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In this paper we argue that classical asymptotically anti-de Sitter spacetimes that arise as states in
consistent ultraviolet completions of Einstein gravity coupled to matter must satisfy an infinite
family of positive energy conditions. To each ball-shaped spatial region B of the boundary
spacetime we can associate a bulk spatial region �B between B and the bulk extremal surface B̃
with the same boundary as B. We show that there exists a natural notion of a gravitational energy
for every such region that is non-negative, and non-increasing as one makes the region smaller.
The results follow from identifying this gravitational energy with a quantum relative entropy
in the associated dual conformal field theory state. The positivity and monotonicity properties
of the gravitational energy are implied by the positivity and monotonicity of relative entropy,
which holds universally in all quantum systems.
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1. Introduction

Consider a classical asymptotically anti-de Sitter (AdS) spacetime M of (d+1) dimensions associated
with a state in some UV-complete theory of quantum gravity for which the low-energy effective
description is Einstein gravity coupled to matter. According to the AdS/CFT (conformal field theory)
correspondence, there is a corresponding state |�〉 in a dual conformal field theory living on the
d-dimensional boundary spacetime ∂M. For a spatial region B of ∂M, the Ryu–Takayanagi formula
[1] (and its covariant generalization [2]) relate the entanglement entropy of the CFT subsystem B to
the area of the minimal-area extremal surface B̃ in M with boundary ∂B:

SB(|�〉) − SB(|vac〉) = AreaM (B̃) − AreaAdS(B̃). (1)

This connects a fundamental quantity in the quantum information theory of the CFT to a fundamental
geometrical quantity in the dual gravitational theory.
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In this paper, we make use of this result to derive another fundamental connection between quantum
information theory and geometry. In this case, the information theoretic quantity is quantum relative
entropy, a measure of distinguishability between a general state ρ and some reference state σ . In our
case, the state ρ is the reduced density matrix ρ�

B in our state � (generically time dependent) for a
ball-shaped subsystem B of the CFT, and the reference state is the reduced density matrix σ = ρvac

B
for the same subsystem in the CFT vacuum state. We find that the relative entropy S(ρ�

B ||ρvac
B )

(reviewed in Sect. 2.1 below) is related to a novel measure of energy associated with the spatial
region �B between the boundary domain B and the extremal surface B̃:

S(ρ�
B ||ρvac

B ) = EnergyM (�B) − EnergyAdS(�B). (2)

In the limit of small perturbations to AdS, the region �B can be thought of as a Rindler patch of AdS,
and the energy is the associated Rindler energy. The energy on the right-hand side is covariantly
defined (in Sect. 2.3 below), and includes both matter and gravitational contributions. It can also
be expressed as a purely geometrical quantity in terms of spacetime curvatures, so (2) represents
another element in the dictionary between quantum information and geometry.

A crucial property of relative entropy in quantum systems is that it is positive and monotonic
(i.e. it increases if we consider a larger subsystem containing the original subsystem). Thus, our
result (2) gives rise to a new gravitational positive energy theorem: for any spacetime M described
by a consistent theory of Einstein gravity coupled to matter, the background-subtracted energy on
the right-hand side of (2) must be positive for all boundary subsystems B and must increase if
we move to a larger subsystem B′ ⊃ B. Any spacetime M which fails to satisfy this property is
unphysical. Furthermore, any low-energy effective theory whose solutions violate the positivity
and/or monotonicity properties cannot have a consistent UV completion: it lives in the swampland.
Thus, the positivity and monotonicity of relative entropy in conformal field theories gives rise to novel
constraints on physical asymptotically AdS spacetimes and on low-energy effective field theories.

1.1. Connection with previous work

The results in this paper generalize a series of previous works investigating the gravitational inter-
pretation of CFT relative entropy and the implications of its positivity and monotonicity. Relative
entropy for holographic CFTs was originally introduced in [3], where the authors provided a direct
holographic interpretation as a difference of bulk integrals on B̃ and B.

Constraints on the dual spacetimes from relative entropy positivity were considered at leading order
in perturbations to pure AdS in [4–6] and shown to be equivalent to Einstein’s equations linearized
about theAdS background. References [7–10] discussed constraints beyond linear order. In particular,
Refs. [9,10] identified connections between relative entropy and bulk energy, and between relative
entropy constraints and certain bulk energy conditions. In [11], this connection between relative
entropy and bulk energy was established in general at second order in perturbations to pure AdS. The
relative entropy at second order, known as quantum Fisher information, maps to a quantity known
as the canonical energy associated with the spacetime region �B. References [5,11] relied upon a
set of elegant results in classical gravitational theories due to Wald and various collaborators. This
same technology is employed in the present paper to derive the result (2) from the expression of [3]
involving boundary integrals.

Recently, it was pointed out in [12] that the relative entropy of nearby states in the CFT, in the sense
that their gravity duals are different quantum states on the same background geometry, is given by
the relative entropy in the bulk. This result was used to prove the entanglement wedge reconstruction
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theorem in [13]. These results show that the positivity and monotonicity of the holographic relative
entropy is automatically satisfied by states nearby the AdS vacuum, nearby in the sense that these
states consist of a few particle excitations on the AdS vacuum without their backreaction to the
geometry. In this paper, we will explore implications of the positivity and monotonicity of the
relative entropy for states whose bulk geometries are different from the AdS vacuum. Hence our
results are orthogonal to those of [12,13]. We will show that these information inequalities impose
constraints on the bulk geometry, leading to a certain set of positive energy conditions.

1.2. Outline

In the next section of the paper we review the definition and properties of relative entropy in conformal
field theories, recall some relevant background about energy in gravitational theories, and then make
use of (1) to derive (2), providing an explicit definition for the gravitational energy appearing there.
We also provide an alternative derivation of (2) in the case of time-symmetric geometries without
using (1), employing a direct path integral argument similar to the derivation of (1) in [14]. In
Sect. 3, we discuss the implications of our result, describing the gravitational energy theorems that
follow from positivity and monotonicity of relative entropy, and using these to derive some explicit
geometrical constraints on consistent spacetimes. In Sect. 4, we generalize a result from [9] showing
that a certain differential operator acting on relative entropy (employing derivatives with respect to
the ball radius R) can be identified with bulk matter energy density integrated over the extremal
surface B̃ in the case of infinitesimal balls B. We find that the same differential operator applied to
relative entropy for general balls B is also dual to the integral of a certain bulk quantity over B̃ and
derive an explicit expression for this. We conclude in Sect. 5 with some further discussion and future
directions.

2. Relative entropy

In this section, we present a holographic description of the relative entropy. After reviewing the
definition of the relative entropy in conformal field theory, we will formulate the holographic dual of
the relative entropy in terms of the quasi-local energy associated to the region between the boundary
domain B and the extremal surface B̃ (the Ryu–Takayanagi surface or its covariant generalization).
We will also give a path integral derivation of this holographic dual description along the lines of
the proof of the Ryu–Takayanagi formula by Lewkowycz and Maldacena.

2.1. Relative entropy in conformal field theory

For a general quantum system, relative entropy is a measure of distinguishability between a state ρ

and a reference state σ .1 It is defined as2

S(ρ||σ) = tr(ρ log ρ) − tr(ρ log σ).

1 Orthogonal quantum states can always be perfectly distinguished using projective measurements. In other
to account for this we define the relative entropy of two density matrices with sup σ ∩ ker ρ �= 0 to be infinite.
Here, sup ρ is the support of ρ in the Hilbert space and ker ρ is its complement. A particular instance of infinite
relative entropy is when σ is pure with ρ �= σ .

2 When σ and ρ commute they can be simultaneously diagonalized and quantum relative entropy becomes
the Kullback–Leibler divergence of their eigenvalue vectors.
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If we add and subtract tr(σ log σ) to the definition above one can recast relative entropy as a change
in free energy [3],

S(ρ‖σ) = �〈Hσ 〉 − �S (3)

= Fσ (ρ) − Fσ (σ ),

Fσ (ρ) = tr(ρHσ ) − S(ρ), (4)

where Hσ is the “modular Hamiltonian” of the reference state defined by Hσ = − log σ and
S(ρ) = − tr(ρ log ρ) is the von Neumann entropy of ρ. In fact, quantum relative entropy is naturally
interpreted as the extractable free energy of ρ in a thermodynamic theory where σ is the equilibrium
state with respect to Hσ ; see Appendix A. Free energy is minimized on the equilibrium state; this
implies that relative entropy is non-negative,

S(ρ||σ) ≥ 0. (5)

It vanishes if and only if ρ is the same as the equilibrium state σ .
It is often useful to consider the relative entropy S(ρA||σA) for a subsystem A, where ρA and σA

are the reduced density matrices for this subsystem. If B is any larger subsystem B ⊃ A, we have

S(ρA||σA) ≤ S(ρB||σB), (6)

known as the monotonicity of relative entropy.
In this paper we consider the relative entropies when the reference state is the CFT vacuum and

the regions are ball shaped. In this case, the modular Hamiltonian appearing in (3) takes a simple
form [15]. For a ball of radius B centered at x0 in the spatial slice perpendicular to the unit timelike
vector uμ, the modular Hamiltonian is

HB =
∫

B
ζ

μ
B Tμνε

ν , (7)

where εν = ενμ1···μd−1dxμ1 ∧· · ·∧dxμd−1
/(d −1)! is a volume form and ζB is the conformal Killing

vector

ζ
μ
B = π

R

{[R2 + (x − x0)
2 + 2(uν(x − x0)

ν)2]uμ + [2uν(x − x0)
ν](x − x0)

μ
}

. (8)

Thus, for ball-shaped regions in a general CFT state, the relative entropy to the vacuum is

S(ρB||σB) = �〈HB〉 − �SB, (9)

with HB given in (7). This is the object that we will translate directly to a bulk geometrical quantity
in the case of a holographic CFT.

2.2. Quasi-local energy

In the next subsection, we will argue that the quantum relative entropy for a ball-shaped region in the
CFT is related to the energy of a subsystem in the dual gravitational theory. First, it will be helpful
to review some relevant background about energy in gravitational theories, following [16,17].

It is believed that there are no local observables in a gravitational system. However, if we can
define a subspace � of a Cauchy surface in a diffeomorphic invariant way, we can formulate a
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notion of a quasi-local energy for �. In the next subsection, we will consider � defined as the part
of a Cauchy surface between a boundary domain B and the corresponding extremal surface B̃ (the
Ryu–Takayanagi surface or its covariant generalization).

Consider a metric and a set of matter fields on the d-dimensional surface � described by a
Lagrangian density L, expressed as a (d + 1)-form. To simplify notations, we will denote all the
fields by g(x) (representing matter fields as well as the metric). By the variational principle,

δL(g) = dθ(δg) + equations of motion, (10)

where d acting on θ(δg) on the right-hand side is the exterior derivative, and θ is a d-form on � that
is linear in δg. We can think of θ(δg) as a one-form in the space of field configurations on � and
define an associated symplectic form by

W (δ1g, δ2g) =
∫

�

ω(δ1g, δ2g) =
∫

�

[
δ1θ(δ2g) − δ2θ(δ1g)

]
. (11)

Consider a vector field ξ on �. It generates an infinitesimal diffeomorphism on �.With an appropri-
ate boundary condition on ∂�, which we will specify below, the diffeomorphism is a symmetry of the
subsystem on �, in which case we can define a Hamiltonian Hξ , which generates the diffeomorphism
as a symplectic transformation on g(x) as

δHξ =
∫

�

ω(δg, Lξ g). (12)

Here, Lξ g is the Lie derivative of g with respect to the vector field ξ . By definition (11), ω(δg, Lξ g) =
δθ(Lξ g) − Lξ θ(δg). Since Lξ θ = ξ · dθ + d(ξ · θ) and dθ = δL by the equations of motion,

δHξ =
∫

�

[
δθ(Lξ g) − ξ · δL − d(ξ · θ(δg))

]
=
∫

�

δJξ −
∫

∂�

ξ · θ(δg), (13)

where

Jξ = θ(Lξ g) − ξ · L. (14)

This is the Noether current form associated with the diffeomorphism.
If we can find a d-form K(g) on the boundary ∂� such that

δ(ξ · K) = ξ · θ(δg) on ∂�, (15)

we can integrate (13) in the field configuration space to define

Hξ =
∫

�

Jξ −
∫

∂�

ξ · K . (16)

Since ω = δθ , the boundary term K can be found if ξ and ω satisfy the integrability condition,∫
∂�

ξ · ω(δ1g, δ2g) = 0, (17)

for any infinitesimal variations δ1g and δ2g allowed on ∂�. In this case, Hξ gives a natural definition
of a quasi-local energy for the region � with respect to the vector field ξ . (It is useful to remember
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that, in a simple system L = k(dq/dt) − V (q), the Hamiltonian H for t-translation is defined
as H = p dq/dt − L, where p = dk/d(dq/dt). The Hamiltonian Hξ defined here is its natural
generalization.)

If � is the entire Cauchy surface that asymptotes to the AdS boundary and if ξ approaches one
of the conformal Killing vectors on the boundary, Hξ is the holographic dual to the generator
of the conformal transformation on the boundary CFT. In this case, the boundary term K is the
standard Gibbons–Hawking term for the pure gravity and its appropriate generalization for a general
gravitational system, which one can identify using the holographic renormalization group formalism.

The conservation of the current Jξ can be easily checked as

dJξ = dθ(Lξ g) − d(ξ · L) = Lξ · L − d(ξ · L) = 0, (18)

where we used δL = dθ(δg) by the equations of motion.
Furthermore [16], we can find a (d − 1)-form Qξ such that, on shell,

Jξ = dQξ . (19)

Thus, the Hamiltonian Hξ can be expressed as the integral over the boundary,

Hξ =
∫

∂�

[
Qξ − ξ · K

]
. (20)

This means that Hξ depends on the vector field ξ only through its properties near the boundary ∂�.
For the case of Einstein gravity with cosmological constant, explicit expressions for all the quantities
appearing in this section are given in Appendix B.

2.3. Holographic relative entropy

We will now see that the gravitational quantity associated with the CFT relative entropy for a
ball-shaped region coincides with a particular gravitational Hamiltonian as defined in the previous
section.

Consider a gravitational solution in the bulk that is dual to a state in the CFT. For a domain B on
the boundary, let � be a spacelike surface between B and the corresponding bulk extremal surface B̃.
We will show that there is a choice of a vector field ξ in a neighborhood of � such that the difference
of the quasi-local energy Hξ for the gravitational solution minus the energy for the vacuum AdS
geometry gives the relative entropy between the state ρB dual to our gravitational solution and the
state ρvac

B for the vacuum.
In some sense, we already have a holographic description for the relative entropy S(ρB||ρvac

B ),
since it is equal to �〈HB〉 − �S as explained in Sect. 2.1, and since both the expectation value of
the modular Hamiltonian 〈HB〉 and the entanglement entropy S have holographic counterparts. To
the leading order in large N , the covariant holographic entanglement entropy formula shows that

�S = 1

4GN
�Area(B̃). (21)

6/30



PTEP 2016, 12C109 N. Lashkari et al.

As explained in [5], this formula implies directly that the CFT stress tensor expectation value is
related to the asymptotic metric via the usual relation3

�〈Tμν〉 = �T grav
μν ≡ d�d−3

16πGN
�μν(x, z = 0), (22)

where �μν is defined by the Fefferman–Graham description of the metric for M ,

ds2 = �2

z2

(
dz2 + dxμdxμ + zd−1�μν(z, x)

)
. (23)

Therefore, the relative entropy can be expressed as an integral over B and B̃ as

S(ρB||ρvac
B ) = d�d−3

16πGN

∫
B

ζ
μ
B �μν(x, z = 0)εμ − 1

4GN
�Area(̃B). (24)

What we would like to do is to relate (24) to the quasi-local energy Hξ defined in the previous
subsection for some choice of ξ . In this way, we can translate the positivity and monotonicity of the
relative entropy to conditions on the quasi-local energy.

The choice of ξ may be motivated by the result [11] that to quadratic order in perturbation theory,
the relative entropy maps to the bulk energy associated with a Killing vector (here given in Fefferman–
Graham coordinates),

ξB = π

R

{[R2 − z2 + (x − x0)
2 + 2(uν(x − x0)

ν)2]uμ + [2uν(x − x0)
ν](x − x0)

μ
}
∂μ

+ π

R

{
uν(x − x0)

νz
}
∂z, (25)

where u is the timelike orthogonal vector to the spatial slice in which the ball resides. The vector ξB

reduces to the conformal Killing vector ζB at the boundary and vanishes on the extremal surface B̃.
For general asymptotically AdS spacetimes, there are no Killing vectors, but we can find a vector

ξ that behaves in the same way near B and B̃ as the Killing vector behaves near these surfaces in
pure AdS. Specifically, we require4

ξa|B = ζ a
B , (26)

∇(aξb)|z→0 = O(zd−2), (27)

∇[aξb]|B̃ = 2πnab, (28)

ξ |B̃ = 0, (29)

where nab = na
1nb

2 − na
2nb

1 is the binormal unit vector to B̃ and ζB is the conformal Killing vector (8).
As we show in Appendix C, it is always possible to find such ξ . The choice of ξ is not unique since
it is unconstrained away from B and B̃, but the value of Hξ will not depend on the detailed behavior
of ξ in the interior of � since Hξ can be expressed as a boundary integral as in (20). We will give
one explicit construction for ξ in Sect. 4.

3 The derivation proceeds by applying the entanglement first law to an infinitesimal ball. In this case, the
variation in the entanglement entropy is related to the asymptotic metric (since it is proportional to the area
of an extremal surface near the AdS boundary), while the modular Hamiltonian expectation value is related to
stress tensor expectation value at a point.

4 The second condition is that the vector satisfies the Killing equation Lξ g = 0 up to order zd−3.Alternatively,
we can require that in Fefferman–Graham coordinates, ξ agrees with (25) up to corrections of order zd+1.
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If ξ satisfies the boundary conditions (26)–(29), we can show that K , as defined in the previous
section, exists, and that

�

∫
B

[
Qξ − ξ · K

]
= d�d−3

16πGN

∫
B

ζ
μ
B �μν(x, z = 0)εμ, (30)

�

∫
B̃

[
Qξ − ξ · K

]
= 1

4GN
�Area(̃B). (31)

These results allow us to rewrite (24) as a difference of the quasi-local energy,

S(ρB||ρ(vac)
B ) = Hξ (M ) − Hξ (AdS), (32)

where Hξ is the Hamiltonian (20) associated with the vector field ξ . Thus we can identify Hξ as the
“novel measure of energy” discussed in the introduction,

EnergyM (�) = Hξ (M ), (33)

for the region � of the Cauchy surface of the spacetime M .
To show Eq. (31), note that ξ ·K vanishes on the surface B̃ because ξ vanishes there by the boundary

condition (29). Further, for the theories we are considering (with Einstein gravity coupled to matter,
where the matter couplings do not involve curvatures), Qξ may be chosen to take the form [16]5

Qξ = − 1

16πGN
∇aξbεab. (34)

Here, εab, defined in Appendix B, is defined such that its contraction with orthogonal unit vectors
n1 and n2 gives the volume form in the perpendicular subspace. The boundary condition (28) for ξ

then implies that Qξ evaluated on B̃ is 1/(4GN ) times the volume form on B̃, so we have∫
B̃

Qξ = − 1

16πGN

∫
B̃

∇aξbεab = 1

4GN
Area(B̃), (35)

as desired.
To show Eq. (30), consider the infinitesimal version of the left-hand side,∫

B
(δQξ − ξ · θ(g, δg)).

In this expression, the terms that survive the limit when the cutoff surface B approaches the boundary
involve only the leading deviations from the pure AdS metric in the asymptotically AdS geometry M .
Furthermore, the expression is linear in these perturbations, which can be represented explicitly by the
tensor �μν(x, z = 0) appearing in (23). In [5], it was shown explicitly that for a Fefferman–Graham
description of the metric, these linear perturbations satisfy6∫

B
(δQξ − ξ · θ(g, δg)) = d�d−3

16πGN

∫
B

ζ
μ
B δ�μν(x, z = 0)εμ. (36)

5 From [16], the most general form of Q in this case is Qξ = − 1
16πGN

∇aξ bεab + W aξa + Y (φ, Lξφ) + dZ ;
however, the Z term is a total derivative which does not affect the integral of Q on a boundary, Y can be removed
by making use of the ambiguity θ → θ + dY in (10), and W can be removed by the freedom Q → Q + ξ · μ
and θ → θ + δμ which corresponds to adding a total derivative dμ to the Lagrangian form. We will assume
that these choices have been made to remove the possible extra terms.

6 In that calculation, the expression for ξ in Fefferman–Graham coordinates was assumed to be that of the
Killing vector in pure AdS. The condition (27) ensures that for the more general ξ vectors we are considering,
no additional terms appear in the expression below.
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To recover (30), we can simply integrate this expression on a one-parameter family of metrics from
pure AdS to the desired spacetime. Since the first term on the left and the term on the right give
results that are independent of which path through the space of metrics we choose, this must also
be true for the term involving θ . This establishes the existence of K as in (15),7 and the result is
precisely (30).

In calculating the difference in (30), we require a regularization procedure in which quantities are
calculated on a regularization surface away from the boundary, the results for the two spacetimes are
subtracted, and then the surface is taken to the boundary. It is useful to note that the result does not
depend on the precise way in which these surfaces are chosen. This follows because the infinitesimal
variation appearing on the left-hand side in (36) satisfies

d(δQξ − ξ · θ(g, δg)) = 0 (37)

on shell to leading order in perturbations toAdS. Thus, by Stokes’ theorem, for two choices of surface
B and B′, we have ∫

B
(δQξ − ξ · θ(g, δg)) −

∫
B′

(δQξ − ξ · θ(g, δg)) = O(δg2). (38)

The non-linear perturbations on the right appear only at higher orders in the Fefferman–Graham
expansion and do not contribute in the limit where the surface is taken to the boundary.

A particularly convenient choice of surface is the z = ε surface in Fefferman–Graham coordinates.
For this choice, direct calculation shows that the first term on the left-hand side in (36) equals the
right-hand side, the θ term doesn’t contribute, and we have

S(ρB||ρ(vac)
B ) = �(

∫
BFG

Qξ −
∫

B̃
Qξ ) = �

∫
�FG

Jξ , (39)

where the subscript FG indicates that the z = ε surface in Fefferman–Graham coordinates is to be
used when performing the subtraction. The simple result Hξ = ∫

�FG
Jξ shows that the Hamil-

tonian Hξ also has the conventional interpretation as the conserved charge associated with the
diffeomorphism symmetry generated by ξ .

2.4. Path integral derivation

In this section, we derive the gravity dual of relative entropy for time-independent states without
assuming the Ryu–Takayanagi formula. Instead, similar to the method presented in [14] we assume
AdS/CFT and bulk equations of motion.

It was shown in [19] that there exists a Zn-symmetric replica trick that computes the relative entropy
of excited states with respect to vacuum reduced to ball-shaped regions. In this replica trick, relative
entropy is found from the analytic continuation of Rényi relative entropies:

S(ρ‖σ) = lim
n→1

Sn(ρ‖σ), (40)

7 Alternatively, the existence of K follows from the integrability condition (17), which was argued in [18]
based on the vanishing of ω at the AdS boundary.
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Fig. 1. The two Euclidean path integrals on the left prepare the density matrix of a spherical subsystem in a
CFT in vacuum and an arbitrary state, respectively σ and ρ. The path integrals appearing in the definition of
Rényi relative entropies are of the type on the right.

where

Sn(ρ‖σ) = 1

n − 1
log

(
tr (ρ̃n)

tr(ρ)ntr(σ )1−n

)
,

ρ̃ = σ
1−n
2n ρσ

1−n
2n . (41)

Assuming analyticity, the limit n → 1 corresponds to taking a derivative with respect to n:

S(ρ‖σ) = ∂n log tr(ρ̃n)

∣∣∣
n=1

− log tr(ρ) + log tr(σ ). (42)

As we will see, tr(ρ̃n) in conformal field theory is a one-sheeted partition function. Therefore, from
the operator–state correspondence we know that Rényi relative entropies are functions of Euclidean
correlators.

Consider the vacuum state in a d-dimensional conformal field theory reduced to a ball of radius R.
There exists a unitary transformation that maps this density matrix to a thermal state on hyperbolic
space H d−1: σ ∼ Pe−2πHB , where HB is the Hamiltonian on H d−1 defined in (7). Up to normalization,
this density matrix is prepared using a Euclidean path integral on H d−1 ×(0, 2π). The operator–state
correspondence in conformal field theory implies that an arbitrary excited state reduced to the same

ball is ρ ∼ Pe− ∫ 2π
0 dτH (τ ), where H (τ ) is HB everywhere except at two points. At τ = (π ± ε) we

need to insert in the path integral the operators � and �† that create and annihilate the global state.
Here, R/ε is the infrared cut-off of the theory; see Appendix D. Figure 1 shows that the operator
ρ̃ has an expression in terms of a Euclidean path integral on hyperbolic space with Euclidean time
direction τ in the interval (π(1 − 1/n), π(1 + 1/n)):

ρ̃ = σ
1−n
2n ρσ

1−n
2n ∼ Pe− ∫ π(1+1/n)

π(1−1/n)
dτH (τ ).

Sewing n copies of ρ̃ together we find

tr(ρ̃n) = tr(σ )

〈
n∏

i=1

��†

〉
H d−1×S1

, (43)

where the periodicity of S1 is 2π .
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Fig. 2. The bulk version of the replica trick in Fig. 1. The geometries on the left are dual to vacuum and
excited state density matrices, respectively σ and ρ. The bulk configuration on the right prepares our quantity
of interest in the definition of Rényi relative entropies.

According to AdS/CFT, the traces of holographic CFT states on the gravity side are found by
evaluating the gravitational on-shell action over the Euclidean geometry and matter fields dual to the
state: tr(ρ) = e−IE(g(ρ)). The on-shell action has a bulk piece and a boundary piece defined in (15):

log trρ = −
∫

M
LE −

∫
∂M

K .

For Dirichlet boundary conditions at infinity, K is the familiar Gibbons–Hawking type term one adds
in holographic renormalization to ensure that the equations of motion are satisfied in the bulk.

The CFT path integrals on H d−1 × S1 can be extended into the bulk as illustrated in Fig. 2. The
Euclidean metric dual to vacuum density matrix is the Euclidean hyperbolic black hole:

ds2 =
(

ρ2

R2 − 1
)

dτ 2 +
(

ρ2

R2 − 1
)−1

dρ2 + ρ2ds2
H d−1 . (44)

Using the proper distance from the horizon r = ∫ Rdρ√
ρ2−R2

as the radial coordinate, the metric takes

the form

ds2 = α(r)2dτ 2 + dr2 + R2 cosh2(r/R)ds2
H d−1 , (45)

where α(r) = R sinh(r/R) = r + O(r3) near the horizon at r = 0. The Killing vector field ∂τ of the
hyperbolic black hole geometry is the Euclidean analogue of ξB in (25).

The gravity dual to tr(ρ̃n) is the cigar geometry that is the solution to the bulk equations of motion
with Zn-symmetric boundary conditions τ → τ + 2π/n on H d−1 × S1 at infinity. Following [14],
we demand the solution g(ρ̃n) to remain Zn symmetric in the bulk. The cigar caps off smoothly in
the bulk where the S1 circle shrinks to a point at a codimensional-two surface we call B̃(n). This
surface is the fixed point of the action of Zn in the bulk. We can set up Gaussian normal coordinates
near B̃(n) analogous to the hyperbolic black hole,

ds2 = α2dτ 2 + dr2 + 2βidτdxi + gijdxidxj,

α(r, τ , n) = r + O(r3), bi(r, τ , n) = O(r2), (46)

where xi are the directions along B̃(n). In these coordinates B̃(n) sits at r = 0, where the vector field
ξ = ∂τ vanishes.
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Fig. 3. The analytic continuation of geometries to non-integer n near one.

We need to analytically continue tr(ρ̃n) in n. We define the analytic continuation to non-integer
n = 1 + δn to be

log tr(ρ̃n) = −nI (ĝ(n)) = −n

(∫
cone

LE(ĝ(n)) +
∫

∂(cone)
K(ĝ(n))

)
, (47)

where ĝ(n) is the solution to the bulk equations of motion on a cone with periodicity 2π/n with
boundary conditions corresponding to tr(ρ̃) at infinity. The cone condition can be imposed by putting
a brane at r = 0 that creates an opening angle 2π/n around it. The action in (47) should include
neither the brane action nor any contributions from the tip of the cone. The expression in (47) can
be alternatively interpreted as an off-shell smooth geometry with the same boundary conditions as
tr(ρ̃n). The configuration g(ρ̃n) is on shell, which implies that its action differs from the proposed
analytic continuation at order (δn)2. This will not be an issue since relative entropy is derived from the
coefficient of the term linear in δn; see Fig. 3. Now, we are ready to perform the analytic continuation
in n:

S(g(ρ)‖g(σ )) = −∂nI (ĝ(n))

∣∣∣
n→1

+ log trσ . (48)

The definition of the vector field ξ = ∂τ near B̃ in (46) can be extended everywhere in the
bulk, leading to a foliation of the Euclidean geometry by surfaces of constant τ . We demand ξ to
approach the generator of Euclidean time translations on H d−1×S1 at infinity, which is the Euclidean
analogue of ζB. Given any foliation of this type, we can compute the on-shell action of ĝ(n) using
the Hamiltonian that generates the flow along the vector field ξ over the cone:

I (ĝ(n)) =
∫ π(1+1/n)

π(1−1/n)

dτ

(∫
�(τ)

ξ · L(ĝ(n)) +
∫

∂�(τ)

ξ · K(ĝ(n))

)
. (49)

Changing n changes the periodicity both at r = 0 and r → ∞. Let us cut the cone open at
τ = π(1 − 1/n) and represent the on-shell action with the short-form notation:

∫ π(1+1/n)

π(1−1/n) L. Then,

∂nI (ĝ(n))

∣∣∣
n=1

=
(

d

dn

∫ π(1+1/n)

π(1−1/n)

L −
∫ π(1+1/n)

π(1−1/n)

∂nL

)
n=1

+
(

d

dn

∫ π(1+1/n)

π(1−1/n)

K −
∫ π(1+1/n)

π(1−1/n)

∂nK

)
n=1

. (50)

One can use the bulk equation of motion to write the terms on the right-hand side in (50) as boundary
terms, ∫ τ2

τ1

∂nL = �(∂ng|τ1) − �(∂ng|τ2) +
∫

∂M
�(∂ng). (51)
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As a result,

∂nI (ĝ(n))

∣∣∣
n=1

= −2π

(∫
�(0)

(
ξ · L(g) − �(Lξ g)

)+
∫

∂�(0)

ξ · K(g)

)
, (52)

where we have used ĝ(1) = g, and the definition of K(g) in (15). Note that the term Jξ = �(Lξ g)−
ξ · L(g) is the Hamiltonian that generates the flow along the ξ vector field. Therefore,

S(ρ‖σ) = −2π

(∫
�(0)

Jξ +
∫

∂�(0)

ξ · K

)
g(ρ)

+ 2π

(∫
�(0)

Jξ +
∫

∂�(0)

ξ · K

)
g(σ )

,

where we have used the fact that ξ is a Killing vector in vacuum AdS. In order to compare with
the Lorentzian result in the previous subsection one has to make the Wick rotation τ = it. In the
Euclidean geometry on the τ = 0 surface this sends ξ → −iξ and LE = −iL. As before, we find
that the relative entropy is the change in the phase space Hamiltonian associated with vector field ξ :

S(ρ‖σ) = Hξ (g(ρ)) − Hξ (g(σ )),

Hξ (g) = 2π

(∫
�(0)

Jξ (g) +
∫

∂�(0)

ξ · K(g)

)
. (53)

3. Implications

Using our identification of relative entropy with the vacuum-subtracted gravitational energy �Hξ ,
we now explore the implications of the relative entropy inequalities for spacetime geometry and
gravitational physics.

3.1. Positive energy theorems for gravitational subsystems

We have seen that in any example of AdS/CFT for which the Ryu–Takayanagi formula (1) holds, the
relative entropy for a ball-shaped region B in the CFT is dual to the gravitational energy (16) or (20)
associated with ξB. When combined with relative entropy inequalities (5) and (6) that hold for all
quantum systems, this result leads immediately to new positive energy theorems for asymptotically
AdS spacetimes.

Specifically, the positivity of relative entropy (5) implies that for any geometry M associated with
a consistent CFT state, the vacuum-subtracted energy HξB −H AdS

ξB
associated with the subsystem �B

between B and B̃ must be positive for any ball-shaped boundary region in any Lorentz frame. The
monotonicity of relative entropy implies further that for any two balls B′ and B, with B in the domain
of dependence of B′ the energy associated with �B′ must be larger than the energy associated with
�B.

These results are much more detailed than the usual positive energy theorems [20,21], which
guarantee the positivity of energy for an entire asymptotically AdS spacetime (defined by (20) with
ξ taken to coincide with the boundary time at the AdS boundary) assuming certain energy conditions.
In our case we see that each physical spacetime must satisfy an infinite number of energy constraints,
one positivity condition, and a family of monotonicity conditions (discussed further below) for each
subsystem �B associated with a boundary ball B.

The assumptions behind the theorems are also rather different. Typically, one requires that the
matter in the theory is physically reasonable by assuming an energy condition,8 but there is no

8 In [20], this was the dominant energy condition, while in [21], a weaker averaged null energy condition
was assumed.
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attempt to prove the energy condition from some underlying complete quantum theory. For our
results, we assume that the spacetime arises in some consistent theory of quantum gravity with a
CFT dual for which the holographic entanglement entropy formula (1) holds. Plausibly, this should
be true for any consistent theory of quantum gravity whose low-energy equations of motion are
Einstein’s equations with couplings to arbitrary matter, so long as these couplings do not involve
spacetime curvatures.9

For the global energy of an asymptotically AdS spacetime, positivity follows via AdS/CFT from
the positivity of vacuum-subtracted energies in the CFT.10 But the usual energy theorems show this
positivity directly in general relativity by assuming an energy condition. In a similar way, while we
have shown the energy and monotonicity results starting from properties of relative entropy in the
CFT, it may be possible to prove these statements directly in general relativity by assuming some
energy condition.11 This is an interesting problem for future work.

3.2. Constraints on geometries

The energy constraints that we have described may be viewed as purely geometrical constraints on
the spacetimes that describe the entanglement entropies of consistent CFT states. Even when matter
fields are present (without curvature couplings), the quantities appearing in the expressions (24) dual
to relative entropy depend only on the geometry. Certain asymptotically AdS geometries satisfy the
constraints associated with positivity and monotonicity of relative entropy, while others violate them,
and cannot correspond to consistent CFT states.

In assessing which geometries satisfy the constraints, we can work directly from the expressions in
(24) which are integrals over the codimension-two surfaces B and B̃. Alternatively, we can rewrite the
energy as a bulk expression, as in (16). In order to make clear which constraints arise directly from
the holographic entanglement entropy formula together with relative entropy inequalities without
assuming the equations of motion, we can use the off-shell version of (19) [23],

J grav
ξ = dQξ + Cgrav

ξ , (54)

where Qξ is given in (34), C is defined in terms of the Einstein tensor Eab as

Cgrav
ξ = 1

8πGN
ξaEa

bεb, (55)

and J is given in Eq. (B.1). Here, we are using the superscript “grav” to indicate that we are not
considering the matter contributions to these quantities. Since the result (54) is true off shell, it holds
in general whether or not there are matter fields in the theory. Applying the identity (54) to (32) with
the definition (20), we can then write a bulk expression for relative entropy as

S(ρB||σB) = �

∫
�

(Jξ − Cξ ) − �

∫
B

ξ · K , (56)

with the boundary term vanishing when B is regularized as a constant z surface in Fefferman–Graham
coordinates. Here, we can think of the first term involving Jξ as a gravitational contribution to the

9 As we discuss further in Sect. 5, we expect the result to also hold for more general theories of gravity, with
an appropriately modified definition of the gravitational energy.

10 Alternatively, it can be shown based on causality in the CFT [22].
11 In general, this would only establish the energy condition as a sufficient condition for our (necessary)

positive energy theorem.
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D

2B̂

2B

1B

Fig. 4. For ball-shaped region B1 in the domain of dependence D of ball-shaped region B2, monotonicity of
relative entropy implies that the relative entropy for B2 must be larger than or equal to the relative entropy
associated with the subsystem B1. Here, the surface B̂2 includes the ball B1 and is a Cauchy surface for the
same domain of dependence region D as B2, so it has the same relative entropy as for B2.

energy and the second term involving Cξ as a matter contribution to the energy, since on shell we
can replace Eab appearing in Cξ with the matter stress tensor Tab.

3.3. General constraints from monotonicity

In this section, we describe a minimal set of constraints on an asymptotically AdS spacetime M
which guarantee that all constraints associated with positivity and monotonicity of relative entropy
for ball-shaped regions in the dual CFT will be satisfied.

3.3.1. A basis of constraints
We note first that positivity of relative entropy for a region B is equivalent to monotonicity applied to
the case where the larger region is B and the smaller region is the empty set (considered as a subset
of B). Thus, it is sufficient to focus on the monotonicity constraint.

For a relativistic conformal field theory, the monotonicity constraint

S(ρ�
B1

||ρvac
B1

) ≤ S(ρ�
B2

||ρvac
B2

) (57)

must hold for any two balls B1 and B2 for which the domain of dependence of B1 is contained in the
domain of dependence of B2, as in Fig. 4, since in this case the fields on B1 can be understood as a
subset of the degrees of freedom associated with B2.12

For any B1 and B2 as above, there will be a one-parameter family of balls B(λ) with B(0) = B1,
B(1) = B2, and B(λ1) contained in the domain of dependence of B(λ2) for λ1 ≤ λ2. Applying the
monotonicity constraint to any two infinitesimally nearby balls in this family, we obtain

d

dλ
S(ρ�

B(λ)||ρvac
B(λ)) ≥ 0. (58)

12 To see this, we note first that the monotonicity constraint must hold for regions A ⊂ B in any spatial slice.
Considering a spatial slice that contains B1 and ∂B2 (possible since B1 is in the domain of dependence of B2),
we have a monotonicity constraint associated with the regions B1 and B̂2, where B̂2 is the region inside ∂B2

on our spatial slice (see Fig. 4). But B̂2 and B2 are just two different Cauchy surfaces for the same domain of
dependence region. Thus, the corresponding density matrices are related by a unitary transformation, and the
relative entropy associated with B̂2 is the same as the relative entropy associated with B2. Thus, we can express
the monotonicity constraint directly in terms of B2 as in (57).
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B

x+

x-

Fig. 5. One-to-one correspondence between balls B and pairs of points (x+, x−) with x+ in the future of x−. A
minimal set of monotonicity constraints is obtained by considering deformations of the ball associated with
shifting x+ in a future lightlike direction (red arrow) or x− in a past lightlike direction. The boundary vector
field � generates a conformal transformation that reverses this deformation.

The collection of these infinitesimal conditions implies the finite constraint (57) upon integration
over λ ∈ [0, 1]. Thus, all relative entropy constraints for ball-shaped regions may be obtained from
infinitesimal constraints (58) associated with a ball B and perturbations B(λ) that enlarge the domain
of dependence region.

To describe these explicitly, we note that there is a one-to-one correspondence between balls B
and pairs (x−, x+) of points with x+ in the future of x−, such that the boundary of the ball is the
intersection of the future light cone of x− and the past light cone of x+, as shown in Fig. 5. Ball-
enlarging transformations correspond to deformations which move x+ in a future timelike direction
and x− in a past timelike direction. To obtain the minimal set of constraints, it is enough to focus
on a basis of such transformations: those that take either x+ in a future lightlike direction with x−
fixed or x− in a past lightlike direction with x+ fixed. These correspond to infinitesimal perturbations
that fix one point on the ball and translate the diametrically opposite point in a lightlike direction, as
shown in Fig. 5.

Each of these infinitesimal enlargements can be associated with a conformal transformation. Con-
sider a ball of radius R with center xμ

0 orthogonal to the timelike unit vector uμ. For this ball,
x± = x0 ± Ru. Let nμ be a spacelike unit vector orthogonal to uμ. Then x0 ± nR are diametrically
opposite points on the ball. A conformal transformation that holds x0 − nR fixed and moves x0 + nR
in the positive/negative lightlike direction n ± u is given by xμ → xμ − �μ, where

�μ = αxμ + ωμ
νxν + aμ,

α = − 1

2R
,

ωμν = ± 1

2R
(nμuν − uμnν),

aμ = 1

2R
xμ

0 ∓ 1

2

(
1 − n · x0

R

)
uμ − 1

2

(
1 ± u · x0

R

)
nμ. (59)
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In summary, we can define a basis of monotonicity constraints that are in one-to-one correspondence
with pairs (B, �), where B is a ball and � is an infinitesimal conformal transformation of this form.

3.3.2. Explicit geometrical constraints from monotonicity
To describe the infinitesimal monotonicity constraints explicitly, it is useful to express (58) in a
different way such that the ball remains fixed under the variation while the state changes. Given
B(λ), we define conformal transformations U (λ) on the CFT associated to a family of conformal
transformations that take B(λ) back to the original ball B(0). Then

S
(
ρ�

B(λ)||ρvac
B(λ)

)
= S

(
ρ

U (λ)�
B ||ρvac

B

)
,

so the monotonicity constraint translates to

d

dλ
S
(
ρ

U (λ)�
B ||ρvac

B

)
|λ=0 ≥ 0. (60)

For our basis of transformations, we choose U (λ) to be an infinitesimal transformation associated
with generator H� = −i∂λU |λ=0 where �μ is any vector field of the form (59).

In the form (60), it is straightforward to translate the monotonicity constraint to an explicit constraint
on geometries, given our result (32). On the gravity side, the infinitesimal conformal transformation
associated with �μ corresponds to a infinitesimal diffeomorphism

g → g + L
�̂

g (61)

for some �̂ that extends � into the bulk. For an asymptotically AdS spacetime in Fefferman–Graham
coordinates, this vector field can be related explicitly to the boundary vector field �a as

�̂a(z, x) =
(
�̂μ(z, x), �̂z(z, x)

)
= (

�μ(x), −αz
)

, (62)

where α is defined in (59). Since the relative entropy for ball B is related to the gravitational Hamil-
tonian HξB by (32), and since the change in this Hamiltonian under a general variation of the metric
is given by (12), we can immediately translate (60) to

δ
�̂

HξB = W (L
�̂

g, LξBg) ≡
∫

�B

ω(L
�̂

g, LξBg) ≥ 0, (63)

where we recall that W defines the symplectic form on the gravitational phase space associated
with �B. This gives an elegant gravitational interpretation of the general monotonicity constraint
associated with the pair (B, �).

The result (63) is true on shell. We can also obtain an off-shell version, starting from the result

δS(ρB(λ)||ρvac
B ) =

∫
�B

d
[
δQξ (g) − ξ · θ(g, δg)

]
, (64)

which follows from (32) using the definitions (20) and (15). We will apply this to the metric
perturbation defined by �̂. To proceed, we make use of the basic identity [23]

d
[
δQξ (g) − ξ · θ(g, δg)

] = ω(g, δg, Lξ g) + ξ · (E(g) · δg) − δCξ (g), (65)

where E · δg is defined to be the equations of motion term appearing in (10), and C is defined by
(54). This identity holds off shell for any fixed vector field ξ and any variation of the metric, and is
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true for quantities ω, E, C, Q, and θ defined with respect to any gravitational Lagrangian. Both E and
C vanish if the equations of motion associated with this Lagrangian are satisfied. Applying (65) to
(64) for the variation g → g +L

�̂
g in the case where the various quantities are defined with respect

to the full Lagrangian of our theory including matter, and assuming that the equations of motion are
satisfied, we immediately recover (63).

On the other hand, we can apply (65) off shell to (60) in the case where the various quantities are
defined with respect to the pure Einstein Lagrangian. In this case, we obtain the off-shell result

δ
�̂

HξB =
∫

�B

ωgrav (g, L
�̂

g, LξBg
)+ ξ · (E(g) · L

�̂
g
)− L

�̂
Cξ (g) ≥ 0, (66)

or, more explicitly,∫
�

εa

{
ωa(g, L

�̂
g, LξBg) + ξa

BEbc(L
�̂

g)bc − ξ c
BEc

a(L
�̂

g)b
b

+2ξ c
BEcb(L�̂

g)ba − 2ξ c
B(L

�̂
E)c

a
}

≥ 0, (67)

where E is the Einstein tensor and the tensor ωa is given explicitly in Appendix B. This provides a
purely geometrical off-shell constraint that must hold for any consistent spacetime geometry.

We can obtain an alternative on-shell formula by replacing the Einstein tensor with the matter
stress tensor using the equations of motion

Eg
ab = 1

2
Tab. (68)

With this replacement, we can think of the first term in (67) as the gravitational contribution to (63)
and the remaining terms as a matter contribution, which involves only the matter stress tensor. In
this form, the constraint is something like an energy condition constraining the matter stress tensor.
We will see specific examples below.

3.4. Perturbative constraints

We now consider spacetimes that are close to pure AdS and derive constraints on the geometries that
follow from our general constraints above.

3.4.1. Review of perturbative implications of positivity
Gravitational implications of the positivity of relative entropy in perturbation theory around the CFT
vacuum were previously studied in [4,9–11]; we briefly review these results and explain how to
recover them from the positivity of our general formula (2).

Since relative entropy vanishes for the reference vacuum state and is positive everywhere else,
the first-order variation of relative entropy vanishes. Combining the differential version (64) of our
result with (65), using that E(g) = Lξ g = 0 for the background metric, and using that for pure
gravity

Cξ = 1

8πGN
ξaEa

bεb, (69)

we obtain ∫
�B

ξaδEabε
b = 0.
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From the collection of these constraints for all B, it follows that δEab = 0 everywhere, i.e. that the
first-order perturbations to the geometry must satisfy Einstein’s equations to linear order about AdS,
as argued originally in [4,5].

To obtain the second-order results from positivity of relative entropy, we can again start with the
differential formula (64), replacing the integrand with the right-hand side of the identity (65). Taking
a second variation, we find [11]

d2

dλ2 S(ρ(λ)||σ)|λ=0 = W�(g, γ , LξBγ ), (70)

where γ = dg/dλ|λ=0 and ξB is the bulk Killing vector in the AdS–Rindler wedge. The right-hand
side is defined in the general relativity literature as “canonical energy” E(γ , γ ) [23]. Its positivity
around a stationary black hole background implies linearized stability for axisymmetric perturbations
to the black hole. Hence our result implies linearized stability of the AdS–Rindler wedge for physical
perturbations in a theory of quantum gravity.

As explained in [11] (see [9,10] for earlier related results), the positivity of the relative entropy at
second order around the vacuum (70) can be massaged into a form resembling a manifest energy
condition. Namely, if one assumes the Einstein equations, one can write the canonical energy E as

E(γ , γ ) = −
∫

�

ξa(T (2)
ab + T grav(2)

ab )εb + boundary term, (71)

where T (2)
ab are the terms in the matter stress tensor for bulk fields in AdS at second order in λ,

and T grav(2)

ab is the expression quadratic in the first-order metric perturbation that sources the next
correction to the bulk metric when one perturbatively solves the Einstein equations. Up to the
boundary term, this is the perturbatively corrected Rindler energy associated with the Killing vector
ξB.

3.4.2. Perturbative implication of monotonicity
Starting from (67), we now derive the general constraints at second order coming from monotonicity
of relative entropy. For a metric defined perturbatively as

g(μ) = g0(0) + μg1(0) + μ2g2(0) + · · · ,

the first new constraints from (67) come at order μ2. These give

δ
�̂

HξB |O(μ2) =
∫

�

εa

{
ωa(g0, L

�̂
g1, L

ζ̂B
g1) − 2ξ c

B(L
�̂

E(2))c
a
}

≥ 0, (72)

where E(2) represents the terms in the gravitational equations at second order in μ.
We can compare this with the second-order constraints due to positivity of relative entropy, which

give (off shell) ∫
�

εa

{
ωa(g0, g1, LξBg1) − 2ξ c

B(E(2))c
a
}

≥ 0. (73)

As discussed above, the monotonicity constraints (72) must imply the positivity constraints (73), but
in this case, we will see that they are stronger.

Using the explicit form (25) of the bulk Killing vector ξB in AdS and the expressions (62) and (59)
for �̂, we can give a more explicit formula for the second term in (72). We take a ball centered at x0

19/30



PTEP 2016, 12C109 N. Lashkari et al.

Fig. 6. Bulk constraints and entries in the holographic dictionary: gray arrows represent proofs. They start
from assumptions and point to conclusions. Blue vertical arrows signify restricting to special cases. HRT and
RT stand for the Hubeny–Rangamani–Takayanagi and Ryu–Takayanagi conjectures, respectively.

with radius R in a spatial slice perpendicular to a unit timelike vector u. We consider a deformation
that holds a point xμ

0 − nμR on ∂B̃ fixed while shifting xμ
0 + nμR in the lightlike n ± u direction

perpendicular to ∂B̃. Then the second term in (72) becomes

−2
∫

�

εaξ
c
B(L

�̂
E(2))c

a = π

R2

∫
�

ε�z d2
B̃

[
1

2
(n · x + R)∂±E(2)

uu ± E(2)
u± + 1

2
z∂zE(2)

uu

]
,

where we have defined

d2
B̃

= R2 − z2 − (�x − x0)
2 + (t − t0)

2

and the integral runs over the bulk surface � perpendicular to (uμ, uz = 0) bounded by B and B̃.
In [10], monotonicity of relative entropy was used to derive constraints on the asymptotic metric of

translation- and time-translation-invariant asymptotically AdS3 spacetimes. Using the general result
(72) above, we have checked that the constraints are precisely reproduced.

The relations between bulk constraints and information equalities and inequalities are summarized
in Figs. 6 and 7.

4. Generalized Radon transform

In [9], three of the authors of this paper studied the holographic expression for the relative entropy
in the limit where the radius of the entanglement domain B is small. When the gravitational solution
is time-reflection symmetric so that the Ryu–Takayanagi formula can be used, they found(

d2

dR2 + 1

R

d

dR
− 1

R2

)
S(ρB||ρvac

B ) = 16π2GN

∫
B̃

ε
√

gB̃, (74)

where ε is the energy density of matter fields in the bulk and
√

gB̃ is the induced volume form on B̃.
In this limit, backreaction to the metric can be ignored and the bulk geometry remains pure AdS. It
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Fig. 7. Information inequalities and bulk constraints.

was pointed out in [9] that the right-hand side of (74) takes the form of the Radon transform of ε on
the d-dimensional hyperbolic space. It is known that the Radon transform is invertible on hyperbolic
space [24,25] and we can express the energy density ε as a superposition of the relative entropies
for a family of domains on the boundary. In this way, we are able to reconstruct the local data on ε

in the bulk from the entanglement data represented by the relative entropy on the boundary.
The holographic formula for the relative entropy derived in this paper enables us to generalize

result (74) for finite R. As in [9], we restrict our analysis to spacetimes which have time-reflection
symmetry, such that the Ryu–Takayanagi surface is embedded in the time-reflection slice. The
reflection symmetry ensures that in a neighborhood of this slice the metric components satisfy

∂tgtt = ∂tgαβ = O(t), gtα = gαt = O(t), (75)

where the Greek indices run over the spatial directions.
We start by parametrizing the Ryu–Takayanagi surface ending on the boundary of the sphere of

radius R as an even function of t,

f (xa) = R. (76)

Its gradient vector field ∗df = gab(∂af )∂b is orthogonal to the Ryu–Takayanagi surface since any
vector field ua parallel to the surface obeys gab ua(∗df )b = ua∂af = 0. Using this, we define field ξ

as a one-form,

ξ(R) = −2π t
√−gtt

fdf

R||df || −
(

R − f (xa)2

R

)
π

√−gtt dt

||df || , (77)

where ||df || = √
gab∂af ∂bf .

Let us show that this vector field satisfies the boundary conditions (26)–(29). To check (26), we
note that, in the AdS limit, f → √

t2 + z2 + x2 and
√−gtt ||df || → 1. Therefore, ξ (with raised
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indices) reduces to the Killing vector field ξ in AdS defined in Eq. (21) of [9] and to the conformal
Killing vector ξB on the boundary.

It is easy to show that ξ vanishes at f (xa) = R and (29) is satisfied. Using Eq. (75), it can be
checked that on the Ryu–Takayanagi surface

∇aξb − ∇bξa = 4πnab, (78)

so Eq. (28) is satisfied. Thus, ξa satisfies the boundary conditions on the Ryu–Takayanagi surface.
Differentiating ξ(R) with respect to R, we obtain(

d

dR
+ 1

R

)
ξ(R) = 2πτ , (79)

where

τ = −
√−gtt

||df || dt. (80)

It follows that (
d

dR
+ 1

R

)
Jξ = 2πJτ , (81)

and (
d

dR
+ 1

R

)∫
�

Jξ = 2π

∫
�

Jτ +
∫

∂�

v · Jξ , (82)

where v is the vector defined in the above so that gab va(∗df )b = 1.
Since the relative entropy S is expressed as

∫
�

Jξ − ∫
∂�

ξ · K minus the contribution from the
vacuum AdS,(

d

dR
+ 1

R

)
S = �

[
2π

∫
�

Jτ +
∫

∂�

v · Jξ − 2π

∫
∂�

τ · K −
∫

∂�

v · d(ξ · K)

]
= 2π�Hτ + �

∫
∂�

v · (Jξ − d(ξ · K)
)

,

where Hτ on the right-hand side is a quantity obtained with respect to the timelike vector τ as

Hτ =
∫

�

Jτ −
∫

∂�

τ · K . (83)

The vector field τ is independent of R.13 In the AdS limit (with raised indices) it becomes τ → ∂t .
Since the vector field τ does not vanish on the minimal surface, the Wald–Zoupas integrability

condition (17) does not necessarily hold. Thus, strictly speaking, Hτ is not a quasi-local energy in
the sense defined in Sect. 2.2. On the other hand, the formulas we will derive below using Hτ give
natural generalizations of the results in [9] on the positivity and the Radon transform of the matter
energy density.

13 Note, however, that it still depends on the ball B through the function f appearing in (80).
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Since ξ vanishes on the Ryu–Takayanagi surface,

d(ξ · K) = Lξ K = θ(Lξ g), (84)

so that (using definition (14) for Jξ ) we find

Jξ − d(ξ · K) = 0 (85)

on the Ryu-Takayanagi surface. Therefore, the R derivative of the relative entropy can be expressed as

(
d

dR
+ 1

R

)
S = 2π�Hτ , (86)

where Hτ is given by Eq. (83). The positivity and monotonicity of S mean that �Hτ is non-negative.
One more R derivative gives

d

dR

(
d

dR
+ 1

R

)
S = 2π�

∫
B̃

v · (Jτ − d(τ · K)) . (87)

This generalizes the Radon transform formula (74) for finite R. It would be interesting to determine
if this can be inverted to find an expression for the local quantity (Jτ − d(τ · K)) in the bulk from
the entanglement data represented by the relative entropy.

For a theory of gravity plus a scalar field,14

L = 1

16πGN
R − 1

2
(∂φ)2 − V (φ), (88)

abd the right-hand side of Eq. (87) can be further simplified by using the identity (see, e.g., Eq. (34)
of [26])

δ
(
Kε(d)

)
= 1

2
ε(d) (Kab − γabK) δγ ab + 1

2
ε(d)na

(
−∇bδgab + gcd∇aδgcd

)
, (89)

which holds for arbitrary variations, where we have dropped a total derivative term. Here, Kab, γab,
and ε(d) are the extrinsic curvature, induced metric, and volume form on ∂M embedded in the slice
of time reflection symmetry, and na is the spacelike unit normal to ∂M.

Defining the boundary term as15

K = − 1

8πGN

(
K + d − 1

�

)
ε(d) + F(φ), (90)

Eq. (89) turns into

δK = θ (δg) + 1

2κ2 ε(d)

(
Kab − γ abK − γ ab d − 1

�

)
δγab + (∇aφ

)
δφ εa − δF . (91)

14 The argument below goes through, essentially unchanged, for multiple scalar fields.
15 As explained in [26], we can add to K any function S0 that depends only on the intrinsic geometry of

∂M. Demanding to recover the modular Hamiltonian expectation value on the boundary fixes S0 on B as in
Eq. (90), however it does not determine S0 on B̃.
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Here, θ is defined for the full theory, and F denotes any scalar field counterterms we may need to
add to K to recover the modular Hamiltonian on B.16

Equation (90) is an explicit construction for the boundary term K . It can be checked that with K
defined in this manner and ξ as above, the difference in integrals of Qξ − ξ · K on B and B̃ equals
the difference in entanglement entropy and modular Hamiltonian expectation value, respectively.

For arbitrary variations, the last three terms on the right-hand side of Eq. (91) do not vanish.
However, for δ = Lτ , parity conditions (75), and the fact that φ is even under time reflections,
ensure that in a neighborhood of the Ryu–Takayanagi surface these terms are of order O(t). Thus,
on the Ryu–Takayanagi surface we have

Lτ K = θ (Lτ g) . (92)

This simplifies Eq. (87) to

d

dR

(
d

dR
+ 1

R

)
S = −2π�

∫
B̃

v · τ · (L − dK) . (93)

Thus, for pure gravity with normalizable scalar fields, an inversion formula for the Radon transform
would reconstruct the bulk action from relative entropy.17

5. Discussion

In this paper we have seen that for holographic conformal field theories in which the Ryu–Takayanagi
formula (and its covariant generalization) hold, relative entropy for a ball-shaped region B in the
CFT maps (at the classical level) to the vacuum-subtracted energy Hξ associated to a vector field ξ

that behaves like a “local” Killing vector near the AdS boundary and near the extremal surface B̃
where it vanishes.

We expect that a similar result holds for more general theories of gravity (including, e.g., higher
curvature terms). Starting from (10) with a more general gravitational Lagrangian, it is possible using
the equations in that section to define quantities θ , ω, Jξ , Qξ , and Hξ related to the more general
Lagrangian. To demonstrate an equivalence between relative entropy and �Hξ , it is necessary to
show the analogue of Eqs. (30) and (31). Our argument for (30) goes through in the general case since
the results in [5] apply generally. However, to show (31), it is necessary to argue that the generalized
holographic entanglement entropy functional (which is believed to equal the Wald functional for
black hole entropies plus certain corrections depending on extrinsic curvatures) can be written as an
integral over Qξ , with some suitable conditions on ξ generalizing (28) and (29) and making use of
the available freedom in the definition of Qξ .18 We leave this as a question for future work.

In this paper, we have focused on the leading large N contribution to relative entropy, making
use of the leading-order holographic entanglement entropy formula. According to [27], the 1/N
corrections to CFT entanglement entropy correspond to the entanglement entropy of bulk quantum
fields across the extremal surface B̃ (made finite by the intrinsic regulator provided by quantum

16 Since we are mostly interested in normalizable scalar fields, it should be fine to ignore the counterterms
in most, if not all, situations.

17 Such a reconstruction, if it exists, should have a natural way of dealing with the ambiguities in the definition
of K on B̃.

18 We thank Rob Myers for a discussion on this point.
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gravity). Including this additional term, our result becomes19

S(ρB||σB) = �HξB − �S�B . (94)

This is reminiscent of the CFT definition (3) of relative entropy. In the recent works [12,13], it has
been argued that at a perturbative level, CFT relative entropy for a region B to order 1/N maps
over to semiclassical bulk relative entropy for the region �B. For this equivalence to extend to the
non-perturbative level that we have considered in this paper, it would be necessary to identify �HξB

with the change in the expectation value of the bulk modular Hamiltonian associated with the AdS
vacuum. At the semiclassical level, it was argued in [6] that this modular Hamiltonian is given by

H� =
∫

�

ξaTabε
b,

where Tab includes contributions from all perturbative fields, including the graviton, and ξ is the
Killing vector (25) associated with the region �B in AdS. If we conjecture that this operator is well
defined non-perturbatively and that its expectation value for general states gives the energy HξB , then
it would follow that the boundary relative entropy and bulk relative entropy can be identified even
at the non-perturbative level (at least when the subsystems are ball-shaped and the reference state is
the vacuum).

The results of this paper lend support to the idea of subregion duality in AdS/CFT. In quantum field
theory, given a spatial region A, the set of fields and observables restricted to the associated domain
of dependence region DA form a natural subsystem of the field theory, since such observables do
not depend on the fields outside of the region A, and naturally form an algebra on their own. In a
sense, the field theory on such a region A is a self-contained physical system. For a holographic CFT,
it is natural to ask (see, e.g., [28–30]) whether such a system can be considered to have a gravity
dual. The results in this paper provide further evidence that such a subsystem of the CFT describes
the gravitational physics within the “entanglement wedge” of the CFT [29], the region between the
boundary domain of dependence region DB and the extremal surface B̃. Specifically, we have found
that it is possible to define a phase-space Hamiltonian Hξ associated with this region when B is a
ball-shaped boundary region, and argued that the value of this energy relative to the pureAdS vacuum
state is always positive. Thus, for the class of entanglement wedge geometries corresponding to a
given ball-shaped boundary region, it is possible to define self-contained dynamics associated with
a positive-definite Hamiltonian.
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Fig. A1. The set of allowed operations.
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Appendix A. Relative entropy as generalized free energy

Consider a quantum “thermodynamic theory” (resource theory) in which Hσ and σ = e−Hσ play
the role of Hamiltonian and equilibrium state, respectively. In thermodynamics, we restrict the set of
allowed operations to those that conserve the total energy of the system and environment combined.
A natural generalization of this principle to our case is to define the set of allowed operations to be
the unitaries that act on the system and arbitrary number of copies of the equilibrium state conserving
the total “energy”; see Fig. A1. In other words, the most general evolution is a quantum channel
defined by

E(ρ) = trenv

[
U (ρ ⊗ σ⊗m

env )U †
]

, [
m+1∑
i=1

H i
σ , U ] = 0. (A.1)

In this framework, we are going to interpret relative entropy as the excess “free energy” of ρ from
equilibrium,

S(ρ‖σ) = Fσ (ρ) − Fσ (σ ),

Fσ (ρ) = tr(ρHσ ) − S(ρ). (A.2)

Here we mention three important properties of relative entropy that make this interpretation natural.

(1) Equilibrium state minimizes free energy:For any non-equilibrium state, one expects free energy
to be larger than its equilibrium value. This is indeed true since relative entropy of any two states
is non-negative and becomes zero if and only if the two states are the same.
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(2) Free energy is never created spontaneously: The class of operations defined in (A.1) is a
quantum channel. According to the data-processing inequality, relative entropy is non-increasing
in quantum channels [31],

S(ρ‖σ) ≥ S(E(ρ)‖E(σ )) = S(E(ρ)‖σ). (A.3)

Therefore, relative entropy quantifies a resource. It never increases spontaneously, and can only
be distilled or diluted.

(3) Free energy quantifies how much work (resources) can be extracted: From (A.3) we know
that if we convert m copies of low resource state ρ1 to n copies of resourceful states ρ2, we always
have the inequality nS(ρ2‖σ) ≤ mS(ρ1‖σ); Fig. A1. In other words, the optimal rate at which
one can distill the resource is

Ropt(ρ1 → ρ2) = n

m
= Fσ (ρ1) − Fσ (σ )

Fσ (ρ2) − Fσ (σ )
. (A.4)

This was shown in the context of generic resource theories in [32].

Appendix B. Forms

Here, we list explicit expressions for the various forms appearing in Sect. 2.2 in the case of pure
Einstein gravity with a cosmological constant. To begin, we define the forms

εc1...ck = 1

(d − k + 1)!
√−gεc1...ck ak+1···ad+1dxak+1 ∧ · · · ∧ dxad+1 ,

which provide volume forms for codimension k submanifolds. For a general vector field X , we have
[5,23]:

L = 1

16πGN
R − �, (B.1)

θ = 1

16πGN
εa(g

acgbd − gadgbc)∇d
d

dλ
gbc,

Eg
ab = Rab − 1

2
gabR + 8πGN gab�,

CX = 1

8πGN
X aEg

abε
b,

QX = 1

16πGN
∇aX bεab,

JX = 1

8πGN
∇e

(
∇[eX d]) εd + 1

8π
X aEg

abε
b,

ω = 1

16πGN
εaPabcdef (γ 2

bc∇dγ 1
ef − γ 1

bc∇dγ 2
ef ),

Pabcdef = gaegfbgcd − 1

2
gadgbegfc − 1

2
gabgcdgef − 1

2
gbcgaegfd + 1

2
gbcgadgef ,

δQX − X · θ(g, δg) = 1

16πGN
εab

{
γ ac∇cX b − 1

2
γc

c∇aX b + ∇bγ a
cX c − ∇cγ

acX b + ∇aγ c
cX b

}
.
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Appendix C. Gaussian null coordinates and the vector field X

An essential part of our discussion is the existence of a vector field ξ which reduces to ζB at the AdS
boundary and satisfies ξ = 0 and ∇aξb = 2πnab on the surface B̃. In this appendix, we describe an
explicit construction for this vector field near B̃, making use of Gaussian null coordinates.

To define the Gaussian null coordinates, we start with coordinates xi on our surface B̃, and consider
a normal null vector field N on the surface B̃ which generates the future-directed lightsheet in the
direction toward the boundary. Parametrizing the geodesics generated by vectors Nμ by a parameter
u, we can associate coordinates (xi, u) to a point p on the lightsheet in a neighborhood of B̃ that lies
at parameter value u on the geodesic from the point at coordinates xi. The assignment (xi, u) will be
unambiguous for a sufficiently small neighborhood of B̃.

Finally, we consider the past-directed null vector field L defined on the lightsheet such that L·∂u = 1
and L · ∂i = 0. Introducing the affine parameter r for the geodesics generated by L, we can now
associate coordinates (r, u, xi) to any point Q in a neighborhood of B̃, where Q lies at parameter r
along the geodesic from the point P on the lightsheet with coordinates (u, xi). Again, this gives a
unique specification of coordinates for points in a sufficiently small neighborhood of B̃. This defines
a set of Gaussian null coordinates in the neighborhood of B̃.

In these coordinates, the metric takes the form (for a detailed argument, see Sect. 2.1 of [33])

ds2 = 2dudr + A(r, u, xi)du2 + Bi(r, u, xi)dudxi + Cij(r, u, xi)dxidxj,

where A and Bi vanish for r = 0. From this expression, it is straightforward to check that the vector
field

ξ = 2π(u∂u − r∂r)

satisfies the desired conditions, ξ = 0 and ∇aξb = 2πnab on the surface B̃. Away from B̃, we are
free to choose ξ as we like in order to approach the boundary vector field ζ .

Appendix D. Conformal map to hyperbolic coordinates

Consider a conformal field theory on a sphere Sd−1 of radius R/ε with ε � 1 acting as an infrared
regulator for the theory in flat space. The partition function associated with an excited state is given
by a Euclidean path integral over cylinder Sd−1 × R with operators � and �† that create the state
inserted at T = ±∞. Here, T parametrizes the Euclidean time along the cylinder. The metric is

ds2 = dT 2 + (R/ε)2 (dθ2 + sin2 θd�2
d−2

)
. (D.1)

We make the following coordinate transformation:

tanh(Tε/R) = sin(ε/R) sin(τ )

cosh u + cos(ε/R) cos τ
,

tan θ = sin(ε/R) sinh u

cosh u cos(ε/R) + cos τ
, (D.2)

which brings the metric to the form

ds2 = �2 (dτ 2 + (du2 + sinh2 ud�2
d−2)

)
,

�2 = R2 sin2(ε/R)/ε2

(cosh u cos(ε/R) + cos τ)2 + sin(ε/R)2 sinh2 u
. (D.3)
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Fig. D1. The conformal transformation from the ball to the hyperbolic plane.

A Weyl transformation eliminates the factor �2 leaving the metric on H d−1 × S1

ds2 = dτ 2 + (du2 + sinh2 ud�2
d−2). (D.4)

The τ direction is the thermal circle with periodicity 2π . The two balls θ ≤ ε at T = 0± are mapped
to the hyperbolic planes at τ = 0 and τ = 2π . The operator insertions at r = 0 and T = ±∞ are
respectively mapped to u = 0 and τ = π ∓ ε; see Fig. D1.
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