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This paper is a companion to Chung1 and explores the applications of neurobiologi-
cally inspired control systems in the form of Central Pattern Generators (CPG) to control
apping ight dynamics. We introduce two-layer CPGs to mimic current hypotheses of
mammalian studies. It is shown that symmetry breaking to initiate and recover from a
turning maneuver is an e�ective control strategy. Attempts at dissociating slow dynam-
ics are shown and preliminary comparisons of wing motions between biological iers and
arti�cial CPG networks are made.

I. Introduction

Engineered apping ight holds promise for creating biomimetic micro aerial vehicles (MAVs) ying in low
Reynolds number regimes (Re< 105) where rigid �xed wings drop substantially in aerodynamic performance.
MAVs are typically classi�ed as having maximum dimensions of 15 cm and ying at a nominal speed of 1{20
m/s in tight urban environments.2,3 Although natural yers such as bats, birds, and insects have captured
the imaginations of scientists and engineers for centuries, the maneuvering characteristics of unmanned aerial
vehicles (UAVs) are nowhere near the agility and e�ciency of animal ight.4{6 Such highly maneuverable
MAVs will make advances in monitoring of critical infrastructures such as power grids, bridges, and borders,
as well as in intelligence, surveillance, and reconnaissance applications.

Recently, much work has been done in determining wake structure and aerodynamics of apping animals
and robots.7{10 Averaging and linearization around hover have proven to be e�ective for control design
of insect-scale ight, with apping frequencies much greater than 10Hz.11 However, for bat scale ight
(Cynopterus brachyotis being the key example with good observational data available), the body dynamics
are oscillatory on similar timescales to the apping frequency.12 It should be noted that this type of ight
falls directly in the range for MAVs. We can then no longer apply traditional control schema for these iers.
The authors know of no literature taking a control-theoretic view of this inherently unsteady behavior and
describing guaranteed closed-loop convergence criteria.

Previous work1,13 has shown that coupled networks of Hopf oscillators on balanced graphs exhibit expo-
nentially stable behavior in both oscillatory mode and �xed point mode. It was shown that such networks
resembled central pattern generators (CPGs) that are found in the neural systems of animals. Furthermore,
key mechanisms for stabilization of longitudinal motion were investigated by numerical simulation.

The key challenge is to analyze this CPG exosystem driven dynamical system. Results of this type are not
found in the literature, except for simple one-dimensional systems being driven by simple one-dimensional
exosystems.14 This is because the Poincar�e-Bendixson theorem can be used for such a system. The details
and use of Poincar�e’s ideas is omitted here, but can be found in Isidori and Byrnes14 or Strogatz.15 Numerical
continuation methods16 can search out parameter space, but face two di�culties. Continuation of periodic
orbits requires prior knowledge of such a periodic solution for one set of parameters. We thus need a stable
numerical solution a priori that is close in parameter space to the region we would like to learn about.
Additionally, stability calculations in continuation rely on linearized maps at Poincar�e sections. Questions

�Research Assistant, Aerospace Engineering, dorothy1@illinois.edu.
yAssistant Professor of Aerospace Engineering, Senior Member AIAA, Phone: 217-244-2737, sjchung@illinois.edu.

1 of 14

American Institute of Aeronautics and Astronautics

AIAA Atmospheric Flight Mechanics Conference
2 - 5 August 2010, Toronto, Ontario Canada

AIAA 2010-7634

Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
IL

L
IN

O
IS

 o
n 

M
ar

ch
 2

0,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

0-
76

34
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Caltech Authors - Main

https://core.ac.uk/display/216254944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


concerning regions of attraction are left unanswered; such questions are vital to swift maneuvers or gait
changes.

The challenge is enhanced when we begin to include feedback into the CPG system. Figure 1 shows a
schematic for how sensory feedback can be fed back to the CPG network. This was done in previous work
for stability purposes,1 and is also used in this paper. However, closing the loop takes what is, at best, a
four-dimensional ight dynamics system with a three-dimensional driving exosystem and turns it into, at
best, a still complicated four-dimensional oscillatory system. The actual models used are more complicated,
but see Appendix A for the simplest form. In the absence of analytical tests and descriptions of the omega
limit sets for sets of initial conditions, numerical studies are performed to identify characteristic behavior
and potential challenges.

Leg

Shoulder

Elbow

Wrist

Fingers

Wind

Wrist

Elbow

Shoulder

Hand Hand

Legs

Joint Angles and Muscle StretchBody acceleration

and angular rate by IMU; echolocation by sonar; and vision by CCD

Cutaneous hairy

sensors on the wings

Amp.

Freq.

Phase

Coupling

Gains

Figure 1. Control structures with the main controller and the CPG network. The outer-loop ight control modulates
the rhythmic patterns (frequency, amplitude, phase lag, coupling gains) of the CPG network, without the need for
directly controlling a multitude of joints.

We review the relevant key ideas in Section II. In Section III, we extend those results to include a full six
degree of freedom simulation. In Section IV, we describe preliminary results from extracting slow dynamics
from the highly oscillatory true dynamics. In Section V, we also compare the wing motions, in particular
the wingtip motions, to published wingtip motions of live bats12 and lay the groundwork for closer mimicry
by describing a second joint. Concluding remarks are presented in Section VI.

II. Hopf Oscillators, CPGs, and Dynamical Equations

II.A. Hopf Oscillator Networks

Our neurobiologically inspired approach centers on deriving an e�ective mathematical model of CPGs based
on coupled nonlinear limit cycle dynamics. Once neurons form reciprocally inhibiting relations, they oscillate
and spike periodically. An abstract mathematical model of complicated neuron models can be obtained by
coupled nonlinear limit cycles that essentially exhibit the rhythmic behaviors of coupled neuronal networks.
In the �eld of nonlinear dynamics, a limit cycle is de�ned as an isolated closed trajectory that exhibits
self-sustained oscillation.15,17 If stable, small perturbations (initial conditions) will be forgotten and the
trajectories will converge to the limit cycle. This superior robustness makes a limit cycle an ideal simpli�ed
dynamic model of CPGs.

Following Chung,1 we use the following limit-cycle model called the Hopf oscillator, named after the
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(c) Con�guration B

Figure 2. Graph con�gurations of the coupled Hopf oscillators on balanced graphs. Many other con�gurations are
permitted in this paper and the unidirectional couplings can be replaced by the bi-directional couplings. The numbers
next to the arrows indicate the phase shift �ij from the i-th member to the j-th member while Figure b shows
the nominal values of the phase shift from the symmetric wing con�guration such that �21 = �65=90 deg. and
�31 = �75 = �90 deg. Such phase shifts de�ne ight modes (wing movement gaits).

supercritical Hopf bifurcation model with � = 1:

d

dt

 
u� a
v

!
=

24��� (u�a)2+v2

�2 � �
�

�!(t)

!(t) ��
�

(u�a)2+v2

�2 � �
�35 u� a

v

!
+ u(t)

Equivalently, _x = f(x; �;�) + u(t); with x = (u� a; v)T

(1)

where the � > 0 denotes the convergence rate to the symmetric limit circle of the radius � > 0 and
u(t) is an external or coupling input. For a single Hopf oscillator with u(t) = 0, a Lyapunov function

V =
�

(u�a)2+v2

�2 � 1
�2

can be used to prove global asymptotic stability to the circular limit cycle. When the

bifurcation parameter � becomes negative, the stable limit cycle dynamics changes to the dynamics with a
globally stable equilibrium point at the bias "a" (see [15]). Such a change can be used to turn the apping
oscillatory motion to the gliding mode, for example by changing � = 1 to � = �1.

The possibly time-varying parameter !(t) > 0 determines the oscillation frequency of the limit cycle.
A time-varying a(t) sets the bias to the limit cycle such that it converges to u(t) = � cos (!t+ �) + a and
v(t) = � sin (!t+ �) on a circle. This bias \a" does not change the results of the stability proof. The output
variable to generate the desired oscillatory motion of each joint is the �rst state u from the Hopf oscillator
model in Eq. (1).

Synchronization means an exact match of the scaled amplitude or the frequency in this paper. Hence,
phase synchronization permits di�erent actuators to oscillate at the same frequency but with a prescribed
phase lag. In essence, each CPG dynamic model in Eq. (1) is responsible for generating the limiting
oscillatory behavior of a corresponding joint, and the di�usive coupling among CPGs reinforces phase syn-
chronization. For example, the apping angle has roughly a 90-degree phase di�erence with the pitching
joint to maintain the positive angle of attack (see the actual data from birds in [4]). The oscillators are
connected through di�usive couplings, and the i-th Hopf oscillator can be rewritten with a di�usive coupling
with the phase-rotated neighbor.

_xi = f(xi; �i)� k
miX
j2Ni

�
xi �

�i
�j

R(�ij)xj

�
(2)

where the Hopf oscillator dynamics f(xi; �i) with � = 1 is de�ned in Eq. (1), Ni denotes the set that
contains only the local neighbors of the i-th Hopf oscillator, and mi is the number of the neighbors. The
2�2 matrix R(�ij) is a 2-D rotational transformation of the phase di�erence �ij between the i-th and j-th
oscillators. The positive (or negative) �ij indicates how much phase the i-th member leads (or lags) from
the j-th member and �ij = ��ji. The positive scalar k denotes the coupling gain.

Such phase shifts along with the bifurcation parameter � can be used to de�ne di�erent ight modes,
similar to walking gaits. Numerous con�gurations are possible as long as they are on balanced graphs18

and we can choose either a bidirectional or a uni-directional coupling between the oscillators. The numbers
next to the arrows indicate the phase shift �ij , hence �ij > 0 indicates how much phase the i-th member
leads. Since the graphs in Figure 2 are on balanced graphs, the number of input ports equal the number of
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output ports. Further, all the phase shifts (�ij) along one cycle should add up to a modulo of 2�. Figure 2b
shows the nominal values of the phase shift from the symmetric wing con�guration such that �21 = �65 = 90
deg. and �31 = �75 = �90 deg. The empirical data suggest that the pitching angle (�w) has approximately
a 90-degree phase lag with the apping angle (�w), which agrees with the aerodynamically optimal value.4,7

For hovering ight, Dickison,7 using his Roboy testbed and numerical simulations, found that increasing
the phase di�erence value �21 to 90 deg +� further contributed to enhancing the lift generation, which is
explained by the wake capture and rotational circulation lift mechanism. Hence, the ability to control �21

allows us to investigate the optimal value of the phase di�erence. In addition, the nominal value of �31 = �90
deg, the phase di�erence between the apping stroke angle and lead-lag angle will results an elliptical orbit
of the wing. On the other hand, by having two di�erence phase di�erences for the left and right wings, we
can investigate how symmetric-breaking wing rotations contribute the agile turning of apping ight.

II.B. CPGs, Conformal Mapping, and Comparison to Split-Cycle

Much work has been done to identify actual CPG-type behavior in animals. This includes results involving
�sh,19 eels,20 and cats.21 Relatively less work has been done for mammals as compared to nonmammals.
However, mammal CPG work is increasing rapidly. In this recent work, the proposal has been put forth
that there should be a two-layer model rather than a one-layer model for mammalian CPGs (swimming
animals exhibit behavior more resembling one-layer CPGs).22,23 That is, instead of viewing the controller
as a single central pattern generator, we view a distinction between a rhythm generator and a pattern
generator. Evidence points toward the rhythm generation layer as being an emergent network of coupled
oscillators, similar to what is proposed in this work. These rhythm generators may be identical, which would
again �t well with our model. Then, pattern generation would be handled by a second layer. Suppose each
joint’s actuation has a unique waveform that is repeated in concert with the general motion. The pattern
generation layer would take the simple rhythmic signal from the rhythm generator and output the correct
motion waveform. Figure 3 shows a schematic of an open-loop two-layer CPG. The rhythm generators are
modeled as coupled Hopf oscillators. Then the signals go to unique pattern generators which produce the
uniquely desired waveform. We propose that such a pattern generation layer can be easily formed using
conformal mapping.

Phase Lock

Rhythm Generator

Gait Parameters:
Flapping Frequency,
Phase Differences

Pattern Generator 1

Pattern Generator 2

Joint 1

Joint 2

Figure 3. Schematic of open-loop CPG highlighting a distinction between rhythm generation and pattern generation.

The limit set of a particular Hopf oscillator is a simple closed curve in the plane. It is topologically
similar to any other simple closed curve in the plane. Therefore, one can de�ne a di�eomorphism as a
pattern generator which can take the output of a Hopf oscillator and map it to the appropriate waveform
for the particular motion being actuated. This type of mechanism gives a lot of freedom to a control
designer for a robotic system. For example, consider one such waveform being used in control literature for
apping ight: split-cycles. The idea is to speed up the downstroke and delay the upstroke while keeping
the overall frequency �xed. This type of design can be handled two ways by our method. One could use a
single-layer CPG network and simply send a square wave as frequency input. Alternatively, one could use
a double-layer CPG network and design a pattern generator to reproduce such waveforms. Furthermore, as
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optimization work is done on particular waveforms, the more complicated results could be very quickly and
easily implemented into a pattern generation layer model. Figure 4 shows the �rst method of producing a
split-cycle waveform with the more general Hopf oscillator. Doman11 showed that intra-wingbeat frequencies
� > 0 and � = �!

!�2� can be used to impede/advance each stroke without a�ecting the overall frequency.
The sign of v in the Hopf oscillator provides information for whether it is in the upstroke or downstroke.
Therefore, we use


 =

8<:! � � if v > 0,

! + � if v < 0
(3)

for the input frequency and are able to reproduce the split-cycle. Each waveform was produced by an
independent trial and the di�erence in periods was on the order of 10�15, which is considered numerical
error. Thus, the Hopf oscillator model can be considered a generalization of the split-cycle.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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(b) Waveform comparison.

Figure 4. Production of split-cycle waveform via Hopf generalization.

II.C. Dynamical Equations

For simulation purposes, following Chung,1 we calculate the local ow velocity by0B@VwxVwy

Vwz

1CA = Tws(�w;  w)Tsb(�s)Vb +

0B@Tws(�w;  w)

0B@ � cos w _�w

sin w _�w + _�s

� _ w

1CA
1CA�

0B@0

r

0

1CA : (4)

Then, we can obtain the local incident angle �w (measured clockwise), the angle of attack �w, and the speed
of the wind Vr on the blade element on the right wing as follows

�w(r; t) = tan�1 �Vwz
Vwx

; �w(r; t) = �w(t)� �w(r; t) (5)

V 2
r (r; t) =

p
V 2
wx + V 2

wz:

The seminal paper by Dickinson7 used a hovering pair of wings without a forward speed as follows

CL(�w) = 0:225 + 1:58 sin(2:13�w � 7:2 deg)

CD(�w) = 1:92� 1:55 cos(2:04�w � 9:82 deg)
: (6)

From the quasi-steady approximation, we can compute the lift and drag forces acting on the blade element
with width dr as follows.

dL =
1

2
�CL (�w(r; t)) c(r)V 2

r (r; t)dr; dD =
1

2
�CD (�w(r; t)) c(r)V 2

r (r; t)dr (7)

In addition, Ellington24 derived the wing circulation �r = � _�c2(3=4 � x̂0) based on the Kutta-Joukowski
condition. This quasi-steady approximation for the rotational lift can be written as

dLrot =
1

2
�

�
2�(

3

4
� x̂0)

�
c2(r)Vr(r; t) _�wdr (8)
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where x̂0 is the location of the pitch axis along the mean chord length. Also, _�w can be computed from Eq.
(5) and often approximated reasonably well by the angular rate of the wing pitch motion _�w.

The total x and z directional forces of a single wing (either right or left) in the body frame are obtained
as

Fwz =

Z R

r=0

dD sin�w � (dL+ dLrot) cos�w; Fwx =

Z R

r=0

�(dL+ dLrot) sin�w � dD cos�w (9)

where the positive direction of zb is downward.
The Fwx and Fwz forces on the wing frame given in Eq. (9) can be transformed into the forces in the

vehicle body frame:

Fright =

0B@FxFy
Fz

1CA
right

= Tbs(�s)Tsw(�w;  w)

0B@Fwx0

Fwz

1CA
right

(10)

where we added the subscript right to indicate the right wing. A similar expression can be obtained for the
left wing (Fleft). Each wing has di�erent wing angular parameters such as �w,  w, and �w, although the
stroke plane angle �s is the same for both wings.

In order to compute the rotational moments generated by the aerodynamic forces, we �rst calculate the
position of the wing blade element with respect to the body frame

p(r) = Tbs(�s)Tsw(�w;  w)

0B@0

r

0

1CA+

0B@dxdy
dz

1CA (11)

Then, we can compute the aerodynamic moments with respect to the c.g.0B@dMx

dMy

dMz

1CA = p(r)�

0B@Tbs(�s)Tsw(�w;  w)

0B@�(dL+ dLrot) sin�w � dD cos�w

0

dD sin�w � (dL+ dLrot) cos�w

1CA
1CA+

0B@dMx0

dMy0

dMz0

1CA (12)

0B@dMx0

dMy0

dMz0

1CA = Tbs(�s)Tsw(�w;  w)T�w(�w)
1

2
�V 2

r c(r)dr

0B@ rcl0

c(r)(cm0 + cm�;w�w)

rcn0

1CA (13)

Mx =

Z R

r=0

dMx; My =

Z R

r=0

dMy; Mz =

Z R

r=0

dMz (14)

where dMx0, dMx0, and dMx0 denote the constant aerodynamic moments that include the moment at the
mean aerodynamic center, computed by the moment coe�cients cl0, cm0, c�;w, and cn0. The transformation
matrix T�w(�w) rotates the wing frame about the yw axis by the wing pitch rotation angle �w.

We assume the mass and the moment of inertia of the wing compared to the body weight are negligible
so that the c.g. remains �xed. Then, the translational motion of the c.g. of the apping ying vehicle driven
by the aerodynamic force terms in Eq. (10) can be expressed as

m _Vb +m
b �Vb = Tbe(�b; �b;  b)Fg + Fright + Fleft + A (15)

where all the symbols are de�ned in the nomenclature section, and the Euler angular transformation matrix
Tbe(�b; �b;  b) determines the orientation of the body frame with respect to the inertial frame. Each wing
has di�erent wing angular parameters such as �w,  w, and �w, although the stroke plane angle �s is the
same for each wing.

The equations of rotational motion are driven by the aerodynamic moments Mright and Mleft of each
wing that can be obtained from Eq. (12)

Ib
b + 
b � (Ib
b) = Mright + Mleft + B (16)

The relationship between the body angular rate 
b = (p; q; r)T and the Euler angle vector qb =
(�b; �b;  b)

T can be determined by1

_qb = Z(qb)
b (17)
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where any other orientation representations such as quaternions can be used in lieu of the Euler angles in
the preceding equations. Also, any disturbance force and torque can be added to the equations.

Chung1 showed that the longitudinal dynamics can be controlled without using aerodynamic control
surfaces such as ailerons, elevators, rudders, and directional control of tail wings. For gliding ight, nonzero
gains were used for PID control of apping angle and lead-lag bias. Only integral control was used for pitch
bias, in order to obtain a constant wing angle of attack. For apping ight, apping frequency and the phase
di�erence between the lead-lag CPG and the pitching CPG were used to stabilize ight. Next, we extend
this simulation to include lateral motion.

III. Six Degrees of Freedom Simulation

If we select graph con�guration A in Fig. 2, we have four available phase di�erences. We use two degrees
of freedom as follows. We do not break symmetry in lead-lag phase di�erences, setting

�75 ��65 = �31 ��21: (18)

We now control �31 ��21 with proportional control and body pitch as the input. That is, we set

�76 = �75 ��65 = �32 = �31 ��21 = �K�32�b + �0: (19)

Not only is this e�ective in stabilizing the longitudinal motion, the nominal value can be used to select
ascent or decent angle. In order to control pitch symmetry breaking with one parameter, consider � as the
constant nominal value (90�) of �21 and �65. Then, set

�65 = � + �; �21 = �� �: (20)

The phase di�erence between apping and pitch is vital for lift and thrust generation. Therefore, this
di�erence between the right and left wings causes roll and proverse yaw. This method of symmetry breaking
was observed by Hedrick and Biewener.25

The second method of symmetry breaking we use is lead-lag amplitude. We set this proportional to yaw
rate to provide yaw rate damping. Due to the coupled nature of the motions, this causes yaw rate and roll
angle to go to zero. The simulation results below follow these control laws, as well as those in the previous
paper1 for longitudinal stability.

Table 1. Simulation parameters

m=0.3kg Ib= 0.0012*eye(3) kgm2 R=0.32 m c= 0.15 m cm0 = �0.5

k=50 or 0 �= 10 or 50 �1 = �w;max=50� �2 = �w;max=30� �3 =  w;max=15�

a1 = a5=0 a2 = a6=0� a3 = a7=-5� �s=20�

The vehicle begins in a gliding mode, transitions to slowly ascending apping ight, then executes a turn.
Transition states are not well explored. As seen in the next paragraph, most transitions involve discontinuities
which could be avoided in a more sophisticated control law. Most troublesome is the transition from gliding
to apping, as the body angle of attack nears �90�. Remarkably, the apping mode corrects this transitory
mode and should be a testament to the potential of our overall scheme.

To turn, at the 10 second mark, we set � = 3�, accompanied by setting _! = 0, shifting the zero point and
scaling the proportional feedback for lead-lag coupling, scaling the derivative feedback for lead-lag coupling,
and turning o� yaw damping due to lead-lag amplitude symmetry breaking. At the 15 second mark, we
return � = 0�. What is interesting here is that we have symmetric apping, and the vehicle settles into a
nice banked turn. The bank angle, rate of turn, and qualitative characteristic (e.g. amplitude of body pitch
oscillation) of the turn are interestingly linked to the scale and shift of the lead-lag coupling, but an exact
correlation is not yet known. This must be further investigated and understood in order to implement a
better nonlinear control law. Finally, at the 20 second mark, we return the original scaling to proportional
feedback of lead-lag coupling, but select a new zero point for proportional feedback and also a new scaling for
derivative feedback. At this point, we also turn on yaw damping by lead-lag amplitude symmetry breaking.
The roll angle through the turn is about 40� and the average global yaw rate is between 90 and 100�=sec.
This is feasible in light of experimentation.25
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Figure 6b shows the resulting oscillatory behavior of the apping (�w), pitch (�w), and lead-lag motion
( w) commanded by the CPG network and highlights the e�ects of our changing control variables on CPG
behavior. From arbitrary initial conditions, the CPG network synchronizes globally and exponentially,
indicated by the synchronization errors de�ned as the �rst element of (xi�R(�ij)�i=�jxj){ see Fig. 6b. When
the phase di�erence �ij is time-varying, there is a small residual error in the synchronization (� �0:2�),
but still e�ectively small. Otherwise, the synchronization errors tend exponentially to zero as predicted by
Chung.1
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Figure 5. State vectors of the two alternating ight modes, apping and gliding.

IV. Slow Dynamics as Reduced System

A full understanding of the convergent behavior of this oscillatory system is still unsolved. With precisely
known periodic orbits, numerical continuation methods can provide changes in periodic behavior in parameter
space and Lyapunov exponents can give us local convergence behavior. However, the larger picture of the
slow dynamics is quite important. The authors are not aware of a global method that captures the relevant
behavior. In order to investigate this problem, we present preliminary results of trying to extract the slow
dynamics from a highly oscillatory simulation.

The goal is to be able to treat CPG parameters like inputs for a typical input-output system. We consider
three types of preliminary tests and move from the most promising to the least promising. First, we want
input parameters for the CPG network to be designable from simple ideas and for such choices to have the
desired result on the resultant system. Figure 7 shows an example from this type of study. We set a desired
forward velocity and then perform root-�nding to determine which value of bias for apping/lead-lag phase
di�erence gives steady-level ight. The goal is that the system behaves in a way the makes sense: as the
desired forward velocity is higher, the appropriate action is to ap faster (increase in omega) and reduce
the bias for apping/lead-lag phase di�erence. Figure 7 shows that it does. Many such simulations have
shown similar results with di�erent parameters, but neither one nor one hundred could con�rm the hope,
only disprove it and force us to reconsider.
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Figure 6. State vectors of the two alternating ight modes, apping and gliding.
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Figure 7. Steady-state behavior.

Secondly, recall that the goal is to treat the slow dynamics as an input-output system with simple inputs
being those top-level inputs to the CPG network. The test is then that the value and character of the output
can depend only on �xed values of inputs. Again we focus on the longitudinal modes with the inputs being
apping frequency and the bias for apping/lead-lag phase di�erence. We took two types of changes in input:
steps and ramps. A random generator was used to determine the length of ramps. Fast Fourier transforms
and steady-state averages were computed before and after the changes in parameters. It was found that the
steady-state character, both in average value and in frequency breakdown, nearly always depended only on
the steady-state input values. There appeared to be discrete values which would excite slower harmonics. No
small region around these values could be found with exhibited similar behavior. This might be considered
a numerical anomaly, or it might be the sign of something dangerous occurring.

The key to this �nal investigation is extracting simple signals from a very oscillatory one. In order to do
so, we take each fast period and extract a maximum, minimum, and average. Each of these single signals then
looks like a canonical second-order system. Figure 8 is an example. Therefore, we make the assumption that
they can each be modeled as such and perform a nonlinear least squares �t for a general second-order system
excited by an impulse. This method gives rise to all the convergence problems associated with nonlinear least
squares �tting. This is very noticeable in a few solution points which di�er substantially from the general
trend due to �tting problems.

Figure 9 shows the results of nonlinear least squares �t for body forward velocity, vertical velocity, and
pitch angle. Each sub�gure contains three sets of plotted values, representing the signals due to the extraction
of the maximum, minimum, and average. Only the most relevant plots, the eigenvalues of the �tted system
and the steady-state value, are shown. The apping/lead-lag bias constant is varied in each test, in order to
test the idea that such inputs may be considered as inputs for designing a simple input-output model for slow
dynamics. It is apparent that such parameters can have exactly the intended a�ect on slow behavior. There
is an obvious nonlinearity occurring near the low region. There is an obvious set of trends for the eigenvalues,

9 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
IL

L
IN

O
IS

 o
n 

M
ar

ch
 2

0,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

0-
76

34
 



5 10 15 20 25

5

5.5

6

6.5

Time (s)

F
or

w
ar

d 
V

el
oc

ity
 (

m
/s

)

(a) Extraction of simple signals.

5 10 15 20 25
5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

Time (s)

F
or

w
ar

d 
V

el
oc

ity
 (

m
/s

)

(b) Nonlinear least squares �t.

Figure 8. Dissociation of timescales.

which make it unlikely that such parameters will usable as true inputs for a simple input-output model of
slow dynamics. At best, the speci�c values of the parameters will show up as part of a simple state-space
model for slow dynamics, not just as an input. Given these preliminary results, analytical investigations for
the purposes of describing omega limit sets and convergence properties may be the only way to close the
book on potential input-output behavior of complicated system driven by oscillatory exosystems.
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Figure 9. Dissociation of Slow Dynamics.

V. Perspectives on Wingtip Motion

Studies of biological iers investigate the wing kinematics in-depth.12 They track up to 20 joint angles,
which describe very complex motion.26 This simulation does not yet have that level of complexity. However,
we can begin looking at key indicators to ensure our model qualitatively resembles the wing motion of actual
iers. One of the key indictors presented in Tian, et al.12 is wingtip motion. Their experiments were
performed with a live bat in close to level ight. Therefore, we run a new simulation, do not initiate a
turning maneuver, and take the wingtip data from the steady-state portion of the ight. In order to make a
full comparison, we plot wingtip motion in the same mannar as Tian, et al.,12 as well as the deviations from
forward velocity in Fig. 10.

Most notably, the y-motion of the wingtip follows a path on the upstroke similar to the downstroke. This
is because the model only has one rigid wing. Rather than progress down the path of strict mimicry, we take
the �rst step of simply adding a single joint in the wing. The dynamic model follows a generalization given
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Figure 10. Simulated wingtip motion.

by Chung.1 We calculate the local ow by0B@VwxVwy

Vwz

1CA =Tws(�w;  w)Tsb(�s)(Vb + 
b � d)+ (21)

(Tws(�w;  w)
tot)�

0B@
0B@ 0

r1

0

1CA+ (r � r1)

0B@ 0

� cos�2

sin�2

1CA
1CA+ (r � r1) _�2

0B@ 0

sin�2

cos�2

1CA
where r1 is the location of the joint and �2 is the angle between the two wing segments.

Further adjustments involve rotating the di�erential force added by blade elements beyond the joint and
computing the correct moment arm. The force rotation is obvious and the moment arm is computed as

p(r) = Tbs(�s)Tsw(�w;  w)

264
0B@ 0

r1

0

1CA+ (r � r1)

0B@ 0

� cos�2

sin�2

1CA
375
0B@dxdy
dz

1CA : (22)

Parameters of the second joint CPG were selected to approximate the motions observed by Iriarte-Diaz.27

The simulation was unstable and no stable combination of parameters was found. Analytical investigations
into the ight dynamics impacts of the second joint do not currently provide an explanation for this or a
method for stabilizing such a ier. It remains open whether the best course of action is to investigate a
jointed wing analytically or rely on numerical investigations of more detailed bat wing models. Without a
stable simulation, we can not yet postulate on the wingtip motion of such a system with a jointed wing.
This highlights the key need for an analytical test concerning the exosystem-based excitation of a multi-
dimensional dynamic system.

VI. Conclusion

Stability and control of engineered apping ight is a complicated, highly oscillatory problem. Central
pattern generators are a convenient mathematical tool for generating oscillatory motion in a controlled,
synchronous fashion. CPG arrays formed from coupled Hopf oscillators can be used to stabilize and control
both longitudinal and lateral aircraft modes. However, the problem is far from answered. The key challenge
going forward is to analytically describe how a complicated system will behave when excited by such an
oscillatory exosystem. Most analytical methods fail for all but the simplest systems, as Poincar�e-Bendixson
will not apply to anything but a one-dimensional system excited by a one-dimensional exosystem. While
numerical results show that stabilizing controllers can be found and that fast periodic motions might be
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dissociable from slower motion, it is likely that this type of reasoning can not be applied broadly to the case
of bat-scale apping ight. Much additional work is needed to describe the global behavior of such problems.

A. Appendix: Simpli�ed Longitudinal Equations

This appendix describes a simpli�ed form of apping ight equations, not for accurate mimicry, but for
the purpose of making future analytical contributions more accessible.

A.A. Driving Exosystem and Equations of Motion

In order to derive the simplest form of a apping ight system for analytical purposes, we will assume the
CPG array has converged to a limit cycle and that there is no reex arc which disturbs this convergence. As
such, we assume the wing motions have converged to the perfect sinusoid

� = A sin!t  = B sin!t+ � �w = C cos!t (23)

where � is the symmetric apping angle,  is the lead-lag angle, and �w is the wing pitch angle. The wing
is assumed to be rigid, so these parameters are su�cient.

Following the typical method for equations of motion in Etkin28 and Fan,29 we can derive

_V =
1

m
[X cos�+ Z sin�]� g sin 

_� = q � 1

mV
[X sin�� Z cos�] +

g

V
cos 

_q =
M

Iy
_� = q:

(24)

In this form, we are assuming everything is symmetrical and have taken X and Z to be the force of lift
and drag, in the body frame, on a single wing. These appear simple, but the expansions of X and Z are
complicated, as is seen in our previous paper. In order to make the form as simple as possible while retaining
key functionality for testing our hypothesis, we make the following assumptions:

1. The center of pressure on the wing is at a constant location through the apping motion.
2. The lift and drag coe�cients remain in the linear range for this particular cp. Furthermore, the

corresponding angle of attack can be computed for a single, �xed point. In general, there is no reason for
these points to coincide. For the purpose of this study, we assume they do.

3. Induced velocity due to wing motion can be linearly superimposed. This is equivalent to a small-angle
approximation and will be explained in the next section.

A.B. Local Velocity Calcualation

Following our previous paper and considering only the motions described above, we can derive the local ow
velocity due to wing motions. We �rst assume that the body angular velocity is low, so that the only induced
velocity e�ects are from apping and lead-lag motions. Then, using

Vw = TwbVb (25)

we can obtain

Vw;x = V [cos� cos + sin� sin sin�] + r _ 

Vw;z = V sin� cos�� r _� cos :
(26)

Notice that a small angle assumption, � � 0 and  � 0, gives the expression one would expect if the
wing motions were uncoupled, i.e. if each wing motion produced an induced velocity independently. We will
make this assumption for further simplicity. Then, again using the same approach as before, we obtain

�w = arctan
V sin�+ r _�

V cos�+ r _ 
(27)
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and

�w = �w + �w (28)

with r denoting the length to the center of pressure for a straight wing. This formulation retains the
fact that we can have induced velocity from each of the motions, which is necessary for thrust generation by
proper turning of the resultant force vector.

A.C. Forces and Moments

Calculations of X and Z still follow the scheme of rotations from Section II.C. We obtain

X = cos (�D cos�w � L sin�w) + sin sin� (D sin�w � L cos�w)

Z = cos� (D sin�w � L cos�w) :
(29)

Now, we rely on assumption (2) from Section A.A and assume

L =
1

2
�V 2

wSCL�w

D =
1

2
�V 2

wSCD�w:
(30)

The moment, M , is easily computed using the familiar relation

r = Tbw

0B@0

r

0

1CA+ d =

0B@r sin cos�

r cos� cos 

�r sin�

1CA+ d (31)

with d representing the distance from the center of gravity to the wing root.
This system is the simplest form of an unsteady apping ight system. It is a four-dimensional system

driven by a three-dimensional exosystem. If one makes a feedback assumption, that is0BBBBB@
A

B

C

!

�

1CCCCCA = f(V; �; q; �); (32)

then it is simply a very oscillatory four-dimensional system. Even in this simpli�ed form, Poincar�e-Bendixon
does not apply, and an analytical solution is still open.
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