (a) Electroluminescence from a 1000 zm-long Si PIN
diode under several forward bias voltages. (b) Current vs.
voltage curve of the Si PIN diode. (c) The collected optical
power into a lensed single-mode fiber vs. forward bias volt-
age.
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