
An Investigation Into the Structure of Genomes within an
Evolution that uses Embryogenesis

Anthony M. Roy
Engineering Design Research

Laboratory
California Institute of

Technology
1200 California Blvd.
Pasadena CA 91125

roy@design.caltech.edu

Erik K. Antonsson
Engineering Design Research

Laboratory
California Institute of

Technology
1200 California Blvd.
Pasadena CA 91125

erik@design.caltech.edu

Andrew A. Shapiro
Engineering Design Research

Laboratory
California Institute of

Technology
1200 California Blvd.
Pasadena CA 91125

aashapiro@aol.com

ABSTRACT
Evolutionary algorithms that use embryogenesis in the cre-
ation of individuals have several desirable qualities. Such al-
gorithms are able to create complex, modular designs which
can scale well to large problems. However, the inner work-
ings of developmental algorithms have not been investigated
as thoroughly as their direct-encoding counterparts. More
precisely, it would be beneficial to look at how the rules used
during embryogenesis evolve alongside the phenotypes they
produced. This paper reports on such an investigation into
the evolution of a rule set for the growth of an artificial neu-
ral network, and identifies several aspects that are desirable
for the genomes of a developmental evolutionary algorithm.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Analysis of algorithms; I.2.6 [Artificial Intelli-
gence]: Learning—connectionism and neural nets

General Terms
Algorithms

Keywords
Neural Networks, Embryogenesis, Analysis

1. INTRODUCTION
Encoding schemes that apply embryogenesis are emerg-

ing as a new way to encode genotypes for Genetic Algo-
rithms (GA’s). Theraulaz [11] and Pollack [8] have shown
that the reuse of a small set of rules to create a phenotype
is an effective alternative to storing and manipulating the
large amount of data that describes each individual directly.
Bentley and Kumar [1] have shown that indirect encodings
produce solutions to design problems faster and better than
their directly encoded counterparts. Federici and Down-
ing [2] have also shown that rule-based encoded designs are
more robust as well. Furthermore, these encodings are much
more likely to create modular outcomes, another desirable
quality for many designs [4, 6, 3].

Copyright is held by the author/owner(s).
GECCO’09, July 8–12, 2009, Montréal, Québec, Canada.
ACM 978-1-60558-505-5/09/07.

Considering these many advantages, indirect encodings
have been used for many design problems, among them cre-
ating artificial neural networks (ANN’s)[5, 10]. The com-
plexity and size of ANN’s make them attractive candidates
for Evolutionary Computation (EC) applications.

This paper explores the inner workings of an implicitly
encoded genetic algorithm. The genome is a set of variable-
length rules that are decoded to create a C++ program.
The C++ programs used to create the ANN’s have an IF-
CONDITION, THEN-ACTION structure. Each program
cycles through each node with multiple tests and actions of
the form:

IF Node α and/or Node β meets certain CON-
DITION(S), THEN perform ACTION(S).

As with EC itself, the work presented here in inspired by
nature. Rather than using a tree-like structure as in most
ANN embryogenesis, the genome is represented as a series
of numbers ranging between 1 and 4. This representation
allows one to evolve with mutations such as point substitu-
tion, crossover, and gene duplication/deletion in a manner
much closer to their biological counterparts [7]. The genome
is then created to create a C++ program with a process that
is akin to Grammatical Evolution (GE) [12]. A key differ-
ence, however, is that the programs created by GE are the
ANN’s, while the programs produced here are instructions
on how to make the ANN. While this difference is subtle, the
recursive execution of rules leads to inherent modularity [9].

This paper will investigate how the rules evolve with their
accompanying individuals. In it, we see that increasing rule
complexity is integral to a successful, rule-based evolution.
Furthermore, we see that events of punctuated equilibrium
are a key feature of successful evolution. In evolutionary bi-
ology, punctuated equilibrium is an event where long periods
where a species changes little are “punctuated” by relatively
short periods of dramatic changes in the individual. While
the term is normally applied on a phenotypical level, we will
see that it also applies to the genomes as well.

2. PHENOTYPES
The goal of this evolutionary algorithm is to evolve a neu-

ral network capable of effectively controlling a robot, even
as the network has several nodes and connections removed.
This test was chosen because it challenges the exploration
capabilities of the GA in finding a suitable controller, and

2137

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216253927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Model of Path-Following Robot

also challenges the exploitative capabilities of the GA in im-
proving the robustness of the controller. The robot con-
sidered here is a Pioneer robot equipped with photo-voltaic
sensors. These sensors are able to detect the difference be-
tween light and dark, and are configured to enable the robot
to follow a desired path via a line.

The neural network controller of each robot is a network
of McCulloch-Pitts neurons. The sensors serve as the in-
puts to the ANN, while each output of the ANN controls a
wheel. Each ANN is composed of McCulloch-Pitts modeled
neurons shown in Figure 2. The neuron sums the weighted
inputs, then enters the sum into a Heaviside function with
an evolvable threshold.

The ANN is updated at the same time as the robot’s po-
sition, so large ANN’s can experience noticeable lag times.
The node’s output, O(u), maybe weighted before it is used
as an input for another node. However, O(u) for an out-
put node is always unweighted, resulting in binary outputs
for the entire ANN. Finally, each node is denoted by two
different types. Type 1 values indicate whether a node is
an INPUT, HIDDEN, or OUTPUT. Type 2 values are nu-
merical values that range between 1 and 8, and nodes are
enumerated in the order in which they are created. Thus,
the third hidden node created by the ANN would have a
type 1 of HIDDEN and a type 2 of 3.

3. GENETIC ENCODING

3.1 Biological Analog
It will be helpful to review the biological analogy which

was the inspiration for this particular encoding scheme. The
genome of each individual is an array of integers which is de-
coded to create C++ programs. Similar to the quaternary
system of natural genetics, every digit is a nucleotide whose
value is inclusively between 1 and 4. It takes a pair of nu-
cleotides to write anything into the C++ script. As shown
in Figure 3, two nucleotides are analogous to a codon tran-
scribing an amino acid into a protein. A collection of six
codons (twelve nucleotides) forms a complete if/then state-
ment, which can be thought of as the secondary structure of
a protein. However, these tests are not independent, and the
sequence of the tests will greatly influence how the individ-
ual will grow. Therefore, a combination of these tests deter-

Figure 2: McCulloch-Pitts Neuron Model

11︸︷︷︸
codon

2341233123

︸ ︷︷ ︸
reading frame

141434132124 444444444444

︸ ︷︷ ︸
gene

Figure 3: Sample Genome and Biological Analog

mines what actions will be performed, and can be thought
of as the overall protein. Herein, a reading frame is a collec-
tion of six codons and the sequence of frames that creates
an entire protein as a gene.

3.2 Genotypes and Genetic Decoding
The genome is a set of variable-length rules that are de-

coded to create a program. While a brief overview will be
given here, a more details on the particulars of how the
genome is decoded can be found in [9]. The programs have
an IF/THEN structure, where criteria are tested, and if true,
certain actions are performed. The first codon of each read-
ing frame dictates how the criteria and actions are grouped.
This flexibly allows the GA to build complex rules from sim-
ple building blocks. The first pair of nucleotides in a frame
determines the logical structure of the entire protein. An
example is shown in Figure 4.

• if - Opens an if statement. Adds action to the action
stack.

• end-if - Executes action stack. Removes most re-
cent action from action stack. Closes an if statement.
Opens another if statement. Adds action to the action
stack.

• end-end-if - Executes action stack. Removes most re-
cent action from action stack. Closes an if statement.
Executes new action stack. Removes action from ac-
tion stack. Closes an if statement. Opens another if
statement. Adds action to the action stack.

• end-del - Executes action stack. Closes an if statement.

• end-end-del - Executes action stack. Removes most re-
cent action from action stack. Closes an if statement.

2138

Executes new action stack. Removes action from ac-
tion stack. Closes an if statement.

• end-ALL - Executes action stack. Removes most re-
cent action from action stack. Closes an if statement.
Repeats until all if statements are closed.

if 11(Test a)(Action A)

if 11(Test b)(Action B)

if 12(Test d)(Action D)

if 12(Test f)(Action F)

end-del 14(Test e)(Action E)

end-ALL 44(Test g)(Action G)

end-end-if 33(Test c)(Action C)

i f (a)
 if (b)
 B
 A
 end
 A
end
if (c)
 if (d)
 D
 C
 end
 if (f)
 F
 C
 end
 C
end

Figure 4: If Structure Codon and Protein Transcrip-
tion

The remaining codons of a reading frame determine the
test to be performed and the actions that will be executed
upon a successful test. The second codon dictates what
attributes will be tested. The attributes are node states such
as the type of node (OUTPUT-4, etc.) or what previous
actions a node has performed. The third codon determines
what (in)equality will be used for the test. The fourth pair of
nucleotides assigns the values the attribute is tested against.
Each possible value correlates to an integer in the range [1
- 16]. Table 1 shows an overview of the codons and their
functions.

Table 1: List of codons

Codon Function Example
1 If Logic Structure if, END ALL
2 Condition Node β.no of inputs()
3 Test Inequality 6=, =, >
4 Test Value OUTPUT, 3, -0.75
5 Action Make Node, Make Connection
6 Action Value OUTPUT, 3, -0.75

The fifth codon determines what action will be placed into
the action stack. This “stack” of actions is written into the
program whenever an if statement is closed. Some codons
will result in the creation of a new node. Others will create
a connection between Node α and Node β. In both these
cases, the last two nucleotides dictate the threshold of the
new node or weight of the connection, respectively. The
transcription options are identical to the bias and connection

values of the fourth codon. Thus the frame 112341233123
will create:

if (Node α.Type1() 6= HIDDEN)

make connection(0.5)

There are also the action options of End Turn and Do Noth-
ing which will exit the permutation loop and not insert any
action, respectively. Figure 5 shows the genetic string used
to create a C++ program.

Looping for
Pairing Permutations

111241233213if

end-if

end ALL

142434133111

444444444444

for (Node a = 1:ANN.size){
 for (Node b = 1:ANN.size){
 if (Node a.Type1 = HIDDEN){
 make.connection(-0.5)
 }end
 if (Node b.Type2 = 1){
 make.node(OUTPUT,-0.75)
 }end
 }end
}end

{
{
{

{

Figure 5: Sample Genome and Protein Pseudo-code

3.3 C++ Programs (Proteins)
Each C++ program is a collection of proteins that build

the phenotype. While the genome creates the bulk of the
algorithm, there are a few rules hard coded into the C++

script of every individual. First, every ANN begins as three
input nodes with a threshold of zero. As there is no option
to create another input, each ANN will contain exactly three
input nodes. Furthermore, the inputs are unable to connect
to each other. Also, each input, and all subsequent nodes
thereafter, can create up to one additional node of either a
hidden layer type or output type.

As we are only considering feed-forward ANN’s, nodes
are only able to make connections to nodes created after
them. Furthermore, the creation of an output node will stop
the creation of any other nodes. However, connections may
still be grown at this point. The act of creating a node or
connection consumes one of the individual’s predetermined
energy units for the entire ANN. The individual is consid-
ered to be completely developed once the individual uses all
energy units or the programs cycles through all pairing per-
mutations of nodes without performing any actions. These
hard coded rules are implemented to impose the minimum
constraints any viable feed forward ANN would have, while
leaving enough flexibility to create a variety of architectures.
Figure 6 shows the development of a NAND gate using the
pseudo-code from Figure 5. It is important to note that an
infinite number of genomes could have created an identical
ANN.

4. GENETIC ALGORITHM
Each evolutionary run begins with the random creation

of 192 individuals, each having genome lengths of 600 nu-
cleotides. After the embryogenesis of each individual, as de-
scribed by the method above, each ANN is evaluated. The
fitness function uses a modified tier system with an individ-
ual being rewarded exponentially for each goal. Equation 1

2139

for (Node a = 1:ANN.size){
 for (Node b = 1:ANN.size){
 if (Node a.Type1 HIDDEN){
 make.connection(0.5)
 }end
 if (Node b.Type2 = 1){
 make.node(OUTPUT,-0.75)
 }end
 }end
}end

BIAS = 0

BIAS = 0

BIAS = -0.75

0.5

0.5

INPUT - 1

INPUT - 2

OUTPUT - 1

Figure 6: Protein Pseudo-code and Sample NAND
Gate

is the fitness function used for evaluating individuals. The
exponent in Equation 1 is decided by the tier system in Ta-
ble 3. The first tier ensures the individual grows the correct
number of output nodes. In the second tier, the exponent is
increased for each output node with a connection. These two
requirements are the minimum for any possibly viable ANN
circuit, and once met, will yield an exponent of x−1 = 3. At
this point, the network’s truth table is compared with logic
necessary to navigate a line. This logic is shown in Table 2.
The exponent gets an additional point for each correct an-
swer. Two of the logic combinations, [1 0 1] and [1 1 1],
are not considered as there is no physical realization in the
former and the robot has already failed if it encounters the
latter. After tier 3, a completely functional robot will have
x− 1 = 9 and an overall fitness of 512.

Table 2: Target Logic for Robot
Input Output

Left Center Right Left Right
Sensor Sensor Sensor Wheel Wheel

0 0 0 1 1
0 0 1 1 0
0 1 0 1 1
0 1 1 1 0 or 1
1 0 0 0 1
1 1 0 0 or 1 1

In tier 4, a connection is randomly broken, and the ANN is
compared to the target logic again. Connections are contin-
ually broken until the circuit no longer produces the target
logic. Once the circuit fails, the connections are replaced
and the process is repeated with broken nodes. This test for
robustness is performed once for each generation the indi-
vidual is alive. Because the order in which the connections
and nodes are removed changes each generation, an individ-
ual’s fitness is not constant, and the overall robustness will
increase.

Fitness =
⌊
2x−1⌋ (1)

A roulette style of selection determines which individuals
are used for creating the next generation, and population
size is conserved. The probability of selecting an individual
is its fitness value divided by the summed fitness of the entire
population. 25% of the population of the current generation
live on to the next generation. The remaining 75% is created
through the various mutation methods where each individ-

Table 3: Tier for adjusting fitness exponent (x− 1)

Tier Test Change in Exponent

1 Are there enough out-
put nodes?

of desired output
nodes

2 Are there a connec-
tions to each output
node?

+ # of output nodes
with connections

3 Compare to the de-
sired truth table

+ # of correct answers in
each table entry

4 Break connections and
nodes until failure

+ % of connections bro-
ken + % of nodes broken

ual can have up to three offspring. The mutations between
the parent and offspring are point mutation and double point
crossover. These parameters were chosen to give reasonable
computational results within 1000 generations.

5. EVOLUTIONARY RESULTS
Evolution was run with two different mutation rates. For

one group of runs, each reading frame has a 10% chance of
undergoing a mutation. For a second group, the mutation
rate was increased to 80%. The lower mutation rate yielded
good results, as individuals were able to follow the line with
large portions of their networks removed. Evolution using
the higher mutation rate were deemed unsuccessful, as indi-
viduals seldom made it to the 4th evaluation tier. Evolution
was run several times for each scenario, but in the interest
of space only the results for two exemplary runs are shown
below. While the quantitative results differ between runs,
the qualitative results for all the runs are similar to these
runs.

Figure 7 shows what genes were used by the best indi-
viduals (top 10%) throughout a typical successful evolution.
Each time a gene is used, a dot is placed that shows in which
generation it was used. Furthermore, the figure is overlaid
with a plot of the fitness of the best performing individ-
ual of each generation. Punctuated equilibrium (PE) events
happen near generations 270 and 610. The first PE event
happens shortly after the first jump in fitness of the best
individual. The second PE event happens after a relatively
small change (∼1%) increase in the best fitness. Finally, we
see that the majority of increases in best fitness do not result
in a massive shift of the genomes in the population.

The analysis was repeated for poorly-performing evolu-
tions with the elevated mutation rate. On a phenotypical
level, no individual ever made it to the 4th tier. Figure 8
shows the effects a high mutation rate has on genome de-
velopment. The most striking feature is the lack of any
PE’s. Another key element is the myriad genes created as
the number of genes used among the top 10% here is an
order of magnitude higher than the number genes used in a
successful evolution.

Figure 9 shows how the rules become more complex through-
out evolution. The height of the overall bar diagram shows
how many different genes were used throughout evolution
grouped by generation groups of one hundred. The num-
ber of nestings indicate the number of additional conditions
that must prove true in order for an action to be executed.
Thus, a thrice nested rule must have four IF statements true

2140

Figure 7: Lifetime Genes Used by the Top 10% of
Each Generation During a Successful Evolution

Figure 8: Lifetime Genes Used by the Top 10% of
Each Generation During a Unsuccessful Evolution

for its action to execute. We see that over time, a higher
percentage of the rules used have additional nestings. Fur-
thermore, the number of genes used by the best individuals
changes as well. Unsuccessful results are also contrasted in
Figure 10. Here we see, once again, that many more genes
are produced. However, there is little variation throughout
evolution. Furthermore, the rules used do not become overly
complex.

Figure 9: Structure of Genes Used by the Top 10%
of Each Generation During a Successful Evolution
(Once Nested at Bottom)

Figure 10: Structure Genes Used by the Top 10% of
Each Generation During a Unsuccessful Evolution
(Once Nested at Bottom)

Finally, statistics looking at the structure of the rules are
examined. The actions of every reading frame within a used
gene is tallied for each run. Its important to note that the
sum of these tallies will be high than the total number of
genes used because nested genes contain multiple reading
frames. Furthermore, while the actual numbers are given, it
is the relative ratios that remain consistent among similar
runs.

When looking at the actions used, we see that making a
connection was the most common. This is to be expected as

2141

most of what the ANN does is grow connections. However,
we see the second most common action was the end turn
action, which prevents the network from performing tasks.
This shows that the control of growth is about as important
as growth itself. In other words, evolving rules prohibiting
actions maybe as important as involving rules that promote
actions.

Table 4: Actions in Executed Genes

Make Make Do End
Connection Node Nothing Turn

Successful Run 4297 1628 1566 3981
Unsuccessful Run 12750 4346 612 8054

6. CONCLUSION
This paper follows the evolutionary path of the genome.

Furthermore, it shows differences between qualities that good
and poor evolution will have. One may be able to use these
differences to actually help promote better results from evo-
lution. Namely, punctuated evolution events seem to be crit-
ical for evolution to be a success. This would suggest that
it maybe beneficial to periodically cause mass-extinctions in
order to promote overall betterment of the population.

Another surprising outcome is the importance of growth-
limiting rules in all evolution. One of the advantages to re-
stricting growth it restricts the search space, usually leading
to more efficient evolutions. However, it is difficult to know
how much limiting is necessary a priori and allowing this
retardation of growth to evolve along with the population is
obviously beneficial, even for poor evolutionary paths.

Further work will include a study of the type of condition-
als used for IF-THEN tests, comparisons where evolution is
unsuccessful for different reasons, a look at the structure of
the unused portions of the genome, and check the scalability
of the genomes for large neural networks.

7. ACKNOWLEDGMENTS
The simulations were performed on GARUDA, a high-

performance computing cluster hosted by the Civil Engi-
neering Department at Caltech.

8. REFERENCES
[1] P. Bentley and S. Kumar. Three ways to grow designs:

A comparison of embryogenesis for an evolutionary
design problem. In Genetic and Evolutionary
Computation Conference, pages 35–43, 1999.

[2] D. Federici and K. Downing. Evolution and
development of a multicellular organism: Scalability,
resilience, and neutral complexification. Artif. Life,
12(3):381–409, 2006.

[3] D. Floreano, P. DÃijrr, and C. Mattiussi.
Neuroevolution: from architectures to learning.
Evolutionary Intelligence, 2008.

[4] F. Gruau. Genetic synthesis of modular neural
networks. In Proceedings of the 5th International
Conference on Genetic Algorithms, pages 318–325,
San Francisco, CA, USA, 1993. Morgan Kaufmann
Publishers Inc.

[5] H. Kitano. Designing neural networks using genetic
algorithms. Complex Systems, 4(4):461–476, 1990.

[6] P. Koehn. Genetic encoding strategies for neural
networks, 1996.

[7] S. Ohno. Evolution by gene duplication.
Springer-Verlag, 1970.

[8] J. B. Pollack, G. S. Hornby, H. Lipson, and P. Funes.
Computer creativity in the automatic design of robots.

[9] A. Roy, E. Antonsson, and A. Shapiro. Genetic
programming of an artificial neural network for robust
control of a 2-d path following robot. In ASME Design
Engineering Technical Conferences, New York City,
NY, USA, 2008.

[10] K. O. Stanley, D. B. Ambrosio, and J. Gauci. A
hypercube-based indirect encoding for evolving
large-scale neural networks. Artificial Life, 2009.

[11] G. Theraulaz and E. Bonabeau. Coordination in
distributed building. Science, 269(5224):686–688,
August 1995.

[12] I. G. Tsoulos, D. Gavrili, and E. Glavas. Neural
network construction using grammatical evolution.
IEEE International Symposium on Signal Processing
and Information Technology, pages 827–831, 2005.

2142

