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Abstract

A new parallel, computationally efficient immersed boundary method for solving three-dimen-
sional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces
with prescribed motions are generated using the interpolation and regularization operators ob-
tained from the discrete delta function approach of the original (Peskin’s) immersed boundary
method. Unlike Peskin’s method, boundary forces are regarded as Lagrange multipliers that
are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are dis-
cretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations
using lattice Green’s function techniques. These techniques are used to automatically enforce the
natural free-space boundary conditions and to implement a novel block-wise adaptive grid that
significantly reduces the run-time cost of solutions by limiting operations to grid cells in the im-
mediate vicinity and near-wake region of the immersed surface. These techniques also enable
the construction of practical discrete viscous integrating factors that are used in combination with
specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential
algebraic equations describing the discrete momentum equation, incompressibility constraint,
and no-slip constraint. Linear systems of equations resulting from the time integration scheme
are efficiently solved using an approximation-free nested projection technique. The algebraic
properties of the discrete operators are used to reduce projection steps to simple discrete elliptic
problems, e.g. discrete Poisson problems, that are compatible with recently developed parallel
fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat
plates and spheres at Reynolds numbers up to 3,700 are used to verify the accuracy and physical
fidelity of the formulation.

Keywords: Immersed boundary method, Incompressible viscous flow, Unbounded domain,
Lattice Green’s function, Projection method, Difference equations

1. Introduction

Immersed boundary (IB) methods are numerical techniques for solving PDEs on Eulerian
grids with immersed surfaces that are described by Lagrangian structures [1-3]. Immersed sur-
faces are emulated without modifying the underlying PDE discretization by the addition of forc-
ing terms and constraint equations resulting from the regularization of Dirac delta convolutions
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linking Eulerian and Lagrangian quantities. In addition to circumventing computationally expen-
sive body-fitted grid generation, this approach facilitates the extensions of robust and efficient
solvers, e.g. Cartesian-grid methods, to problems involving immersed surfaces. The original IB
method [4] was developed for flexible elastic structures, but has since been extended to handle
more general fluid-structure interactions, including rigid bodies and bodies with prescribed mo-
tions [5—12]. The numerous variants of the IB method and some of their higher-order extensions
are reviewed in [1-3]. Here, we focus on distributed Lagrange multiplier (DLM) methods [7, 9—
11, 13-15] since they are particularly robust IB methods for computing flows around bodies with
prescribed motions [3].

DLM methods treat boundary forces as Lagrange multipliers used to enforce prescribed sur-
face boundary conditions. For the case of fluid flows, these methods are typically expressible in
forms analogous to traditional fractional-step and projection methods and can be distinguished
in part by differences in splitting errors, underlying PDEs, discretization schemes, and numeri-
cal solvers [3, 9, 11]. The null-space (discrete streamfunction) projection approach [10] and the
Rigid-IBAMR solver [11] are examples of robust incompressible Navier-Stokes DLM methods
free of splitting errors. The absence of splitting errors ensures that solutions retain the accuracy,
stability, and physical fidelity of the PDE discretization scheme [9-11, 16, 17].

IB methods for external flows typically employ spatially truncated fluid domains with ap-
proximate free-space boundary conditions, which in turn introduce blockage errors that adversely
affect the accuracy and can even change the dynamics of the numerical solution [18-21]. Large
computational domains in combination with stretched grids [9, 22, 23], local grid refinement
[11, 24, 25], and far-field approximation techniques [10] are commonly used to reduce blockage
errors. In addition to increasing the number of computational elements, these techniques often
require the use of numerical solvers that are less efficient than regular-grid solvers (e.g. FFT
techniques, multigrid, etc.) and typically result in discretization schemes that do not formally
share the same conservation, commutativity, orthogonality, and symmetry properties of standard
staggered Cartesian discretizations of infinite (periodic or unbounded) domains.

In order to eliminate the errors associated with artificial boundary conditions and to limit
operations to small regions dictating the flow evolution (e.g. regions of significant vorticity),
while preserving the efficiency and robustness inherent to Cartesian staggered grid methods, we
proposed [26] a fast incompressible Navier-Stokes solver based on the fundamental solution,
or lattice Green’s function (LGF), of discrete operators. Similar to particle and vortex meth-
ods, LGF techniques have efficient nodal distributions, automatically enforce natural free-space
boundary conditions, and can be evaluated using fast multipole methods (FMMs), e.g. the 2D
serial method [27] and the 3D parallel method [28]. Using the LGF-FMM [28] in combination
with an projection technique that is free of splitting errors, the LGF flow solver [26] computes
fast, parallel solutions to the viscous integrating factor (IF) half-explicit Runge-Kutta (HERK)
time integration scheme used to solve the velocity and pressure of the flow.

The present method numerically solves the IB formulation for the incompressible Navier-
Stokes equations given, in its continuous form, by

5_“+u.v11=_vp+iv2u+f £ (€05 (X (& 1) - X) dé, (1a)
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where the immersed surface I'(¢) is parametrized by &, and X (£, 1) € I'(¥). The velocity, pressure,
and Reynolds number of the flow are denoted by u (x, #), p (x, f), and Re. Here, Eq. (1c) is taken
to be the no-slip condition on I'(¢), where ur (§,7) = [0X/0r] (€, 1. The body force term in
Eq. (1a), with unknown force density fr (£, 1), is computed so that u (x, ) satisfies Eq. (1c). The
fluid variables u (x, ) and p (x, ¢) are defined for all x € R, and subject to the boundary condition
u(x,?) — 0 as [x| - oo.

Computationally efficient solutions for moving non-deformable (rigid) immersed surfaces
are facilitated by writing Eq. (1) in an accelerating frame of reference (moving with the body),
but with a change of dependent variable to the velocity in the inertial reference frame [29-31].
This change of variable is useful because the velocity in resulting equations tends to zero a large
distances and source terms resulting from the accelerating reference frame can be absorbed into
the non-linear and pressure gradient terms. The governing equations written in the accelerating
frame of reference are give by

‘2—': + (U V)(u, +2Q X x,) = —Vg + Riev2u +6([T(), fr, X) (2a)
V-u=0, o®,u,é =ury (&0 +u.(X(E0,0). (2b)

Here, x and x, = x—R(?) denote the position vector of a point relative to the origin of the inertial-
and accelerating-frame coordinates, respectively. The accelerating-frame coordinates are taken
to be centered about R(?), to translate with a velocity U(¢) = [‘Z—lf](t), and to rotate about R(?)
with an angular velocity (7) when viewed from the inertial frame. For ease of notation, we have
re-used the same symbols for the differentials as in Eq. (1), but they now refer to the accelerating-
frame coordinates, i.e. % means differentiation holding x, fixed, V refers to the gradient in the
accelerating-frame coordinates, etc. The vectors u(x,?) and u,(x,#) = u(x,?) — u,(X4, 1), re-
spectively, correspond to the velocity in the inertial and accelerating reference frames, where
u, (x4, 1) = U®) + Q) X x, is the velocity of a point in the accelerating frame relative to the in-
ertial frame. The scalar ¢g(x, t) is a pressure-like quantity that can be related to the inertial-frame
pressure p(X, f), up to an arbitrary time-dependent constant, using g(x, t) = p(x,t) — %Iur(xu, 2.
Operators 6 (I'(7), fr, x) and 6 (I'(?), u, &) are shorthands for the -function convolutions of Eq. (1a)
and Eq. (Ic). The vectors X,(&,1) = X(&,1) — R(?) and ur,(&,1) = ur(é, 1) — u(X,(€, 1), 1), re-
spectively, denote the position and corresponding of velocity of a point on I'(¢) in the accelerating
reference frame. Lastly, we clarify that the Eulerian grid and Lagrangian structure used to dis-
cretized Eq. (2) are constructed in the accelerating-frame coordinates, which implies that the
Lagrangian structure of rigid surfaces can be made stationary with respect to the Eulerian grid
by specifying appropriate values for R(7) and (r). This simplification is used to construct ef-
ficient solvers and pre-processing techniques that greatly reduce the run-time cost of practical
flows around accelerating rigid surfaces.

In this paper, we extend the unbounded domain LGF flow solver [26] to include immersed
surfaces with prescribed motions using a Lagrange multiplier approach. In Section 2, we discuss
the discretization of Eq. (1) on unbounded fluid domains emphasizing the modifications to the
LGF techniques and IF-HERK time integration schemes of [26] used to efficiently and accu-
rately include immersed boundaries. Linear systems of equations arising at each Runge-Kutta

IFor the case of closed immersed surfaces, we limit our attention to prescribed motions that are volume conserving
or, equivalently, surface velocities that satisfy the incompressibility condition fr( Hur (&,0)-1(&, 1) dé = 0, where ii is the
surface normal unit vector.
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stage are solved using the fast, LGF-based, exact nested projection technique described in Sec-
tion 3. Computationally expensive projection steps are shown to be reducible to simple Poisson,
Poisson-like, or viscous integrating factor problems that are compatible with the LGF-FMM [28]
and make use of LGFs that are readily computed. Significant operation count reductions for the
numerical solutions of discrete elliptic equations are demonstrated for problems involving the
IB regularization and interpolation operators by limiting operations to small source and target
regions near the immersed surface. Additionally, we discuss the computational considerations
of some iterative and direct solution techniques for the boundary force Schur complement prob-
lem arsing in the nested projection, and demonstrate that for many practical flows around rigid
surfaces a dense linear algebra pre-processing technique results in boundary force solutions that
contribute negligibly to the total run time. In Section 4, we modify the block-wise adaptive com-
putational grid and specialize the adaptivity criteria [26] to efficiently accommodate immersed
surfaces. Finally, in Section 5, we verify the formulation through numerical experiments on flows
around flat plates and spheres at Reynolds numbers up to 3,700.

2. Discretization

2.1. Immersed boundary method on unbounded staggered Cartesian grids

In this section we highlight important features of the spatial discretization of Eq. 1. Addi-
tional details pertaining to the flow discretization and the IB regularization/interpolation oper-
ators are provided in the discussions of the LGF flow solver [26] and of the IB-DLM methods
[9-11], respectively.

To begin, we formally discretize Eq. (2) on an unbounded staggered Cartesian grid using
second-order finite-volume operators,

du 1
o +N(u,1) = -Gg + EL¢U + [Z (D], (3a)

Du=0, [“Z®Ju=u, (3b)

where u(n,t) and q(n, ) are the discrete velocity and pressure-like variables, i.e. u = u and
q ~ g, at time t € Ry and grid location n € Z3. Operators G, D, and L# are discrete gradient,
divergence, and vector-Laplace operators. The non-linear operator N(u, ¢) is a discrete approxi-
mation of (u,-V)(u, —2Qxx,).” The surface functions f(i, f) and u(i, ) correspond to the discrete
body force and surface velocity of the i-th Lagrangian marker located at X(§;, 1) € I'(f), where
i € [1,Nr]. We clarify that u(i, #) = ur(€;, ) includes the relative velocity of the Lagrangian struc-
ture with respect to the Eulerian grid ur,(&;, f) (equal to zero for rigid surfaces) and the relative
velocity of the accelerating-frame with respect to the inertial-frame u,(X,(§;, 7)., t). The time-de-
pendent interpolation and regularization operators . (f) and Z(¢) are constructed by regularizing
the o-function convolutions of Eq. (1a) and Eq. (1c). We limit our attention to discretizations of

2The present formulation does not assume a particular form or discretization scheme for the non-linear term (u, -
V)(u, + 29 X x,). For example, standard inertial-frame techniques can be used to discretize the non-linear term in its
divergence form V-(u,(u, +29QXX,)) [29] or in its rotational form (V xu)xu, + %Vlual2 [31]. The numerical experiments
of Section 5 are computed using the latter form and the operator stencils provided in [26].



the form

(L7 OM® G0 = (Ax) Y vOm, 06a. (P () - X(€,,1), (4a)
nez?
(2P 0= > ¢V D0ac (xP(m) - X, 1), (4b)
i€[1,Nz]

where Ax is the grid cell size, ()% denotes the k-th vector component, ng)(n) is the location of

the k-th face of the n-th grid cell, and §,(x) = 4~3 Hi:l ¢(xx/h) is a discrete delta function defined
as the tensor product of the single-variable kernel function ¢(x). The operators ¥ () and Z(t)
are adjoints (up to a scalar factor) under the standard inner product, i.e. .Z(f) = (A3 [Z ()]

The staggered grid consists of cells (C) and vertices (V) containing scalar flow quantities, and
faces () and edges (&) containing vector flow quantities. We denote real-valued grid functions
with values on Q € {C,F,8E,V) by R?, e.g. [u]l(r) € R” and [q](r) € RC. Similarly, real-
valued functions with vector values specified at each Lagrangian point are denoted by R', e.g.
[F1(6), [ul(®) € RT. The full set of discrete vector operators used in subsequent discussions is
given by the discrete gradients G : RC > R” and G : RV - R&, the discrete curls C : R” - R®
and C : R® — R7, the discrete divergences D : R® — RV and D : R” RS, and the
discrete Laplacians Lg : R2 — R forall Qin {C, F, E, V). The present formulation extensively
makes use of the symmetry (e.g. D = -G, orthogonality (e.g. Im(G) = Null(C)), mimetic
(e.g. Lo = -GG, Ly = -GG’ - C'C), and commutativity (e.g. LyrG = GL¢) properties
of the discretization scheme. Related to these properties is the fact that the scheme conserves
momentum, kinetic energy, and circulation in the absence of time-differencing errors, viscosity,
and immersed surfaces provided N is suitably discretized [32, 33]. Under similar provisions, the
adjointness of Z(t) : R — R and .#(r) : R” +— R! also ensures the conservation kinetic
energy [1] for the case of stationary immersed surfaces.

The practical implementation of Eq. (3) is facilitated by subtracting %GP(U —Uu,), where P(v)
is a discrete approximation of |v|?, from both sides of Eq. (3a) and by writing f as —(Ax)*j. This
yields

du 1 N
d—;‘ + N0 = ~Gd+ —Lru+ £ O] . (5a)
Du =0, (5b)

[S(D]lu=u, (5¢)

where N(u, ) = N(u, - §GP(u-u,),d = g+ P(u-u,), and ul’(n, ) = ul”(x’(n), 7). The non-
linear term N(u, 7) is a discrete approximation of (u,-V)(u,+2Qxx,)— %Vlual2 = (Vxu)Xxu,, and
has the computational advantage having values that decay significantly faster at large distances
compared to N(u, 7); additional details for inertial-frame flows without immersed surfaces are
discussed in [26]. We call attention to the fact that the discrete equations resulting from the
temporal discretizations of Eq. (3) and Eq. (5) are, in general, different. But, as will be shown
in Section 2.3, the present time integration scheme evaluates N(u, ) and Gd at the same times,
and effectively computes the contributions from these terms as N(u,7) + Gd = N(u, ) + Ga.
This implies that the numerically integrated solutions to Eq. (3) and Eq. (5) are equivalent in
the absence of finite precision errors. Lastly, we note that the q(n, 7) tends to an arbitrary time-
dependent constant (taken to be zero) as [n| — oo and discrete pressure p(n, f) can be computed
from q(n, 7) using the expression p = q + 3 (P(u - u,) — P(u)).
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2.2. Lattice Green’s function technique

In this section we provide an overview of the LGF techniques [26, 28] and some extensions
used to solve inhomogeneous, elliptic difference equations relevant to incompressible flows on
unbounded domains with immersed surfaces. We consider the representative problem of the
discrete (7-pt) scalar Poisson equation

[(LxJ(m) = y(m), supp(f) < D, (6)

where both x and y belong to either R or R, and D is a bounded region in Z>. The procedure
for solving Eq. (6) using the LGF of L is analogous to the procedure for solving free-space
Poisson problems using the fundamental solution of V2, i.e. —1/(4xlx]). The solution to Eq. (6)
is given by the discrete convolution

um) =[G *f](m) = Z G(n — m)f(m), )

meD

where G| : Z3 — R denotes the fundamental solution, or LGF, of L [27, 28].

The present formulation computes the actions of L™!, E(e), and K™! = [E(-a)L]™! by eval-
uating expressions analogous to Eq. (7) for the LGFs G|, Gg(a), and Gk(a), where E(a) is
the operator exponential of L that is used as a viscous integrating factor in the discussion of
Section 2.3. Although the action of K~! can be computed in two steps either as [E(a)]L™! or
L~'[E(a)], significant operation count reductions are obtained by directly using Gk(a) to evalu-
ate solutions to problems with source and target regions that are limited to a small neighborhood
around the immersed surface, e.g. the support region of discrete delta functions. This follows
from the fact that the target and source regions of the first and second operator of either two-step
approach must be enlarged in each direction approximately by the size of the support of Gg(e).

The 3D LGF-FMM [28] is used by the present implementation to evaluate discrete LGF con-
volutions of the form given by Eq. (7). The LGF-FMM method is a kernel-independent, interpo-
lation-based FMM for solving elliptic, constant-coefficient difference equations on unbounded
Cartesian grids to prescribed tolerances in linear algorithmic complexity. Computational rates
and parallel scaling comparable to existing fast 3D free-space Poisson solvers have been demon-
strated for the case of G| [28]. LGF-specific computational considerations for problems involv-
ing G and Gg(a) are discussed in [28] and [26], respectively. Here, we note that the fast decay
of Ge(a) allows for the nearly identical far-field treatment of Gk(a) compared to G|, since for
sufficiently large values |n| the asymptotic expansions of G (n) [28, 34] are also accurate approx-
imations to [Gk(e)](n).> Numerical procedures for computing G (a), and expressions in terms
of Fourier and Bessel integrals for all the aforementioned LGFs are included in Appendix A.

2.3. Time integration

Modifications to the IF-HERK time integration technique for incompressible flows [26] nec-
essary to include immersed surfaces are discussed in this section. We begin by considering the

3The value of [Gg(e)](n) decays faster than any exponential as [n| — oo for a given @ > 0 [26]. For typical flows,
e.g. numerical experiments discussed in Section 5 and [26], @ < At/ ((Ax)zRe) < 1; for all @ € [0, 1] and |n| > 10, the
values of |[[Gg(a)] ()] / [[Ge(@)] (0)] and |[Gk(a)] (n) — GL(m)| / |GL(0)] are less than 10~7 and 10~ respectively.



discrete integrating factor Eq(a) corresponding to the solution operator of the discrete heat equa-
tion dh/dt = kLgh with h(n, ) — 0 as [n| — co0.* Taking u to be known at time 7 and using the
integrating factor Hq(f) = Eq ((A;—JRC), an equivalent expression for Eq. (5) for ¢ > 7 is given by

d - -
+ M OIR (I 0. 1) = =Gb - [Hr L7 O] T (8a)
Giv=0, (8b)
[ O][HF D)V = u, (8¢)

where v = [H#(#)]Ju and b = [He(r)]d. The effect of the He(7) and H;l (t) on the regularized

forces and the no-slip constraint cannot be absorbed into  and u since, in general, there does not
exist an operator M(7) : R” +— RT such that [He(H)][.Z()]" = [£ ()] [ON(1)]. This implies that,
even for the case of stationary immersed surfaces, the constraint operators explicitly depend on ¢.
The explicit temporal dependence of the constraint operators changes the character of the present
system of differential algebraic equations (DAESs), i.e. Eq. (8), compared to the analogous system
of DAEs formulated in [26], i.e. Eq. (8a) and (8b) with | = 0. As a result, the simplifications to
the HERK order-conditions for the case of trivial immersed surfaces [26] need to be modified in
order to develop schemes for Eq. (8) that achieve a prescribed order of accuracy.
HERK methods [35, 36] are used to integrate DAE systems of index 2

d
2 -F09. g0 =0, ©)

d
where the product of partial derivatives g,(y)f.(y, z) is non-singular in a neighborhood about the
solution, and z is an unknown that must be computed so that y satisfies g(y) = 0. For the case
of Eq. (8), or equivalently Eq. (5), the operator g,(y)f;(y,z) is invertible if and only if DG and
[Z()](I - G(DG)'D)[.#(1)]" are invertible. The invertibility of DG = L¢ follows from tak-
ing u and d to tend to zero as n| — oo [26], and the invertibility of [.7(1)] (1 - GL;'D) .7 ()]
is inferred, for practical flows, from the representative numerical experiments of Section 5 and
from the discussions of similar operators arising in other IB-DLM methods [9-11, 37].° By
considering Eq. (8) in its autonomous form® with y = [v, ] and z = [b, f] reveals that the corre-
sponding partial derivatives f; and g, depend on ¢ but do not depend either u or z. Simplifications
to the general HERK order-conditions for the special case of solely time-dependent f; and g,
are well-described in [35, 38, 39]. Tableaus and expected orders of accuracy for four represen-
tative schemes that are used to perform the numerical experiments in Section 5 are provided in
Appendix B.

Next, we consider the IF-HERK algorithm obtained using a s-stage HERK scheme with
shifted coeflicients &; ; and shifted nodes &; to integrate Eq. (8) from #; = kAt to fy41 = (k + DAt

4The solution to dh/dr = kLgh with h(n, #) — 0 as |n| — oo is given by h(n, 1) = [EQ (K(t - T)/(Ax)z) hT] (m, t), where
h:(m) = h(n, 7). An expression for Eq in terms of the Fourier series operator §q and the spectrum o—'é(f) of (AX)ZLQ is
given by Eq(a) = S&l exp(ao-'é)SQ [26].

5The operators that arise in the discretizations [9—11, 37] are of the form B = [.7 (£)]A(l - GL'D)[.# ®]", where A
is an operator resulting from to implicit treatment of the viscous term. Previous numerical experiments of [10, 11, 37]
have found B to be well-conditioned and solvable under grid refinement for sufficiently well-spaced IB markers.

5The non-autonomous system Eq. (8) can be written as an equivalent autonomous system by taking 7 to be part of the
solution variables, e.g. y = [v, t], and by augmenting the system of DAEs by including the trivial ODE dt/dt = 1.
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The present IF-HERK algorithm is constructed by including the additional IB terms to the IF-
HERK algorithm of [26]. Introducing the auxiliary variables

up(m) = [Ex ()| Vi), dim) = [Ex (5555 |bim), Vie [l s], (10)

and grouping the constraint variables, RHSs, and operators

i_ d;{ i _ 0 i i1t .
/lk_[ﬁ ]’gk‘[u(ti)]’gk‘[G L7 |, viell, s, (1
the k-th time-step of the time integration algorithm, IF-HERK(uy, #), is as follows:

1. initialize: set ug = U, and tg = t;.

2. multi-stage: fori =1,2,..., s, solve the linear system
i -1 i-1 i i
Hp " O HE‘I«}:[%}, (12)
(Q)' 0 A, G
where
i1
Hi = B (S502), rh=hi+ A ) aw’ + g, (13)
j=1
g = —austN(u ' 67), o =6+ ar (14)

Variables h;'{ and W;:j are recursively computed for i > 1 and j > i using
i _ i-1pi-1 1 _ 0
hy =HZ'h", h,=u; (15)
w = HEWY w = (@aan ™ (g - 071 (16)
3. finalize: set Ugy1 = U}, Ay = (ZzS,SAt)_l A5, and 1y = f.

Solving Eq. (12) is expected to dominate the overall run-time cost of each IF-HERK stage, and
is discussed in the next section.

3. Fast linear system solver

3.1. Nested projection technique

In this section we demonstrate that Eq. (12) is efficiently solved using an operator-block de-
composition that is analogous to standard matrix-block LU decompositions. Unlike traditional
projection and fractional-step techniques [40, 41], which can be viewed as approximate LU de-
compositions [16], the present approach is an exact, i.e. free of operator approximations, projec-
tion technique [17]. As a result, the method is free of “splitting errors” and does not make use of
artificial pressure boundary conditions [10, 16, 17, 26]. In contrast to 2D discrete null-space (dis-
crete streamfunction) methods [10, 17], we do not cast the discrete velocity-pressure equations
into equivalent discrete streamfunction-vorticity equations since for 3D flows both formulation
require solutions to an equal number of discrete Poisson problems but these are scalar problems
in the former and vector problems in the latter. The issue of which formulation is computation-
ally faster is less obvious in the finite computational domain algorithm, discussed in Section 4,
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since the discrete velocity in the velocity-pressure formulation is periodically “refreshed” from
the discrete vorticity by solving a discrete vector Poisson problem. The arguments by the LGF
flow solver [26] supporting the velocity-pressure formulation are readily extended to the present
IB formulation.

We consider Eq. (12) written in terms of both Lagrange multipliers dj< and f;{,

|y HH™ G (O] y r
M| d |=| G 0 0 d |=] 0 [, (17)
k e 00 Ti U

where d /di = §i/fi = @, ul = u(tl), and % = F(¢}). In general, M. is not symmetric and
cannot be symmetrized by rescaling f since the image of (.#/~!)" and of (.%)" are different. This
is in contrast to similar IB methods, e.g. [9-11], which solve symmetric systems of equations
analogous to Eq. (12). The asymmetry of M, ,’( is inherent to HERK integrations of DAE system of
index 2 with time-dependent constraint operators [35, 38].” Special cases of interest for which M ,’(
reduces to a symmetric operator include flows around rigid surfaces and the i-th stage of HERK
schemes with ¢;,_; = ;. Lastly, we call attention to the fact that the DAE index 2 conditions
discussed in Section 2.3 ensure the solvability of Eq. (17) [35, 43], but emphasize that these
conditions are satisfied only if [.#(#)] (I - GLEIB) [.Z ()] is invertible. The invertibility of this
operator is demonstrated for a few practical flows in Section 5. Additionally, the invertibility
of similar operators arising in other IB-DLM formulations has been discussed and numerically
demonstrated for several practical flows by previous IB methods [9-11, 37].

Solutions to Eq. (17) obtained from an operator-block LU decomposition of M’ ,’( can be writ-
ten in the projection-like form

AU =r, fo=F
Bid* = G'u* di =d" - BH'GTAY I (AHT,  18)
¢ = Ziur - (A)'Gd*] - uf ui = u* = (AY'[Gd] + (#)f
where
A= HHT, B =G'AY'G, (19)
L = ZLAY e - GBYGTAY I, (20)

and | is the identity operator for R” . Taking in account the mimetic, orthogonality, and commu-
tativity properties of the discrete grid operators, the nested projection method Eq. (18) is reduced

7Similar asymmetries in the (1,3) and (3, 1) operators are expected for operators analogous to M/’; arising from
other standard semi-explicit single- or multi-step integration schemes for DAE systems of index 2, e.g. [36] and
references therein. For example, the semi-explicit two-step Adams-Bashforth method [42] solves Eq. (9) as yx+1 =
Vi + % Bf k> zk) = fk-1,2k-1)), where the unknown zj is computed so that 0 = g(yx+1). Here, the regularization
operator [.#(%)]" acting on the unknown body forces included in f(yy, z) is evaluated at an earlier time (f is part of y)
compared to the interpolation operator .# (fx1) included in g(yi+1)-



to the more computationally convenient form

Led® = -G'r (21a)
WJi = AHCIN - GTd"] -y (21b)
di =d"+Lc'G' (A7), (21c)
ub = Hi[rl - Gdi — (£ DLl (21d)

Similar considerations are used to reduce the force Schur complement operator C}; to the more
computationally efficient form

= FHE +GK) TGN, (22)

where K¢ = (Hé)‘lLC. As an aside, the physical interpretation of Q;{ and its similarity to analo-
gous operators arising in other IB methods, e.g. [10, 11], are facilitated by writing the operator
as JH_S(F")T, where S = Iy — GL;E = —CL;'C is the orthogonal discrete divergence-free
projection operator.

Efficient computations of Eq. (21) make use of the flexible source and target regions of the
LGF-FMM. This is particularly relevant to computations of €, .#/H%, and L;'G (7)) since
the target and source regions can be limited to a small neighborhoods about the support of the
discrete delta functions. Since the IB markers are confined to a lower dimensional sub-region of
the overall computational grid, significant operation count reductions are expected when com-
pared to schemes that do not limit the source and target regions of elliptic problems.® Formal
definitions for the various sub-regions of the adaptive block-wise grid used in the present imple-
mentation are discussed in Section 4.1.

With the exception of f;{, every term in Eq. (21) is efficiently computed either using the point-
operator representation of discrete operators or using the LGF-FMM. The remaining problem
of efficient techniques for solving equations of the form Qljj = v is discussed in the following
section.

3.2. Force Schur complement solvers

In this section we consider solutions to Q}j = v obtained using either iterative methods or
dense linear algebra techniques. We clarify that although the discussion of this section describes
techniques for solving flows around immersed surfaces with general prescribed motions, the
present implementation only considers the case of rigid surfaces. Here, it is assumed that for

asymptotically large problems the number of Lagrangian points, Ny, scales like N é, where Ng is
the total number of Eulerian grid cells used in the finite computational domain. Additionally, the
action of Qﬁj( is taken to be evaluated in O(N,) by limiting operations of the LGF-FMM solver to
a few grid cells near the immersed surface.

We begin by considering the cases resulting in fk"‘l = fki , which include flows around rigid
immersed surfaces and RK stages with ¢;_; = ¢;. For these cases € is symmetric positive-
definite (SPD), which makes the conjugate gradient (CG) method the natural iterative solver for

8For test cases included in Section 5, the typical computational time for Eq. (21¢) is less than 50% of that for Eq. (21a).
Although Eq. (21c¢) typically requires significantly fewer than 50% of the number of operations required by Eq. (21a),
parallel load balancing aiming to optimize Eq. (21a) (most computationally expensive step) results in a parallel work
imbalance when computing Eq. (21¢).
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Qﬁ;{f = t. This iterative method is used in [10] to solve for the body forces from similar systems of
equations, but, in contrast to the present technique, each iteration requires O(Ng log Ng) instead
1

of O(N.). Estimating the number of iterations to scale like N Z [10], we expect the body forces

for each RK stage to be computed in O(N L% ) operations, that is to say, O(Ng) operations. As a
result, the overall operation count of the nested projection technique, i.e. Eq. 21, is O(Ng).

In order to estimate the computation time of parallel algorithms it is necessary to account for
the parallel scaling of the technique. Similar to most parallel FMMs, the LGF-FMM requires a
minimum number of grid cells per processor, y.f, in order to sustain reasonable parallel efficien-
cies, e.g. greater than 80%, as the number of processes, N, increases.” In practice, we expect an
approximately constant Ng/N, = v > y.g, which implies that the action of @f{ is computed with

NL/N, = aN_[Ng ~ O(N‘%) grid cells per processor. For sufficiently large problems, N /N,

will be less than y.¢ and continue to decrease as the problem size increases; thus, the CG body

force solver is not expected to scale well.!? Provided 7y is held constant, we expect the compu-
1

tation time of evaluating Qj; to be O(Ng) and of the CG method be to O(N E Ng) or, equivalently,
4
O(N?) ~ O(N}).
An alternative approach is to use dense linear algebra to build and factor the matrix cor-
responding to €, and use its factored form to solve for . For the case of rigid surfaces, the

construction (O(Nf) operations) and factorization (O(Nz) operations) of the matrix C = [Qﬁj{]
only needs to be performed once per simulation as a pre-processing step. In fact, the factored
form of C can be reused to compute flows that share the same geometry, RK tableau, and value
of (A)fﬁ. Here, the Cholesky decomposition of the C, i.e. C = LL” where L is a lower-trian-
gular matrix, is computed in parallel using the ScaLAPACK library [44]. Backward and forward
substitutions can be used to evaluate [f] =f=L"L 'rin O(Ni) operations, but the inherent
sequential nature of backward substitution limits the parallel speed-up of this approach. We cir-
cumvent this potential bottleneck by explicitly computing W = L' (O(N;) operations) as part
of the pre-processing step, and solve for f by evaluating y = Wr and f = W’y using parallel
matrix-vector multiplications (O(Ni) operations).!! By distributing the columns or rows of W
and maintaining a local copy of r, the parallel matrix-vector multiplication is expected to achieve
nearly perfect parallel efficiency for N, < N, which is typical for most practical simulations.
As a point of reference, the largest problem considered in Section 5, a sphere defined by approx-
imately 8 x 10* IB markers, the average fraction of time spent evaluating f compared to the rest
of Eq. (21) was less than 3%.

Asymptotically, the computation time factoring C and inverting L, and the memory require-
ments associated with storing W are expected to render the pre-processing technique less efficient
than the CG solver and potentially unfeasible on some computational resources. Yet, for many
practical problems, such as the test cases of Section 5, the pre-processing technique is expected
to take a small fraction of the overall computation time and memory, and to yield significantly
faster body forces solutions compared to the CG method.'?

9Here, we define the parallel efficiency as T'p=1/ (T,,=Np N, p), where 7', is the wall-time of the algorithm.

10Most simulations performed in Section 5 were performed with y = e and with Ni,/Ng < 1073 (for fully developed
wakes). For these test cases, the parallel efficiency of evaluating C;; can be estimated to be less than 10%.

11 Although possible reductions, up to a factor of two, in the computation time of f are achieved by pre-computing
WTW and evaluating f using a single parallel matrix-vector multiplication, this approach is expected to lead to a greater
amplification of numerical errors compared to the two step approach described in the main text.

12For the largest simulation in Section 5, i.e. sphere at Re = 3700, pre-processing only required approximately 10%

11



The general case of immersed surfaces with prescribed motion requires additional solution
techniques since, for at least one RK stage, ij{ is only approximately symmetric, i.e. f,{i‘l = f,f+
O(Ar). Efficient parallel implementations of Krylov solvers such as GMRES and BiCGSTAB,
and their “flexible” extensions [46, 47], can be used to solve for f for the case of non-symmetric
QZ;(.B Another approach that takes advantage of the efficiency of the CG method is to symmetrize
M by introducing an O(Af) error so that .#/~" is replaced by .#/. Although this O(Ar) approxi-
mation results in solutions that still satisfy the discrete divergence-free and non-slip constraints,
further analysis is required to determine its effect on the global (entire integration period) accu-
racy and stability of the solution.

4. Adaptive computational domain

4.1. Block-wise adaptive grid

The present incompressible flow solver is implemented using the block-wise adaptive grid
of LGF flow solver [26]. When coupled with the LGF techniques discussed in Section 2.2, this
approach has the advantage of limiting the computational domain to a small, finite region of
the unbounded domain that efficiently accommodates temporally evolving solutions by dynam-
ically adding and removing blocks. Errors concentrated near the finite boundaries that result
from neglecting values outside the finite computation domain are prevented from significantly
contaminating the solution by padding the interior domain with buffer grid cells and periodi-
cally computing (“refreshing”) the algebraically-decaying velocity perturbation from the expo-
nentially-decaying vorticity [26],

wWeCu s<L'w, ueCs. (23)

Estimates for the number of time-steps, Onax, before u needs to be refreshed from w are provided
in [26], but we note here that for typical schemes multiple time-steps, e.g. Qmax = 10, can elapse
before this refresh operation is required. In the following discussion, we highlight additional key
features of this approach and extend the base method [26] to efficiently incorporate the immersed
surfaces.

We consider partitioning the unbounded solution grid into blocks arranged on a Cartesian
block grid. Approximate values for each term of the IF-HERK and the velocity refresh algo-
rithms are computed by limiting the source (domain) and target (co-domain) regions of discrete
operators to the sub-domains depicted in Figure 1. These sub-domains are defined as follows:

e Flow domain Dgey: union of blocks containing non-negligible source terms for any dis-
crete Poisson problem solved in the present formulation, i.e. Eq. (21a)—-(21c) and velocity

of the total computation time, with less than 10% of the pre-processing time dedicated to factoring C and inverting L.
For this test case, the time spent evaluating Q}‘{ (roughly equal to the time a single CG iteration) is approximately 60% of
the time spent computing f = W’ (Wr). Estimating the number of CG iterations to reduce the initial residual by € to be
% Vkln % [45], and taking € = 0.1 (assumes a good initial guess) and k ~ 1.1 x 10? (computed condition number of C),
we expect the CG solver to require 50 iterations and, as a result, to be 30 times slower than f = WT(Wy).

3Flexible Krylov methods are often used to iteratively solve preconditioned linear systems that require additional
(“inner”) iterations to approximate the action of the preconditioner. For the present case, one possible preconditioner
is the symmetrized version of Q‘f{ obtained by approximating Jk"’l as fki, which in turn allows for efficient “inner” CG
iterations.
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Figure 1: Depiction of a 2D finite computational grid, solution grid, comprised of blocks arranged on a Cartesian grid,
block grid. Distant view of nested sub-domains Dgow C Dxfiow and Dpody C Dxbody, Where Dpody S Dpow and Dxpody S

Dypody (left). Zoomed-in view illustrating the union of blocks used to define the domain (middle). Magnified view of
the finite staggered Cartesian grid and IB markers associated with a single block (right). Dashed cells surrounding the
interior cells of the isolated block correspond to ghost cells used to facilitate the parallel implementation.

refresh. Flow quantities on Dy, are taken to be accurate approximations of the corre-
sponding flow quantities that would have been obtained by numerically operating on the
entire unbounded domain.'*

o Expanded flow domain Doy union of blocks that are at most NS"W

ot blocks in any direction
from any block in Dy,y,. The value of Ngl‘l’fw is determined using the procedure discussed
in [26] so that the error in Dy, remains below a prescribed threshold for the time-steps

between velocity refreshes.

e Body blocks Dyoqy: union of blocks containing grid cells that are at most one grid cell away
from the support of any discrete delta function during a single time-step. This implies, for
example, that all non-zero values of G'[.#7(7)] are contained within Dyogy -

e Expanded body domain Dypoqy: union of blocks that are at most NES? ¥ < N blocks

in any direction from any block in Dy.gy. We limit our attention to the case of N2
y buf

NS&W = Nuut, and note that the subsequent discussions readily extend to the general case

body flow
of N o” # Nyt

Unlike domains Dyqy and Dygey Which are recomputed only when the grid adapts [26], domains
Dpody and Dxpoqy are recomputed at every time-step during which the immersed surface moves.
Summarized in Table 1 are the source and target regions used in the present formulation to
evaluate the action of discrete operators with wide, or potentially wide, stencils (discrete kernels),
ie. Lél, Eq(a@), and K&l (@). Similar source and target region considerations are readily deduced
for all other operators, but are not discussed here since the operation count and propagation of
finite boundary errors associated with these compact-stencil operators are significantly smaller
than those of the operators listed in Table 1. Also highlighted by Table 1 are the significant

14In general, the solution can be tracked over arbitrary regions that include Dyqy; such generalizations are discussed
in [26].
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Eq. (2la)* (Ib)' (@lof (@21d) (27 (@22)F  (23)
Operator L H- Lt Hi- (K’%)’1 Hi- L;I
Source D flow D xbody D body Dixfiow D body D body Daow
Target D xflow D body D xflow D xflow D body D body D xflow
Op Count le_—n(f 3M)[<Eb—>b Mlb_—n(f 3M)I(Ef—>xf M{f—)b 3MtIJE—>b 3M:'_—>xf

Op. Scaling O(Ng) ONp) O(WNg) OWNg) O(Np) O(NNp) O(Ng)

Table 1: Source and target regions used to approximate the action of non-compact discrete operators. The number of
operations required to compute the action of each operator is denoted in the second to last row; operation counts for
vector operations are approximated as three corresponding scalar operations. Superscript * indicates equations originally
given in the form Lx = y that are written here as y = L~'x. Superscript 1 indicate equations that are not computed for
cases without immersed surfaces.

operation count reductions achieved by taking advantage of the flexible source and target regions
of LGF-FMM for cases involving immersed surfaces with Ny < Ng.

Temporal variations in the non-negligible support regions of discrete operators are facilitated
by adding and removing blocks to Dgoy and Dyogy (Dxfiow and Dypody are updated accordingly).
At the end of every time-step, flow quantities on a region that is a few grid cells greater than
Dyow are used to compute the block-wise weight function Wy, for each block in Dxgow, Which
in turn is used to define Doy, of the next time-step,

Do, = (B : [Waow(B)] > €upp, B' € Dig,}- (24)
Here, we use the block-wise weight function proposed in [26],
Waon(B) = W(pos(B)) max (u(B)/pgiabat, v(B)/Vetowa) (25)
where W(pos(B)) is a function of the position of block B,
u(B) = RLLH, wm)|,  Hglobal = BIEI})E:;S,W#(B)’ (262)
v(B) = max lh(m)|,  Vgiobat = pmax v(B). (26b)

Solution grid variables w = Cu and h = DN(u, 7) correspond to the discrete vorticity and diver-
gence of the Lamb vector.

For the case of W(r) = 1, Eq. 25 approximates the maximum normalized residual of the
discrete Poisson problems Eq. (21a) and (23) resulting from excluding source terms outside of
Diow [26].° Accurate solutions to the laminar-to-turbulence transition of thin vortex rings at
Reynolds numbers up to 7,500 resulting in small solution grids near the ring core are reported
in [26] using W(r) = 1. In contrast, small solution grids are not expected to result from flows
around immersed surfaces computed with W(r) = 1 since vorticity is constantly generated at the
surface and convected downstream. In practice, we are often interested in accurately reproducing
the flow physics in the vicinity of the immersed surface, and are willing to reduce computational
costs by neglecting flow features in far-downstream wake regions that do not significantly affect

5The residuals resulting from neglecting source terms outside Dyody When solving the discrete Poisson problems in
Eq. (21c) and (22) are zero since, by construction, Dyogy contains all non-zero source terms for these problems.
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the near-surface flow. Point-wise estimates for the residuals of Eq. (21a) and (23) based on the
asymptotic O(jn|~") decay of G| [28] indicate that errors near the immersed surface resulting

from
1

W = max (7, dist(r))”

(27)
where 17 > 1 is a prescribed parameter and dist(r) is the non-dimensionalized distance from I'(¢),
are comparable in magnitude to those resulting from using W(r) = 1. Unless otherwise stated,
subsequent discussions and numerical experiments take Wy, to be given by Eq. (25) and (27).

4.2. Algorithm summary

In this section we summarize the present IB-LGF method for incompressible flows on un-
bounded staggered Cartesian grids. The sequence of steps performed in the IB-LGF algorithm
for an s-stage IF-HERK scheme is outlined as follows:

1. Pre-processing [Sec. 3.2]: (rigid surface only, optional) for each unique force Schur com-
plement operator ¢ e {Qi,\v’i =1, s]}, build its dense SPD matrix representation C by
applying the operator to each standard basis vector, compute the Cholesky decomposition
of C and invert the Cholesky factor L using ScaLAPACK, and store W = L'

2. Time integration: for the k-th time-step:

(a) Grid body update [Sec. 4.1]: use the prescribed motion of I'(#) and the support region
of discrete delta functions to compute Dyogy and Dypogy for £ € [#t, tre1].

(b) Grid flow update [Sec. 4.1]: use Dpogy S Dipow, Weight function Wyey,, threshold
values €pp, and Wy < Cuy and hy « EN(uk, t;) to construct new Dyqy. If necessary,
update old Dgoy and Dygey by adding or removing blocks. Copy wy from the old to
the new solution grid and zero values on Dyyfe;.

(c) Velocity refresh [Sec. 4.1]: if either Dyoqy has been updated or the number of time-
steps since last refresh exceeds Qmax, compute U from wy using Eq. (23).

(d) IF-HERK [Sec. 2.3]: compute U1, fx+1, Qr+1s and fre1 using xIF-HERK(uy, ),
where xIF-HERK is the version of the IF-HERK algorithm that restricts the source
and target regions of discrete operators to finite sub-regions of the solution grid, e.g.
operations defined in Table 1. Linear systems arising at each RK stage are solved us-
ing the nested projection technique Eq. (21) with an appropriate body forces solver
(Section 3.2).

An operation count estimate for a single time-step based on the action of all non-compact
operators, i.e. operators listed in Table (1) and ¢!, is given by M = My, + M, Where Moy is
the number of operations used to solve the flow without immersed surfaces [26],

Mﬂ(’W = Sle_—n(f + 3C(S)M)I(Ef—>xf + |—3M|f_—>fo’ (28)
My, is the number of operations required to compute the additional IB terms,
My, = sME_ o+ sME .+ 3sM5,_,, (29)

and M€ is the number of operations used to solve for the body forces. For a general s-stage
HERK scheme with second-order accurate constraint variables C(s) is equal to s+((s — 1)s) /2—1
[26]. The last term in Eq. (28) is associated with the vector Poisson solve (roughly equal to three

15



scalar Poisson solves) required by the velocity refresh procedure, which is not necessarily per-
formed at every time-step as indicated by the notation [ - |. All terms in Eq. (28) and (29), except
for MY . and M5, scale as O(Ng). The term ME | scales as O(Ny) and, for typical flows,
is negligible compared to any of the M. terms. Estimates and scaling for Mfa ¢ are discussed in
Section 3.2, but we note here that computation time spent solving for body forces is less than 3%
of the total run time for all test cases included in Section 5.

The present MPI-based parallel implementation partitions and distributes the support of the
discrete delta functions according to the block-wise partition and distribution of the solution grid.
Values for all IB markers are taken to be known by all processors, which is accomplished by
having values broadcast before and aggregated after the application of .#" and .#, respectively.
Details regarding the parallel implementation of the flow solver, i.e. the IB-LGF method without
an immersed surface, are discussed in [26, 28]. Load balancing is performed every time Dgow
or Dygow are updated. This operation consists of optimizing the most computationally expensive
operations, i.e. Eq. (21a) and (23), following the procedure described in [28] with the additional
requirement of having all blocks belonging to Dy.gy be distributed as equally as possible across
all processors.'® Each RK stage of the representative problems of Section 5 is evaluated at a
typical computation rate (normalized by the total number of MPI processes) of approximately 80
micro-seconds per active grid cell or, equivalently, 20 micro-seconds per active flow variable (3
velocity components and 1 pressure per grid cell).

Lastly, we clarify that the LGF-FMM [28] and the LGF flow solver [26] are direct solvers that
compute solutions to prescribed tolerances based on a set of parameters. Aside from convergence
criteria required for the case of iterative boundary force solutions, the IB-LGF method does not
depend on any additional parameters beyond those of the LGF flow solver [26]. Furthermore,
having limited our attention to cases with Dyogy € Dfiows Dxbody € Dxfiow, and ngl‘l’f Y= Now
ensures that the procedures of LGF flow solver used to determine appropriate values for all
parameters based on single threshold €* extend to the IB-LGF method. Subsequent discussions
take €” to be equal to the grid adaptivity parameter €gypp.

5. Verification examples

Numerical experiments on flows around infinitely thin rectangular flat plates and spherical
shells are used to verify the IB-LGF method. Rectangular flat plates are generated by a set of IB
markers arranged in a 2D uniform Cartesian grid with a prescribed aspect-ratio AR and angle-
of-attack a. Spherical shells, subsequently referred to as spheres, are generated by placing IB
markers at the centroids of the faces of an icosphere. Icospheres are triangulated surfaces con-
structed by recursively subdividing the faces and radially projecting newly created vertices onto
the unit sphere of an initial icosahedron [48]. The ratio of the minimum to maximum distances
between any two IB markers tends to approximately 0.28 after a large number of subdivisions.

For all test cases, the minimum spacing between any two IB markers, As®, is taken to be
approximately equal to the grid spacing (1.0 < As*/Ax < 1.1), and the smoothed version [49]
of the 3-pt &, [24] is used to construct .#. Boundary forces are computed using the parameter-
free Cholesky pre-processing technique discussed in Section 3.2. Unless otherwise stated, the
adaptivity threshold parameter €* is taken to be 5 X 107, a choice that will be justified in Sec-
tion 5.3. All test cases, except those for the temporal refinement studies, are performed using the

16 The assumption that solving Eq. (21a) and (23) are the most computationally expensive operations is based on the
numerical experiments of Section 5 for rigid surfaces solved using the pre-processing technique.
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HERK coefficients of Scheme A included in Appendix B and are subject to the CFL condition
[u]At/Ax < 1. The time-step size is specified so that the CFL based on the maximum point-wise
velocity remains below 0.5 and 0.9 for flows at Re < 500 and Re = 3,700, respectively, except
for the first few time-steps of impulsively started flows during which the CFL is allowed to be
approximately equal to unity. We clarify that the average CFL for spheres at Re = 3,700 is
approximately 0.6, which is significantly lower than the large-time maximum of 0.9.

5.1. Discretization error

The convergence rates of the discretization technique is examined through spatial and tem-
poral refinement studies of flows around spheres of radius D with a prescribed velocity U(¢) =
(Ux(1),0,0),

! —1
1-(ar-1)% ¢’ U 1

0. = 4ﬁUf0 e dr for0< <y 30)
U for % < %

where 8 ~ 2.25228 is taken so that U,(¢) is infinitely differentiable for all ¢ (assuming U,(t) = 0
for ¢+ < 0). The instantaneous Reynolds number Re = U,(#)D/v levels to a constant equal to
100 for tg > %D/ Us. All numerical experiments discussed in this section are performed using
€ =107°.

The spatial convergence study is performed using a total of seven test cases, S.I-S.VII, cor-
responding to spheres generated by 20 x 4! fori = 1,2,...,8 IB markers. The time-step size,
At, is held fixed across all test cases, and chosen so that the maximum CFL for S.VII is less than
0.25. Estimates for the errors obtained by taking S.VII to be the reference, or true, solution are
reported in Figure 2. As expected from analysis [50, 51] and numerical experiments [9—11] of
similar IB methods, the velocity u ~ u is verified to be first-order accurate in the L., norm. Less
intuitive is the fact that the pressure p ~ p and the net body force F ~ }; f; also exhibit first-order
convergence rates under the L., norm.

10+1 10+1 10+|
100
~ Az
El 21071 =
>~ >~ >~
E 5 5
4 Jio-? 4
1073
1074 1074 10~4
0 1071 100 0 107! 10° 0 1071 10°
Ax/Azg Ax/Azg Azx/Axg

Figure 2: Differences in the velocity (left), pressure (middle), and net body force (right) for different values of Ax while
holding At fixed. The value of Ax is equal to Ax of coarsest test case (S.I).

It is well-known that the spatial smoothing inherent to the regularized delta function treat-
ment of the immersed surfaces is unable to correctly capture the discontinuous pressure across
interfaces. The spatial regularization resulting from ¢§;, has been shown to lead to O(1) errors in
the pressure near the immersed surface [50, 52], which in turn prevents the L., convergence of the
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discrete pressure to the actual, continuum pressure. The first-order L., convergence rate of the
pressure shown in Figure 2 is a consequence of taking the reference solution to be that of S.VII as
opposed to the actual solution to Eq. (1). Convergence rates equal or greater to first-order follow
from the fact that the continuum pressure across surfaces regularized by ¢;(x) is continuous and
differentiable (provided a sufficiently smooth ;) [53]. However, for the present refinement study
the convergence rate is at most first order since the regularization length-scale % is taken to be
equal to Ax of the reference (finest) solution and, as a result, will change as progressively finer
test cases are considered.

Next, we consider the slightly greater than first-order convergence rate of the body forces.
Surface stresses obtained from most IB methods are known to exhibit less than first-order point-
wise convergence rates [11, 37, 49] and can even grow as the immersed surface is refined [37].
Yet, it is also known that the low-order moments for the surface stresses, such as the net force
on the immersed body, are physically accurate. This is verified by the right plot of Figure 2,
which shows that the net body force, F, convergence at a rate that is slightly greater than first-
order. Approximate first-order convergence rates for the net force on rigid surfaces also have
been demonstrated for other IB-DLM methods [11, 37].

Lastly, we report the L, condition number, «, of the force Schur complement of the last RK
stage, €°, for each test case in Table 2. As points of comparison, Table 2 also includes values for
k resulting from using values As*/Ax that are smaller (1.00 and 0.95) than those used for S.I-
S.VII (1.05). Table 2 verifies the intuitive fact, based on the finite spatial resolution of the fluid
solver, that the matrix corresponding to €* rapidly becomes ill-conditioned for values As/Ax
below certain threshold, which is approximately unity for the present test cases. The heuristic
constraint of requiring As*/Ax > 1 is not universal across IB-DLM methods; [10] states that
As/Ax = 1 results in “reasonable” condition numbers for €-like matrices computed using the
3-pt 6, of [24], and [11] numerically demonstrates that As/Ax ~ 2 results in condition numbers
for €-like matrices computed using the 6-pt ¢;, of [54] comparable to those listed in Table 2 for
the case of steady Stokes flow around a sphere.!” We clarify that, in the continuum limit, the
boundary integral operator associated with € has a zero-eigenvalue mode corresponding to the
uniform compression of the sphere. Typically, we expect that the small geometric irregularities,
strict symmetry-breaking, and slight porosity'® of numerical immersed surfaces generated using
standard discrete delta functions and well-spaced IB-markers, i.e. As/Ax = 1, to result in non-
singular discrete € operators, even if the continuous version of € is singular. Small-eigenvalue
discrete modes associated with zero-eigenvalue continuous modes that do not satisfy the contin-
uous divergence-free constraint are expected to be only a small part of the solution of €f = t,
i.e. the dot product of these modes with v is small, since t is interpolated from a discrete di-
vergence-free field. Additional discussions and numerical examples regarding the null-space, or
lack thereof, and conditioning of €-like operators arising in other IB-DLM discretizations are
provided in [11, 37]. Here, the results of Table 2 are used to verify the well-posedness of Eq. (8)
as a (solvable) DAE system of index 2 and to motivate the nominal value of As* = 1.05Ax used
in subsequent numerical experiments.

We now turn our attention to the temporal discretization error. The temporal convergence
studies are performed for each of the four IF-HERK schemes included in Appendix B, Scheme

17Condition numbers of O(10° — 107) are reported in [11] for the case of steady Stokes flow around a sphere with
As/Ax = 1.

8The no-slip constraint is only enforced at a finite number of points. The velocity at points located between IB
markers is not required to satisfy the no-slip constraint.
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No. IB markers | 20 80 320 1,280 5,120 20,480 81,920
As*/Ax =105 | 0.19 020 0.18 0.17 0.19 0.44 1.31
As*/Ax=1.00 | 0.19 052 036 042 1.61 1.41 -
As*/Ax=090 | 2.06 3.13 1.72 269 851 27.94 -

Table 2: L, condition number of €* for different ratios of As*/Ax. Values of As*/Ax =~ 1.05 are used in the numerical
experiments S.I-S.VIL

A — D, for a sphere generated by 1280 IB markers. A total of nine test cases, T.I — T.IX, of
varying time-step size, At/Aty = 2=+l fori=1,2,...,9, are considered for each scheme. Here,
Aty is chosen such that the maximum CFL of test case T.I is less than 0.5. Error estimates for
each test case are obtained by taking T.IX of the corresponding IF-HERK scheme to be the
reference solution.'” The L., norm of the errors, depicted in Figure 3, verifies that the computed
convergence rates of each IFFHERK scheme with respect to At is equal to the expected order of
accuracy based on the HERK order conditions discussed in Section 2.3 and Appendix B.

l Schemes: —e— A —=— B ¢ —— D ‘
1071 1071 1071
~ At ~ At
8 8107
El =
= =
8 _81077
= -
a 4
= *10—7
107 b — 1079 — 1079 -
10—2 107! 10° 10~2 10! 100 1072 1071 10°
At/ Aty At/ At At/ Aty

Figure 3: Differences in the velocity (left), pressure (middle), and net body force (right) for different values of Ar while
holding Ax fixed. The value of Aty is equal to Af of coarsest test case (T.I). Entries for the velocity error for Scheme B
and D that are below 1078 are excluded from the left plot since the error for these cases saturates between 10~ and 1078
due to prescribed adaptivity threshold e* = 1078,

We emphasize that the refinement studies of this section have only verified that numerical
solutions converge at the expected rate under Ax and At refinements. The tests cases discussed in
the following sections will demonstrate that the computed solutions are in fact accurate physical
approximation to Eq. (1).

5.2. Flow around low-aspect-ratio rectangular plates

The physical fidelity of the IB-LGF method is verified in this section by comparing solu-
tions for impulsively-started rectangular flat plates of chord-length ¢ and area A to previously
published results. We begin by considering the experimentally-validated test cases [55] of flows
around plates of AR = 2 at Re = 100 and 0° < @ < 90°. Here, test cases are performed taking

19For some cases, the spatial discretization error is significantly larger than the temporal discretization error. This does
not affect the present study since the spatial discretization error is approximately the same for all test cases and our error
estimates are computed as the difference of two test case solutions.
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Ax = 0.020c, which is comparable to the near-surface grid spacing of 0.025¢ used to compute
these flows by other IB methods [23, 55]. Previous refinement studies and comparisons with
experimental data [55] indicate that the flow is sufficiently well-resolved using the present value
of Ax.

The left plot of Figure 4 demonstrates that the computed drag and lift coefficients, Cp =
—Fx/(%pUzA) and Cp, = Fy/(%pUZA), at tU/c = 13 are in good agreement with previously re-
ported values [23, 55]. The force coefficients from the three methods are nearly indistinguishable
for 0° < @ < 50° and by less than 5% for 60° < a < 90°. The large-time (50 < tU/c < 75)
behavior of the mean and fluctuating components of Cp, and Cy. are summarized in the right plot
of Figure 4. This plot demonstrates that for 60° < o < 90° the flow is unsteady and that the
large-time mean forces are significantly different from the instantaneous forces at tU/c = 13.2
For @ = 60° and o = 70° the flow is periodic with Strouhal numbers St = Fycsina/U equal
to 0.13 and 0.11, respectively. In contrast, for @ = 80° and @ = 90° the flow is a aperiodic (at
least during 50 < tU/c < 75) since the force coefficients neither have a constant mean value
nor a clear dominant frequency.?! We suspect that the sensitivity of instantaneous measurements
of unsteady flows to small perturbations is responsible for the larger differences across the three
numerical investigations presently considered for test cases with 60° < @ < 90° when compared
to the same differences for test cases with 0° < @ < 50°.

1.5 1.5
Cp Cy o— Cp —e— Cf
—— ¥~ Present . . .
] ¢ Wang & Zhang
Taira & Colonius /. |
1.0 1.0 *
2 y 2
) @) .
S g R S . —
0.5F re s N 0.5 r
o ¥. b M -
Y .
0.0% : ‘ S 0.0 w | J
0° 30° 60° 90° 0° 30° 60° 90°

Figure 4: Drag and lift coefficients for rectangular flat plates of AR = 2 at Re = 100 and different values of . Instan-
taneous values at tU/c = 13 (left). Range (shaded regions) and mean value (solid circles) of force coefficients during
50 <tU/c <75 (right).

Next, we consider impulsively started plates of different ARs at @ = 30° and Re = 300. Previ-
ous numerical experiments on these flows [23, 55, 56] have used grid spacings of approximately
0.025c¢ in the immediate vicinity of the plate (same as for the previously referenced Re = 100
test cases). Here, each flow is computed using (A) Ax = 0.025¢ and (B) Ax = 0.015c.

Vortical structures in the wake of plates of AR = 1, 2, and 4 are illustrated as iso-surfaces
of constant vorticity strength in Figure 5. The depicted structures are in good visual agreement

20The discussion of [23] regarding the present test cases states that the flow has reached a steady state at tU/c = 13.
A comparison between the force coefficients shown in the left and right plots of Figure 4 indicates that only flows with
0° < @ < 50° have reach a steady state at tU/c = 13.

21 The value of Cy, for @ = 90° is approximately zero for tU/c < 10 and decreases non-uniformly (oscillates about
local mean) to approximately —3 x 1073 at tU/c = 75. As a point of reference, the value of |Cy| for @ = 0° is less than
5 x 107 throughout the entire simulation period.
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with the structures reported in previous numerical experiments for AR = 1,2,4 [55] and AR =4
[23, 56]. Also shown in Figure 5 are snapshots of cross-sectional cuts of the finite computational
domains resulting from the block-wise adaptive computational grid algorithm. As expected from
the adaptivity criteria discussed in Section 4.1, strong vortical regions near the immersed surface
are efficiently tracked by adding and removing computational blocks. For the test case of AR =
4, the stream-wise length of the union of blocks is approximately [—1c, 9c] (about the leading
edge), which can be compared to the stream-wise length [—4c, 6.1c] of the finite domain (with
approximate boundary conditions) used in [23, 55].

Figure 5: Vortices in the wakes of rectangular flat plates of different ARs at @ = 30° and Re = 300. Shown above are
iso-surfaces of |w|c/U = 2,4,8 at tU/c ~ 46.2 computed using Ax = 0.015¢. The union of boxes shown on the x — y
plane centered about the plate center depict the cross-sectional cut of the block-wise adaptive computational domain.
Depicted blocks have been coarsened by a factor of two in each direction for visualization purposes.

The large-time (50 < tU/c < 80) temporal statistics for the force coefficients of the plates
depicted in Figure 5 are included in Table 3. Strouhal numbers of 0.12 for AR = 4 obtained
for (A) and (B) are also reported in [23, 55]. For all ARs, differences in mean force coefficients
between (B) and [23, 55, 56] are less than 12%. The effect of the grid resolution on the accuracy
of the solution can be approximated by comparing the results of the low-resolution test cases
(A) with the results of the high-resolution test cases (B). The values of Table 3 indicate that the
differences in mean force coefficients between (A) and (B) are less than 4% for all ARs. Since the
grid resolutions of (A) and [23, 55, 56] are approximately the same, we suspect that modeling
errors resulting from the small computational domains and approximate boundary conditions
used in [23, 55, 56] account for most of the differences in the mean force values.??

5.3. Flow around spheres

In this section we further verify the IB-LGF method by computing flows around impulsively
started spheres. A small perturbation (0, ii(f), 0) is introduced to the nominal velocity of the
sphere (U, 0, 0) in order to break axial symmetry. We take #(#) to be non-zero for 1 < tU/D <
1 with values equal to the bump function 5Ue'~"/ (=) with r = 8 — 9. Net body forces
are reported as non-dimensional force coefficients C, = F,/ (%pU 27r(§)2) for g € {x,y,z}, and

correspond to the drag (Cp = C,), lateral (CL = C}), and side (Cs = C;) coeflicients.

22The numerical methods of [55] and [23, 56] use stretched and locally refined grids, respectively, to discretize com-
putational domains of size [—4c, 6.1¢] X [-5¢, 5¢] X [-5¢, 5c].
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AR =1 AR =2 AR =4

Cp Co C, Co Cp ACp CL ACL St
Present (A) 0.543 0.627 0504 0.571 0.620 0.018 0.791 0.074 0.118
Present (B) 0.526 0.644  0.488 0.587  0.593 0.016 0.798 0.053 0.124

TC09 [55] 0.56 0.60 053 057 066 - 080 - 0.12
WZI11[23] - - - - - - - - 0.12
WZ13 [56] — - - - - - 079 - -

Table 3: Drag and lift coefficients, and Strouhal numbers for rectangular flat plates of different ARs at @ = 30° and
Re = 300. Present (A) and (B) correspond to test cases computed using Ax/c = 2.5 X 1072 and Ax/c = 1.5 x 1072,
respectively. Results from TCO09 — Taira and Colonius [55], WZ11 — Wang and Zhang [23], and WZ13 — Wang et al. [56]
are also provided.

First, we demonstrate that the grid adaptivity criteria and the nominal threshold value €* =
5x 10~* accurately capture the unbounded domain flow by only tracking the solution on a small,
finite region near the surface and immediate wake of a sphere at Re = 300. Periodic flows
exhibiting planar symmetry are limited to a narrow range of Reynolds numbers that has been
numerically estimated to be 280 < Re < 375 [57, 58]. The temporal periodicity and spatial
symmetry about the x-y plane of the flow [57, 59, 60] makes this test case a challenging problem
that still permits meaningful force coefficient comparisons.

The time histories for Cp and Cy, and snapshots of the vorticity field for spheres generated by
20,480 IB markers (Ax ~ 9.33%x1073) computed with values of €* = 5x107 fori =2, 3, 4, and 5
are shown in Figure 6. The maximum value of |Cs| for 0 < tU/D < 90 is less than 2 X 1072,
1x1072 5% 1073, and 2 x 1073, respectively, for the present test cases sorted in decreasing
order of €*, which in turn confirm the expect planar symmetry of the flow. Periodic oscillations
in the time history of force coefficients are clearly observed for €* < 5 x 107, but not for
€ > 5x 1073, The apparent stabilization of the flow for €* > 5 x 1073 is expected from the fact
that the finite computational domains of these test cases do not support a complete wavelength
of the wake instability. In contrast, the computational domain of € = 5 x 10~ supports at
least one full wavelength of the instability and is able to accurately reproduce the large-time
mean and oscillatory components of Cp and Cy, obtained by the most conservative test case, i.e.
€ =5x107.

Quantitative estimates for the errors resulting from non-zero values of €* are computed here
as the differences in the force coefficient C between two test cases:

&'(C) = maxier, [C(1) - C' ()], &ll(C) = [exter, C(t) — ExTyer, C' (1), 31)

where T,U/D = [2,30], TgU/D = [75,90], and ExT is either the minimum (min) or maximum
(max) extremum. Error estimates obtained by taking the force coefficients of € = 5x 107 to be
the reference values are provided in Table 4. As expected, the error associated with neglecting
values outside Dy, based on the criteria of Section 4.1 is approximately proportional to €*. The
results of Table 4 indicate that, in the absence of discretization errors, the forces computed using
the nominal threshold, € = 5 x 1074, are accurate up to 0.6% of the actual physical forces.?’
Having verified the error of the adaptive grid, we now turn our attention to confirming
the physical fidelity of the IB-LGF method by comparing with previous investigations of flow

23Error percentage is computed as the maximum value obtained after normalizing the errors in Cp and C, provided in
Table 4 by the large-time total force coefficient Ct = [F|/(3pU%n(2)?) ~ 0.66.
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Figure 6: Flow around a sphere at Re = 300 computed using different adaptive threshold, €*, values. Time history of
drag and lateral force coefficients (left). Side-view of finite computational domains at tU/D = 80.3 (right). For each
case, the finite computational domain corresponds to the non-white region near the body and its wake. For the case of
€ = 5x 107> the finite computational domain continues for an additional 15D beyond solid black line.

e | &) &l(Cp) &l (Co) | &) &l sl

5x1072 | 0.1600  0.1117 0.1386 | 0.1038  0.0470 0.0522
5x1073 | 0.0311  0.0269 0.0235 | 0.0509  0.0108 0.0116
5x107* | 0.0030  0.0027 0.0022 | 0.0041  0.0003 0.0002

Table 4: Estimates for the error resulting from non-zero values of €* for a sphere at Re = 300. Reference values, i.e. C’
in Eq. (31), are taken from test case with €* = 5 x 107>,

around spheres. Large-time (90 < tU/D < 150) force statistics of spheres computed at Re =
100, 200, and 300 are compared in Table 5. The flow is steady and axi-symmetric at Re = 100,
and steady and planar x-y symmetric at Re = 250. At Re = 250 and Re = 300 the absence of
axial symmetry results in a non-zero C. Values computed using a coarse (5,120 IB markers and
Ax =~ 1.8 x 1072) and a fine (20,480 IB markers and Ax ~ 8.8 x 10~%) grid are shown by Table 5
to be consistent with the range of previously reported values.

The spread of values shown in Table 5 for spheres at Re = 300 indicates that this test case
is difficult to compute accurately. The large spread of values for ACy, and ACp (largest spread
based on relative differences) has been attributed to differences in the domain size and boundary
conditions of different numerical methods [60]. Consistent with this argument are the small
differences in ACy, and ACp between the present (B) results and those of the unbounded domain
vortex method [60].

The numerical experiments on spheres discussed thus far have considered the steady axis-
symmetric (Re = 100), the steady planar-symmetric (Re = 250), and the periodic planar-sym-
metric (Re = 300) flow regimes. Next we verify that the flow is unsteady with no fixed planar
symmetry at Re = 500 [59, 60]. Figure 7 provides snapshots of stream-wise vorticity iso-sur-
faces for the aforementioned flow regimes (case of Re = 100 is not shown since stream-wise
vorticity is of negligible magnitude). The flow at Re = 500 is approximately symmetric about
the x-y plane at early times (similar to the Re = 300 test case), but such symmetry is lost at later
times as shown in Figure 7 by the axial rotation of the stream-wise vortices.

As a final demonstration of the IB-LGF method, we consider the turbulent flow around a
sphere at Re = 3,700. This flow has been characterized in previous numerical [22, 63, 64]
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Re = 100 Re = 250 Re = 300
Co Cp Co Cp ACp CL ACL St

Present (A) 1.084 0.709 0.060  0.665 0.0024 0.067 0.013 0.133
Present (B) 1.086 0.694 0.059  0.656 0.0024 0.065 0.014 0.134

JP99 [57]  1.10 - 0.062  0.656 0.0035 0.069 0.016 0.137
TO00 [59] - - - 0.671 0.0028 - - 0.136
KKO1 [61]  1.087 0.701 0.059  0.657 - 0.067 — 0.134
PWO02[60] - - - 0.683 0.0025 0.061 0.014 0.135
CcS03[62] - 070 0062  0.655 - 0.065 — 0.136
WZ11[23]  1.13 - - 068 - 0.071 - 0.135

Table 5: Drag and lift coefficients, and Strouhal numbers for a sphere at different Reynolds numbers. Present (A) and (B)
correspond to test cases computed using Ax/D ~ 1.8 x 1072 and Ax/D =~ 8.8 x 1072, respectively. Results from JP99 —
Johnson and Patel [57], TO0O — Tomboulides and Orszag [59], KKO1 — Kim et al. [61], PW02 — Ploumhans et al. [60],
CS03 — Constantinescu and Squires [62], and WZ11 — Wang and Zhang [23] are also provided.

tUse/D ~ 1427

Figure 7: Stream-wise (x-direction) vortices in the wake of spheres at different Reynolds numbers depicted as iso-surfaces
of constant w,. Iso-surfaces are for values of w, = +0.20, 0.10, and 0.05 at Re = 250, and of w, = +1.0, 0.50, and 0.25
at Re = 300 and 500. Depicted boxes are described in the caption of Figure 5.

and experimental [65] investigations.>* The flow is computed for 0 < ¢*/U < 60 using 81,920
markers and Ax =~ 4.3 x 1073, where ¢* is used to indicate that flow was initialized from the
large-time solution of a sphere at Re = 1,000. Subsequently reported time-averaged values are
computed over the last five large-scale vortex shedding cycles (St = 0.215 [64]).

The thin boundary layer on the surface of the sphere is expected to be sufficiently well-
resolved since the present value of (Ax)Re% (scaling based on the expected O(Re‘%) laminar
boundary layer thickness [66]) is between the values of (Ax)Re% used to compute test cases (A)
and (B) at Re = 300. As a point of reference, spheres at Re = 3,700 have been previously
computed using a IB/LES method combined with a stretched grid with a near-surface minimum
spacings of 9 x 107D [22] and using a unstructured mesh with a near-surface minimum element
side lengths of 1.5 x 1073D [64]. The a posteriori grid analysis of [64] demonstrates that the
turbulent flow, with a minimum Kolmogorov length scale of /D = 1.34 x 1072 occurring in
the x/D < 3 wake region, is well-resolved by a second-order unstructured mesh with an average
element side length of 2/D = 8 x 1073 over the x/D < 3 wake region. Based on these grid
considerations, we assume that the present set of grid parameters are adequate to capture both
the thin laminar boundary layer on the surface and the turbulent wake of the flow.

Previous investigations were conducted at Re = 3,700 [22, 64], Re = 4,200 [65], and Re = 5,000 [63].
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The core of vortical structures in the wake are depicted as iso-surfaces of constant Q-value
in Figure 8. The Q-criterion [67] defines coherent vorticies as connected regions where Q, the
second invariant of Vu, is positive. Positive Q-values indicate a local excess of the rotation rate
compared to the strain rate. Figure 8 confirms the previously reported [22, 64] pronounced heli-
cal-like pattern of large-scale vortical structures in wake. A visual analysis of multiple snapshots
verifies that the dominant vorticies forming the helical-like pattern are convected downstream
without significant axial rotations and that the pattern is the result of the apparent random az-
imuthal position of growing shear layer instabilities [22, 64]. We clarify that the strong small-
scale vortical filament- and horseshoe-like structures in the downstream wake regions shown in
Figure 8 are not readily seen in comparable plots of previous numerical experiments [22, 64], but
this is expected from the fact that these previous experiments aggressively coarsen downstream
grid regions.

Figure 8: Vortex cores in the wake of a sphere at Re = 3,700 are illustrated by iso-surfaces of constant Q-value. Depicted
are iso-surface of QD*/U? = 2 colored according to the radial distance from the center-line of the sphere in the stream-
wise direction. Depicted boxes are described in the caption of Figure 5.

We further characterize the flow by reporting on the large-time mean surface stresses and net
body forces. The i-th component of the stress vector, o; = [t];, at the location of the g-th IB
marker can be approximated as a'i(‘fq) ~ [f‘i]i /A4, where A, is the area associated with the g-th
IB marker. Given that our IB markers are located at the centroids of the faces (triangles) of an
icosphere, we take the A, to be equal to the area of the corresponding face. The non-dimensional
surface stress coefficients in spherical coordinates are taken to be

(o) Ty

gr=po Zo =-¢
pU’ O',¢ pU’

C(r,r = pU 5

Coo = (32)

where t = o, + 090 + 0'¢$, and 6 and ¢ correspond to the polar and azimuthal angles, re-
spectively (stagnation point located at § = 0). Here, the reference pressure pg is taken to be
Doo — Psphere» Where pgphere s the value of the approximately uniform pressure distribution inside
the sphere.” In the continuum limit, the surface normal stress coefficient C,., is equal to half

Z5The slight porosity of the numerical immersed surface results in an approximately uniform time-dependent pressure
distribution inside the sphere. At tU/D ~ 50 the difference between the minimum and maximum pressure inside the
sphere, but not in the support of ., is approximately 0.3% of %pU 2. The maximum difference in Dsphere between any
two instantaneous measurements during 30 < tU/D < 60 is approximately 1% of %pU2.
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of the pressure coefficient C,, = (p — pm)/(%pU). As discussed in Section 5.1, raw point-wise
values of o contain unphysical large high-frequency oscillations. These oscillations are partially
filtered out and the point-wise accuracy of o is significantly improved using the boundary force
post-processing technique [37], which can be interpreted as a spatial weighted moving average
smoothing technique that uses 0, as the smoothing kernel. This technique constructs smoothed
boundary forces % by evaluating the expression % = JW.7f, where W(n) is equal to 1/y(n) for
the case of non-zero y(n) = [.#1](n) and equal to zero otherwise.

Time-averaged values of C,, and C,¢ as functions of the polar angle, 6, are depicted in Fig-
ure 9.2° The present values are in good visual agreement with the body-fitted mesh DNS values
reported in [64]. We clarify that the curves shown in Figure 9 include a small O(As) post-pro-
cessing error resulting from interpolating values of f, which is defined on the faces of a six-times
subdivided icosphere, onto geodesic lines between # = 0° and § = 180°. Small remnants of
the unphysical high-frequency oscillations in f are visually noticeable in the values of C,. ¢ over
the region of 0° < @ < 50°.27 Although these are undesirable features of the present non-body-
conforming discretization, we find the magnitude of this error, AC, ¢ = 0.1Re"? ~ 0.006, to be
acceptable.
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Figure 9: Time averaged pressure (left) and skin-friction (right) coeflicients as functions of the polar angle, 6, for a sphere
at Re = 3,700. Results compared to values reported by Rodriguez et al. [64] (DNS at Re = 3,700), Kim and Durbin [65]
(exp. at Re = 4,200), and Seidl et al. [63] (DNS at Re = 5,000).

Lastly, we report in Table 6 mean values for the drag coefficient (Cp), base pressure coeffi-
cient (C, ), separation angle (6;), and polar locations of the minimum surface pressure (6, min)
and of the maximum skin friction (H_T,max). With the exception of C_p,b, the present values are
within 2.1% of those reported in [64]. The difference in C_,,,b is also seen to be small, i.e. approx-
imately 2.3%, when compared to the maximum C_,, shown in Figure 9. The value of Cp, reported
in [22] (LES) is approximately 12% lower than the Cp values reported here and in [64] (DNS).

26The normalized skin-friction coefficient, C(,,gRe% , depicted in [64] for the computations of [63] are approximately
16% larger than to those shown in the left plot of Figure 9. The curve shown in Figure 9 was computed by scaling the

values of ogRe/pU reported in [63] by Re™ 2, where Re is taken to be the Reynolds number at which the numerical
simulation was performed, i.e Re = 5,000.

2TVisual inspections three-dimensional plots of the distribution of o= indicate that the oscillations Cy.g for 0° < 6 < 50°
are in fact small oscillations in o~ as opposed to oscillatory errors resulting from the interpolating values onto geodesic
lines.
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The grid refinement and mean turbulent statistics studies of [64] attribute this discrepancy in Cp,
value to the sub-grid model used in the numerical experiments of [22].

Re C_D Cp,b GS Gp ,min gr,max

Present DNS 3,700 0.389 -0.230 88.9° 73° 47°
YKO6 [22] LES 3,700 0.355 -0.194 90° - -
RBI11[64] DNS 3,700 0.393 -0.207 89.3° 72° 48°
KD88 [65] exp. 4,200 - -0.224 -
SM98 [63] DNS 5,000 038 - 89.5° T71° 50°

Table 6: Mean flow features of a sphere at Reynolds numbers between 3,700 and 5,000. Results from YKO06 — Yun et al.
[22], RB11 — Rodriguez et al. [64], KD88 — Kim and Durbin [65], and SM98 — Seidl et al. [63] are provided.

6. Conclusions

A computationally efficient IB method for external, viscous, incompressible flows around
immersed surfaces with prescribed kinematics has been presented. The IB-LGF method is a
significant extension of the LGF flow solver [26], which retains the efficiency and robustness
of the flow solver by coupling a Lagrange multiplier treatment of the discrete boundary forces
and the discretized no-slip constraint with existing and new LGF techniques. The semi-discrete
equations resulting from the formal spatial discretization of the incompressible Navier-Stokes
equations on unbounded staggered Cartesian grids and the discrete delta function treatment of
the IB regularization and interpolation operators is shown to constitute a DAE system of index 2.
Using appropriately specialized order conditions for HERK integrators we proposed a few time
integration schemes, which, when coupled with a viscous integrating factor technique, efficiently
solve the discrete momentum ODE and the discrete divergence-free and no-slip constraints under
a well-understood theoretical framework.

Fast flow solutions are facilitated by using a projection-like solver for the linear systems of
equations arising from the implicit coupling the velocity, pressure, and boundary forces of the
IF-HERK scheme. Unlike classical projection techniques, the present nested projection method
is free of operator approximations, which in turn preserves the formal properties of the DAE time
integration technique. This method is equivalent to a LU decomposition of the linear system and
is formulated as two sequential intermediate velocity and pressure computation steps, followed
by a single boundary force solution step, and finalized by two sequential pressure and velocity
correction steps. Computational considerations for efficient iterative and direct boundary force
solution techniques are discussed, and it is demonstrated that for many practical flows involving
rigid surfaces a Cholesky-based pre-processing technique results in force solutions that require
negligible computation times. The pre-processing technique results in a flow solver that depends
on the solution of one additional discrete elliptic problem, i.e. force correction on the pressure,
which is shown, by virtue of the flexible source and target regions of the LGF solver, to require
significantly less computation time than the discrete pressure Poisson problem inherent to the
flow solver (less than 50% for the numerical experiments considered).

We implemented a parallel version of the IB-LGF method for the case of rigid surfaces fol-
lowing the block-wise adaptive grid of the LGF flow solver. Modifications to the adaptivity
criteria, grid sub-domains, and parallel load balancing procedures were performed in order to
efficiently and accurately capture the flow near immersed surfaces. Detailed spatial and temporal
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refinement studies on flows around spheres were used to verify the expected convergence rates
of the formulation. Comparisons with previous numerical investigations on flows around rectan-
gular flat plates and spheres at Reynolds numbers up to 3,700 were used to confirm the physical
fidelity of computed solutions. We also showed that accurate surface stresses can be obtained
from the computed boundary forces using the post-processing technique of [37]. All together,
the present numerical experiments have demonstrated that the IB-LGF method can overcome
many of the limitations of previous IB methods including robust rigid-surface solutions, accu-
rate and efficient unbounded domain flow solutions, physical surface stress solutions, and the
feasibility of fast, accurate numerical solutions to high (based on present day DNS capabilities)
Reynolds numbers flows.

Acknowledgments

This work was partially supported by the United States Air Force Office of Scientific Re-
search (FA950-09-1-0189) and the Caltech Field Laboratory for Optimized Wind Energy with
Prof. John Dabiri as PI under the support of the Gordon and Betty Moore Foundation.

Appendix A. Lattice Green’s functions representations

The present formulation computes the action of L™!, E(a), and K(e) as discrete convolutions,
e.g. Eq (7), of G, Ge(a), and Gk(a). Expressions for these LGFs in terms of Fourier and Bessel
integrals are given by

1 .
Ge@lm = g [ e @ag = [][e 1,00, (A.1a)
gen
2G () = —— f M e f "
rem = o | Codi=- | [Gewimar, (A.1b)
Av[G - L e (T iGemimd Al
PGl = o [ o de =~ [ (Gelm (A1)

where 0(€) = 2 cos(&1) + 2 cos(&2) + 2 cos(&3) — 6, IT = (=, )3, and 1,,(z) is the modified Bessel
function of the first kind of order n.

Here, we introduce a simple procedure for efficiently computing [Gk(a)] (n) and refer the
reader to the discussions of [28] and [26] for examples of numerical techniques used to evaluate
Gi(n) and [Gg()](n). We consider the partition of [Gk(a)] (n) given by

[CGk(@)] (m) = GL() + [R(e)] (), (A2)

where [R(@)] (n) = (Ax)~2 OQ[GE(t)](n) dt. The combined look-up table and asymptotic expan-
sion approach of [28] is used to compute the first term, G (n), and an adaptive Gauss-Kronrod
(GK) integration scheme is used to evaluate the second term, [R(@)] (n). For large values of n
few, if any, subdivisions are required by the GK scheme since the value of [R(a)] (n) is signif-
icantly smaller than the value of G (n).?® Lastly, we note that evaluating discrete convolution
of LGFs using the LGF-FMM [28] only requires the point-wise values of LGFs to be computed
once, as a pre-processing step, per simulation.

28The leading order term in the asymptotic expansion of Gy (n) is 1/(4x|n[) [28]. For a fixed «, the integrand [R(@)] (n),
i.e. [Ge(1)](m), decays faster than any exponential [26].
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Appendix B. Half-explicit Runge-Kutta schemes

The IF-HERK schemes used to perform the numerical experiments of Section 5 are:

ScHEME A ScHEME B ScHeEME C ScHEME D
0
0 0 0 g

il 3 11 8|38 Ilog 1

3 3 1 15 2 2
1| ¥ ¥ 11 2 %5 r s 1|10 01
_ 3 I 1 3 1 I I I
SREES 0 7 3 (3 0 % 5§ 3 3 %

(B.1)

The expected order of accuracy for Schemes A-D based on the simplified HERK order-condi-
tions discussed in Section 2.3 are included in Table B.7. As a point of comparison, Table B.7 also
includes the expected order of accuracy for problems with no immersed surfaces (i.e. Eq. (8a)
and (8b) with § = 0) and for general semi-explicit DAEs of index 2 (i.e. Eq. (9)).

Scheme |y z y* z¥ y*
A 2 2 2 2 2 2
B 3 2 3 2 3 2
C 2 1 3 1 2 1
D 3 1 4 1 2 1

Table B.7: Expected order of accuracy of HERK schemes for the solution variable y (velocity) and for the constraint
variable z (pressure and body forces). The superscripts + and * denotes values for problems with no immersed surface
and for general semi-explicit DAEs of index 2, respectively.

Scheme B is the only three-stage scheme with a third-order accurate solution variable for
general semi-explicit DAEs of index 2 [35]. The RK coefficients of Scheme C and Scheme D
correspond to the popular three-stage fractional step method of [68] and the four-stage “original”
RK method, respectively. As discussed in [26], Scheme A has the advantage of having equis-
paced RK nodes, i.e. ¢;’s, which reduce the number of distinct integrating factors. Fewer distinct
integrating factors reduces the number of pre-processing operations and lowers the storage re-
quirements of the LGF-FMM [28] and of the Cholesky-based force Schur complement technique
discussed in Section 3.2. Scheme A and D only require two distinct integrating factors (with one
of them being the identity operator), as opposed to the three distinct integrating factors required
by Scheme B and C.

In the absence of an immersed surface, a linear stability analysis about a uniform base flow
U of the IF-HERK method [26] indicates that solutions are subject to the CFL condition

At
CFL = & < CFLpax, (B.2)
Ax

where CFL,x depends on the RK coefficients of the scheme. The value of CFL,.« is unity for
Schemes A—C and 2%/? for Scheme D. In practice, we expect solutions to the non-linear governing
equations to remain stable as long as the CFL conditions resulting from linearizing the flow at
each grid point are satisfied, i.e. as long as max(Ju|)A¢/Ax < CFL -

The CFL condition Ax ~ At and the second-order accuracy (in the absence of immersed

surfaces) of the present solver imply that the potential reduction in the operation count resulting
29



from higher than second-order HERK schemes is limited. As a result, the lower pre-processing
cost of Scheme A compared to Scheme C makes Scheme A the preferred HERK scheme for the
present formulation. Here, we did not consider Schemes C and D to be potential “preferred”
schemes since they are only first-order accurate in the constraint variables.
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